/usr/include/Rivet/Math/eigen/matrix.h is in librivet-dev 1.8.3-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 | // This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the Free Software
// Foundation; either version 2 or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public License along
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. This exception does not invalidate any other reasons why a work
// based on this file might be covered by the GNU General Public License.
/** \file matrix.h
* \brief Matrix and MatrixX class templates
*/
#ifndef EIGEN_MATRIX_H
#define EIGEN_MATRIX_H
#include "ludecomposition.h"
#include "matrixbase.h"
#include "vector.h"
namespace Eigen
{
/** \ingroup fixedsize
*
* \ingroup matrices
*
* \brief Fixed-size matrix
*
* A class for fixed-size square matrices. Thus, a Matrix<T,Size> is the
* same as a T[Size*Size] array, except that it has convenient
* operators and methods for basic matrix math. This class is intended to
* be zero-overhead, as opposed to the slower dynamic-size class MatrixX.
*
* The template parameter T is the type of the entries of the matrix.
* It can be any type representing either real or complex numbers.
* The template parameter Size is the size of the matrix (both height and
* width, as Eigen only allows square matrices).
* The following typedefs are provided to cover the usual cases:
* @code
typedef Matrix<double, 2> Matrix2d;
typedef Matrix<double, 3> Matrix3d;
typedef Matrix<double, 4> Matrix4d;
typedef Matrix<float, 2> Matrix2f;
typedef Matrix<float, 3> Matrix3f;
typedef Matrix<float, 4> Matrix4f;
typedef Matrix<std::complex<double>, 2> Matrix2cd;
typedef Matrix<std::complex<double>, 3> Matrix3cd;
typedef Matrix<std::complex<double>, 4> Matrix4cd;
typedef Matrix<std::complex<float>, 2> Matrix2cf;
typedef Matrix<std::complex<float>, 3> Matrix3cf;
typedef Matrix<std::complex<float>, 4> Matrix4cf;
* @endcode
*
* If you prefer dynamic-size matrices (they are slower), see the MatrixX
* class template, which provides exactly the same functionality and API
* in dynamic-size version.
*
* The Matrix class template provides all the usual operators and methods
* to manipulate square matrices, and can do some more advanced stuff using
* involving a LU decomposition, like invert a matrix.
*
* Here are some examples of usage of Matrix:
* @code
using namespace Eigen;
using namespace std; // we'll use cout for outputting matrices
Matrix3d mat1, mat2; // constructs two new uninitialized 3x3 matrices
double array[] = { 2.4, 3.1, -0.7,
-1.1, 2.9, 4.3,
6.7, -3.7, 2.7 };
mat1.readArray(array);
// now mat1 is the following matrix:
// ( 2.4 -1.1 6.7 )
// ( 3.1 2.9 -3.7 )
// ( -0.7 4.3 2.7 )
mat2.readRows(array);
// now mat2 is the following matrix:
// ( 2.4 3.1 -0.7 )
// ( -1.1 2.9 4.3 )
// ( 6.7 -3.7 2.7 )
mat1 *= mat2; // computes the matrix product mat1 * mat2, stores it in mat1
mat1 = mat2 + mat1 * mat2; // there are also non-assignment operators
mat1 = 0.9 * mat1 + mat2 / 2.6; // you can also multiply/divide by numbers
Matrix<double,5> mat3; // construct a new uninitialized 5x5 matrix
mat3.loadIdentity(); // loads the identity matrix of size 5 into mat3
mat1(2,3) = -1.4; // Stores the value -1.4 at row 2, column 3 of mat1.
cout << mat1 << endl;
double vec_coords[3] = {1.1, -2.5, 0.8};
Vector3d vec( vec_coords ); // construct a vector of size 3.
vec = mat1 * vec; // multiply vec by mat1
cout << "determinant of mat1: " << mat1.determinant() << endl;
// as mat1 has size 3, the determinant is computed by brute force.
// For larger matrices, this would use a LU decomposition.
