This file is indexed.

/usr/include/Rivet/Particle.hh is in librivet-dev 1.8.3-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
// -*- C++ -*-
#ifndef RIVET_Particle_HH
#define RIVET_Particle_HH

#include "Rivet/Rivet.hh"
#include "Rivet/Particle.fhh"
#include "Rivet/ParticleBase.hh"
#include "Rivet/ParticleName.hh"
#include "Rivet/Math/Vectors.hh"
#include "Rivet/Tools/Logging.hh"

namespace Rivet {


  /// Representation of particles from a HepMC::GenEvent.
  class Particle : public ParticleBase {
  public:

    /// Default constructor.
    /// @deprecated A particle without info is useless. This only exists to keep STL containers happy.
    Particle()
      : ParticleBase(),
        _original(0), _id(0), _momentum()
    { }

    /// Constructor without GenParticle.
    Particle(PdgId pid, const FourMomentum& mom)
      : ParticleBase(),
        _original(0), _id(pid), _momentum(mom)
    { }

    /// Constructor from a HepMC GenParticle.
    Particle(const GenParticle& gp)
      : ParticleBase(),
        _original(&gp), _id(gp.pdg_id()),
        _momentum(gp.momentum())
    { }


  public:

    /// Get a const reference to the original GenParticle.
    const GenParticle& genParticle() const {
      assert(_original);
      return *_original;
    }


    /// Check if the particle corresponds to a GenParticle.
    bool hasGenParticle() const {
      return bool(_original);
    }


    /// The PDG ID code for this Particle.
    PdgId pdgId() const {
      return _id;
    }


    /// Set the momentum of this Particle.
    Particle& setMomentum(const FourMomentum& momentum) {
      _momentum = momentum;
      return *this;
    }

    /// The momentum of this Particle.
    const FourMomentum& momentum() const {
      return _momentum;
    }

    /// The energy of this Particle.
    double energy() const {
      return momentum().E();
    }

    /// The mass of this Particle.
    double mass() const {
      return momentum().mass();
    }


    /// @todo Re-enable
    // /// The charge of this Particle.
    // double charge() const {
    //   return PID::charge(*this);
    // }

    /// @todo Re-enable
    // /// Three times the charge of this Particle (i.e. integer multiple of smallest quark charge).
    // int threeCharge() const {
    //   return PID::threeCharge(*this);
    // }

    /// Check whether a given PID is found in the GenParticle's ancestor list
    ///
    /// @note This question is valid in MC, but may not be answerable
    /// experimentally -- use this function with care when replicating
    /// experimental analyses!
    bool hasAncestor(PdgId pdg_id) const;

    /// @brief Determine whether the particle is from a hadron or tau decay
    ///
    /// Specifically, walk up the ancestor chain until a status 2 hadron or
    /// tau is found, if at all.
    ///
    /// @note This question is valid in MC, but may not be answerable
    /// experimentally -- use this function with care when replicating
    /// experimental analyses!
    bool fromDecay() const;

    /// @todo Add methods like fromS/C/BHadron(), fromTau()?


  private:

    /// A pointer to the original GenParticle from which this Particle is projected.
    const GenParticle* _original;

    /// The PDG ID code for this Particle.
    PdgId _id;

    /// The momentum of this projection of the Particle.
    FourMomentum _momentum;
  };


  /// @name String representation
  //@{

  /// Print a ParticlePair as a string.
  inline std::string toString(const ParticlePair& pair) {
    stringstream out;
    out << "["
        << toParticleName(pair.first.pdgId()) << " @ "
        << pair.first.momentum().E()/GeV << " GeV, "
        << toParticleName(pair.second.pdgId()) << " @ "
        << pair.second.momentum().E()/GeV << " GeV]";
    return out.str();
  }

  /// Allow ParticlePair to be passed to an ostream.
  inline std::ostream& operator<<(std::ostream& os, const ParticlePair& pp) {
    os << toString(pp);
    return os;
  }

