/usr/include/Rivet/Math/eigen/regressioninternal.h is in librivet-dev 1.8.3-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | // This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.
/** \file regressioninternal.h
* \brief Internal file
*/
#ifndef EIGEN_REGRESSIONINTERNAL_H
#define EIGEN_REGRESSIONINTERNAL_H
#include "util.h"
namespace Eigen
{
/** \internal
*
* \ingroup internalbases
*
* Internal function for linearRegression() and linearRegressionX().
*
* See the documentation of linearRegression() for details.
*/
template< typename T,
typename VectorType,
typename MatrixType >
void linearRegression_internal( int numPoints,
const VectorType * points,
VectorType * retCoefficients,
int funcOfOthers )
{
assert( numPoints >= 1 );
int i, size = points[0].size();
assert( funcOfOthers >= 0 && funcOfOthers < size );
assert( size == retCoefficients->size() );
MatrixType matrix( size );
matrix.loadZero();
VectorType vector( size );
vector.loadZero();
for( i = 0; i < numPoints; i++)
{
assert( size == points[i].size() );
VectorType cur_vec( size );
T coord_funcOfOthers = points[i]( funcOfOthers );
for( int j = 0; j < funcOfOthers; j++)
cur_vec(j) = points[i](j);
for( int j = funcOfOthers; j < size - 1; j++ )
cur_vec(j) = points[i]( j + 1 );
cur_vec( size - 1 ) = static_cast<T>(1);
for( int row = 0; row < size; row++ )
{
T cur_vec_row = cur_vec(row);
vector(row) += Util::conj( cur_vec_row ) * coord_funcOfOthers;
matrix( row, row ) += Util::conj( cur_vec_row ) * cur_vec_row;
for( int col = 0; col < row; col++ )
{
T product = Util::conj( cur_vec_row ) * cur_vec(col);
matrix( row, col ) += product;
matrix( col, row ) += Util::conj( product );
}
}
}
matrix.computeSomeAntecedent( vector,
retCoefficients );
}
/** \internal
*
* \ingroup internalbases
*
* Base function for computeFittingHyperplane() and
* computeFittingHyperplaneX().
*
* See the documentation of computeFittingHyperplane() and
* linearRegression() for details.
*/
template< typename T,
typename VectorType,
typename BigVecType,
typename MatrixType >
void computeFittingHyperplane_internal( int numPoints,
const VectorType * points,
BigVecType * retCoefficients )
{
assert( numPoints >= 1 );
int i, size = points[0].size();
assert( ( size + 1 ) == retCoefficients->size() );
// let's compute roughly, for each coord, how much it varies
// across points. Since a rough estimate is enough, a linear algorithm
// fixing a base point will do.
VectorType amplitude( size );
amplitude.loadZero();
for( i = 1; i < numPoints; i++ )
{
VectorType diff( points[i] - points[0] );
for( int j = 0; j < size; j++ )
{
if( std::abs(diff(j)) > std::abs(amplitude(j)) )
amplitude(j) = diff(j);
}
}
// now let's find out which coord varies the least. Again, this is
// approximative. All that matters is that we don't pick a coordinate
// that varies orders of magnitude more than another one.
T min_amplitude = amplitude(0);
int index_min_amplitude = 0;
for( i = 1; i < size; i++ )
{
if( std::abs(amplitude(i)) < std::abs(min_amplitude) )
{
min_amplitude = amplitude(i);
index_min_amplitude = i;
}
}
// let's now perform a linear regression with respect to that
// not-too-much-varying coord
VectorType affineCoefficients( size );
linearRegression_internal< T, VectorType, MatrixType >
( numPoints, points, & affineCoefficients, index_min_amplitude );
// let's now contruct retCoefficients
for( i = 0; i < index_min_amplitude; i++ )
(*retCoefficients)(i) = affineCoefficients(i);
(*retCoefficients)(index_min_amplitude) = static_cast<T>(-1);
for( i = index_min_amplitude + 1; i < size + 1; i++ )
(*retCoefficients)(i) = affineCoefficients( i - 1 );
}
} // namespace Eigen
#endif // EIGEN_REGRESSIONINTERNAL_H
|