* @endcode
*/
template <typename T, int Size>
class Matrix: public MatrixBase< T,
Matrix<T, Size>,
Vector<T, Size>,
LUDecomposition<T, Size> >
{
friend class MatrixBase< T,
Matrix<T, Size>,
Vector<T, Size>,
LUDecomposition<T, Size>
>;
typedef class MatrixBase< T,
Matrix<T, Size>,
Vector<T, Size>,
LUDecomposition<T, Size> >
Base;
private:
/**
* Returns false. A Matrix<T,Size,Size> doesn't have dynamic size.
*/
static bool _hasDynamicSize()
{ return false; }
/**
* Returns the size of the matrix.
*/
int _size() const
{ return Size; }
/**
* Does nothing. A Matrix<T,Size> can't be resized.
*
* if size != size(),
* a debug message is generated.
*/
void _resize( int size ) const
{
assert( size == this->size() );
}
public:
/**
* Constructs an uninitialized matrix. Really does nothing.
*/
Matrix() {}
/**
* Copy constructor.
*/
Matrix( const Matrix & other )
{
this->readArray( other.array() );
}
/**
* Constructs a matrix from an array. The matrix entries are read
* in column-dominant order in the array.
*/
Matrix( const T * array )
{
this->readArray( array );
}
/**
* Constructs an uninitialized matrix. Really does nothing.
* This constructor is provided only for compatibility reasons.
* Of course the size must match the template parameter.
*/
explicit Matrix( int unused_size )
{
assert( unused_size == Size );
}
/** \internal \latexonly */
Matrix & operator = ( const Matrix & other )
{ return Base::operator = ( other ); }
/** \internal \latexonly */
Matrix & operator += ( const Matrix & other )
{ return Base::operator += ( other ); }
/** \internal \latexonly */
Matrix & operator -= ( const Matrix & other )
{ return Base::operator -= ( other ); }
/** \internal \latexonly */
Matrix& operator *=( const T & factor )
{ return Base::operator *= ( factor ); }
/** \internal \latexonly */
Matrix& operator /=( const T & factor )
{ return Base::operator /= ( factor ); }
/** \internal \latexonly */
Matrix& operator *=( const Matrix & other )
{ return Base::operator *= ( other ); }
protected:
/** This array stores the size*size entries of the matrix.
* Currently, we are storing them in column-major order.
*/
T m_array[ Size * Size ];
};
/** \ingroup dynamicsize
*
* \ingroup matrices
*
* \brief Dynamic-size matrix
*
* A class for dynamic-size square matrices.
*
* The template parameter, T, is the type of the entries of the matrix.
* It can be any type representing either real or complex numbers.
* The following typedefs are provided to cover the usual cases:
* @code
typedef MatrixX<double> MatrixXd;
typedef MatrixX<float> MatrixXf;
typedef MatrixX< std::complex<double> > MatrixXcd;
typedef MatrixX< std::complex<float> > MatrixXcf;
* @endcode
*
* If you prefer fixed-size matrices (they are faster), see the Matrix
* class template, which provides exactly the same functionality and API
* in fixed-size version.
*
* The MatrixX class template provides all the usual operators and methods
* to manipulate square matrices, and can do some more advanced stuff using
* involving a LU decomposition, like invert a matrix.
*
* Here are some examples of usage of MatrixX:
* @code
using namespace Eigen;
using namespace std; // we'll use cout for outputting matrices
MatrixXd mat1(3), mat2(3); // constructs two new uninitialized 3x3 matrices
double array[] = { 2.4, 3.1, -0.7,
-1.1, 2.9, 4.3,
6.7, -3.7, 2.7 };
mat1.readArray(array);
// now mat1 is the following matrix:
// ( 2.4 -1.1 6.7 )
// ( 3.1 2.9 -3.7 )
// ( -0.7 4.3 2.7 )
mat2.readRows(array);
// now mat2 is the following matrix:
// ( 2.4 3.1 -0.7 )
// ( -1.1 2.9 4.3 )
// ( 6.7 -3.7 2.7 )
mat1 *= mat2; // computes the matrix product mat1 * mat2, stores it in mat1
mat1 = mat2 + mat1 * mat2; // there are also non-assignment operators
mat1 = 0.9 * mat1 + mat2 / 2.6; // you can also multiply/divide by numbers
MatrixXd mat3(5); // construct a new uninitialized 5x5 matrix
mat3.loadIdentity(); // loads the identity matrix of size 5 into mat3
mat1(2,3) = -1.4; // Stores the value -1.4 at row 2, column 3 of mat1.