  //@}


  /// @name Comparison functors
  //@{
  /// Sort by descending transverse momentum, \f$ p_\perp \f$
  inline bool cmpParticleByPt(const Particle& a, const Particle& b) {
    return a.momentum().pT() > b.momentum().pT();
  }
  /// Sort by ascending transverse momentum, \f$ p_\perp \f$
  inline bool cmpParticleByAscPt(const Particle& a, const Particle& b) {
    return a.momentum().pT() < b.momentum().pT();
  }
  /// Sort by descending momentum, \f$ p \f$
  inline bool cmpParticleByP(const Particle& a, const Particle& b) {
    return a.momentum().vector3().mod() > b.momentum().vector3().mod();
  }
  /// Sort by ascending momentum, \f$ p \f$
  inline bool cmpParticleByAscP(const Particle& a, const Particle& b) {
    return a.momentum().vector3().mod() < b.momentum().vector3().mod();
  }
  /// Sort by descending transverse energy, \f$ E_\perp \f$
  inline bool cmpParticleByEt(const Particle& a, const Particle& b) {
    return a.momentum().Et() > b.momentum().Et();
  }
  /// Sort by ascending transverse energy, \f$ E_\perp \f$
  inline bool cmpParticleByAscEt(const Particle& a, const Particle& b) {
    return a.momentum().Et() < b.momentum().Et();
  }
  /// Sort by descending energy, \f$ E \f$
  inline bool cmpParticleByE(const Particle& a, const Particle& b) {
    return a.momentum().E() > b.momentum().E();
  }
  /// Sort by ascending energy, \f$ E \f$
  inline bool cmpParticleByAscE(const Particle& a, const Particle& b) {
    return a.momentum().E() < b.momentum().E();
  }
  /// Sort by descending pseudorapidity, \f$ \eta \f$
  inline bool cmpParticleByDescPseudorapidity(const Particle& a, const Particle& b) {
    return a.momentum().pseudorapidity() > b.momentum().pseudorapidity();
  }
  /// Sort by ascending pseudorapidity, \f$ \eta \f$
  inline bool cmpParticleByAscPseudorapidity(const Particle& a, const Particle& b) {
    return a.momentum().pseudorapidity() < b.momentum().pseudorapidity();
  }
  /// Sort by descending absolute pseudorapidity, \f$ |\eta| \f$
  inline bool cmpParticleByDescAbsPseudorapidity(const Particle& a, const Particle& b) {
    return fabs(a.momentum().pseudorapidity()) > fabs(b.momentum().pseudorapidity());
  }
  /// Sort by ascending absolute pseudorapidity, \f$ |\eta| \f$
  inline bool cmpParticleByAscAbsPseudorapidity(const Particle& a, const Particle& b) {
    return fabs(a.momentum().pseudorapidity()) < fabs(b.momentum().pseudorapidity());
  }
  /// Sort by descending rapidity, \f$ y \f$
  inline bool cmpParticleByDescRapidity(const Particle& a, const Particle& b) {
    return a.momentum().rapidity() > b.momentum().rapidity();
  }
  /// Sort by ascending rapidity, \f$ y \f$
  inline bool cmpParticleByAscRapidity(const Particle& a, const Particle& b) {
    return a.momentum().rapidity() < b.momentum().rapidity();
  }
  /// Sort by descending absolute rapidity, \f$ |y| \f$
  inline bool cmpParticleByDescAbsRapidity(const Particle& a, const Particle& b) {
    return fabs(a.momentum().rapidity()) > fabs(b.momentum().rapidity());
  }
  /// Sort by ascending absolute rapidity, \f$ |y| \f$
  inline bool cmpParticleByAscAbsRapidity(const Particle& a, const Particle& b) {
    return fabs(a.momentum().rapidity()) < fabs(b.momentum().rapidity());
  }
  //@}

  inline double deltaR(const Particle& p1, const Particle& p2,
                       RapScheme scheme = PSEUDORAPIDITY) {
    return deltaR(p1.momentum(), p2.momentum(), scheme);
  }

  inline double deltaR(const Particle& p, const FourMomentum& v,
                       RapScheme scheme = PSEUDORAPIDITY) {
    return deltaR(p.momentum(), v, scheme);
  }

  inline double deltaR(const Particle& p, const FourVector& v,
                       RapScheme scheme = PSEUDORAPIDITY) {
    return deltaR(p.momentum(), v, scheme);
  }

  inline double deltaR(const Particle& p, const Vector3& v) {
    return deltaR(p.momentum(), v);
  }

  inline double deltaR(const Particle& p, double eta, double phi) {
    return deltaR(p.momentum(), eta, phi);
  }

  inline double deltaR(const FourMomentum& v, const Particle& p,
                       RapScheme scheme = PSEUDORAPIDITY) {
    return deltaR(v, p.momentum(), scheme);
  }

  inline double deltaR(const FourVector& v, const Particle& p,
                       RapScheme scheme = PSEUDORAPIDITY) {
    return deltaR(v, p.momentum(), scheme);
  }

  inline double deltaR(const Vector3& v, const Particle& p) {
    return deltaR(v, p.momentum());
  }

  inline double deltaR(double eta, double phi, const Particle& p) {
    return deltaR(eta, phi, p.momentum());
  }


  inline double deltaPhi(const Particle& p1, const Particle& p2) {
    return deltaPhi(p1.momentum(), p2.momentum());
  }

  inline double deltaPhi(const Particle& p, const FourMomentum& v) {
    return deltaPhi(p.momentum(), v);
  }

  inline double deltaPhi(const Particle& p, const FourVector& v) {
    return deltaPhi(p.momentum(), v);
  }

  inline double deltaPhi(const Particle& p, const Vector3& v) {
    return deltaPhi(p.momentum(), v);
  }

  inline double deltaPhi(const Particle& p, double phi) {
    return deltaPhi(p.momentum(), phi);
  }

  inline double deltaPhi(const FourMomentum& v, const Particle& p) {
    return deltaPhi(v, p.momentum());
  }

  inline double deltaPhi(const FourVector& v, const Particle& p) {
    return deltaPhi(v, p.momentum());
  }

  inline double deltaPhi(const Vector3& v, const Particle& p) {
    return deltaPhi(v, p.momentum());
  }

  inline double deltaPhi(double phi, const Particle& p) {
    return deltaPhi(phi, p.momentum());
  }


  inline double deltaEta(const Particle& p1, const Particle& p2) {
    return deltaEta(p1.momentum(), p2.momentum());
  }

  inline double deltaEta(const Particle& p, const FourMomentum& v) {
    return deltaEta(p.momentum(), v);
  }

  inline double deltaEta(const Particle& p, const FourVector& v) {
    return deltaEta(p.momentum(), v);
  }

  inline double deltaEta(const Particle& p, const Vector3& v) {
    return deltaEta(p.momentum(), v);
  }

  inline double deltaEta(const Particle& p, double eta) {
    return deltaEta(p.momentum(), eta);
  }

  inline double deltaEta(const FourMomentum& v, const Particle& p) {
    return deltaEta(v, p.momentum());
  }

  inline double deltaEta(const FourVector& v, const Particle& p) {
    return deltaEta(v, p.momentum());
  }

  inline double deltaEta(const Vector3& v, const Particle& p) {
    return deltaEta(v, p.momentum());
  }

  inline double deltaEta(double eta, const Particle& p) {
    return deltaEta(eta, p.momentum());
  }

}

#endif