cout << mat1 << endl;
double vec_coords[] = {1.1, -2.5, 0.8};
VectorXd vec( 3, vec_coords ); // construct a vector of size 3.
vec = mat1 * vec; // multiply vec by mat1
cout << "determinant of mat1: " << mat1.determinant() << endl;
// as mat1 has size 3, the determinant is computed by brute force.
// For larger matrices, this would use a LU decomposition.
* @endcode
*/
template<typename T>
class MatrixX : public MatrixBase< T,
MatrixX<T>,
VectorX<T>,
LUDecompositionX<T>
>
{
friend class MatrixBase< T,
MatrixX<T>,
VectorX<T>,
LUDecompositionX<T> >;
typedef class MatrixBase< T,
MatrixX<T>,
VectorX<T>,
LUDecompositionX<T> >
Base;
public:
/**
* Constructs an uninitialized square matrix with given size (dimension).
* The default value for size is 1.
*/
explicit MatrixX(int size = 1)
{ init(size); }
/**
* Copy constructor.
*/
MatrixX( const MatrixX & other )
{
init( other.size() );
this->readArray( other.array() );
}
/**
* Constructs a matrix with given size from an array.
* The matrix entries must be stored in column-dominant order in the array.
* @param array the array. It must have dimension
* at least size*size.
* @param size the size of the matrix (number of rows, or equivalently
* number of columns).
*/
MatrixX( int size, const T * array )
{
init( size );
this->readArray( array );
}
/**
* Destructor, frees the memory allocated for the matrix's array
*/
~MatrixX()
{ delete[] m_array; }
/** \internal \latexonly */
MatrixX & operator = ( const MatrixX & other )
{ return Base::operator = ( other ); }
/** \internal \latexonly */
MatrixX & operator += ( const MatrixX & other )
{ return Base::operator += ( other ); }
/** \internal \latexonly */
MatrixX & operator -= ( const MatrixX & other )
{ return Base::operator -= ( other ); }
/** \internal \latexonly */
MatrixX& operator *=( const T & factor )
{ return Base::operator *= ( factor ); }
/** \internal \latexonly */
MatrixX& operator /=( const T & factor )
{ return Base::operator /= ( factor ); }
/** \internal \latexonly */
MatrixX& operator *=( const MatrixX & other )
{ return Base::operator *= ( other ); }
protected:
/** The size (number of rows, or equivalently number of columns)
* of the matrix. */
int m_size;
/** This array stores the size*size entries of the matrix.
* Currently, we are storing them in column-major order.
*/
T *m_array;
/**
* Small helper function for the constructors
*/
void init( int size )
{
m_size = size;
m_array = new T[m_size * m_size];
}
private:
/** \internal \latexonly
* @returns the matrix size (number of rows)
*/
int _size() const
{ return m_size; }
/** \internal \latexonly
* Returns true. A MatrixX has dynamic size.
*/
static bool _hasDynamicSize()
{ return true; }
/**
* Resizes the matrix. The matrix entries are not kept, they're left
* with undefined values after resizing.
*
* @param size the new matrix size
*/
void _resize( int size );
};
template<typename T>
void MatrixX<T>::_resize( int size )
{
if( size == m_size ) return;
if( size > m_size )
{
delete[] m_array;
m_array = new T[size * size];
}
m_size = size;
}
EIGEN_MAKE_FIXEDSIZE_TYPEDEFS(Matrix)
EIGEN_MAKE_DYNAMICSIZE_TYPEDEFS(MatrixX)
}
#endif // EIGEN_MATRIX_H
|