/usr/include/Rivet/Math/Vector4.hh is in librivet-dev 1.8.3-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 | #ifndef RIVET_MATH_VECTOR4
#define RIVET_MATH_VECTOR4
#include "Rivet/Math/MathHeader.hh"
#include "Rivet/Math/MathUtils.hh"
#include "Rivet/Math/VectorN.hh"
#include "Rivet/Math/Vector3.hh"
namespace Rivet {
class FourVector;
class FourMomentum;
class LorentzTransform;
typedef FourVector Vector4;
FourVector transform(const LorentzTransform& lt, const FourVector& v4);
/// @brief Specialisation of VectorN to a general (non-momentum) Lorentz 4-vector.
class FourVector : public Vector<4> {
friend FourVector multiply(const double a, const FourVector& v);
friend FourVector multiply(const FourVector& v, const double a);
friend FourVector add(const FourVector& a, const FourVector& b);
friend FourVector transform(const LorentzTransform& lt, const FourVector& v4);
public:
FourVector() : Vector<4>() { }
template<typename V4>
FourVector(const V4& other) {
this->setT(other.t());
this->setX(other.x());
this->setY(other.y());
this->setZ(other.z());
}
FourVector(const Vector<4>& other)
: Vector<4>(other) { }
FourVector(const double t, const double x, const double y, const double z) {
this->setT(t);
this->setX(x);
this->setY(y);
this->setZ(z);
}
virtual ~FourVector() { }
public:
double t() const { return get(0); }
double x() const { return get(1); }
double y() const { return get(2); }
double z() const { return get(3); }
FourVector& setT(const double t) { set(0, t); return *this; }
FourVector& setX(const double x) { set(1, x); return *this; }
FourVector& setY(const double y) { set(2, y); return *this; }
FourVector& setZ(const double z) { set(3, z); return *this; }
double invariant() const {
// Done this way for numerical precision
return (t() + z())*(t() - z()) - x()*x() - y()*y();
}
/// Angle between this vector and another
double angle(const FourVector& v) const {
return vector3().angle( v.vector3() );
}
/// Angle between this vector and another (3-vector)
double angle(const Vector3& v3) const {
return vector3().angle(v3);
}
/// @brief Square of the projection of the 3-vector on to the \f$ x-y \f$ plane
/// This is a more efficient function than @c polarRadius, as it avoids the square root.
/// Use it if you only need the squared value, or e.g. an ordering by magnitude.
double polarRadius2() const {
return vector3().polarRadius2();
}
/// Synonym for polarRadius2
double perp2() const {
return vector3().perp2();
}
/// Synonym for polarRadius2
double rho2() const {
return vector3().rho2();
}
/// Projection of 3-vector on to the \f$ x-y \f$ plane
double polarRadius() const {
return vector3().polarRadius();
}
/// Synonym for polarRadius
double perp() const {
return vector3().perp();
}
/// Synonym for polarRadius
double rho() const {
return vector3().rho();
}
/// Angle subtended by the 3-vector's projection in x-y and the x-axis.
double azimuthalAngle(const PhiMapping mapping = ZERO_2PI) const {
return vector3().azimuthalAngle(mapping);
}
/// Synonym for azimuthalAngle.
double phi(const PhiMapping mapping = ZERO_2PI) const {
return vector3().phi(mapping);
}
/// Angle subtended by the 3-vector and the z-axis.
double polarAngle() const {
return vector3().polarAngle();
}
/// Synonym for polarAngle.
double theta() const {
return vector3().theta();
}
/// Pseudorapidity (defined purely by the 3-vector components)
double pseudorapidity() const {
return vector3().pseudorapidity();
}
/// Synonym for pseudorapidity.
double eta() const {
return vector3().eta();
}
/// Get the spatial part of the 4-vector as a 3-vector.
Vector3 vector3() const {
return Vector3(get(1), get(2), get(3));
}
public:
/// Contract two 4-vectors, with metric signature (+ - - -).
double contract(const FourVector& v) const {
const double result = t()*v.t() - x()*v.x() - y()*v.y() - z()*v.z();
return result;
}
/// Contract two 4-vectors, with metric signature (+ - - -).
double dot(const FourVector& v) const {
return contract(v);
}
/// Contract two 4-vectors, with metric signature (+ - - -).
double operator*(const FourVector& v) const {
return contract(v);
}
/// Multiply by a scalar.
FourVector& operator*=(double a) {
_vec = multiply(a, *this)._vec;
return *this;
}
/// Divide by a scalar.
FourVector& operator/=(double a) {
_vec = multiply(1.0/a, *this)._vec;
return *this;
}
/// Add to this 4-vector.
FourVector& operator+=(const FourVector& v) {
_vec = add(*this, v)._vec;
return *this;
}
/// Subtract from this 4-vector. NB time as well as space components are subtracted.
FourVector& operator-=(const FourVector& v) {
_vec = add(*this, -v)._vec;
return *this;
}
/// Multiply all components (space and time) by -1.
FourVector operator-() const {
FourVector result;
result._vec = -_vec;
return result;
}
};
/// Contract two 4-vectors, with metric signature (+ - - -).
inline double contract(const FourVector& a, const FourVector& b) {
return a.contract(b);
}
/// Contract two 4-vectors, with metric signature (+ - - -).
inline double dot(const FourVector& a, const FourVector& b) {
return contract(a, b);
}
inline FourVector multiply(const double a, const FourVector& v) {
FourVector result;
result._vec = a * v._vec;
return result;
}
inline FourVector multiply(const FourVector& v, const double a) {
return multiply(a, v);
}
inline FourVector operator*(const double a, const FourVector& v) {
return multiply(a, v);
}
inline FourVector operator*(const FourVector& v, const double a) {
return multiply(a, v);
}
inline FourVector operator/(const FourVector& v, const double a) {
return multiply(1.0/a, v);
}
inline FourVector add(const FourVector& a, const FourVector& b) {
FourVector result;
result._vec = a._vec + b._vec;
return result;
}
inline FourVector operator+(const FourVector& a, const FourVector& b) {
return add(a, b);
}
inline FourVector operator-(const FourVector& a, const FourVector& b) {
return add(a, -b);
}
/// Calculate the Lorentz self-invariant of a 4-vector.
/// \f$ v_\mu v^\mu = g_{\mu\nu} x^\mu x^\nu \f$.
inline double invariant(const FourVector& lv) {
return lv.invariant();
}
/// Angle (in radians) between spatial parts of two Lorentz vectors.
inline double angle(const FourVector& a, const FourVector& b) {
return a.angle(b);
}
/// Angle (in radians) between spatial parts of two Lorentz vectors.
inline double angle(const Vector3& a, const FourVector& b) {
return angle( a, b.vector3() );
}
/// Angle (in radians) between spatial parts of two Lorentz vectors.
inline double angle(const FourVector& a, const Vector3& b) {
return a.angle(b);
}
/// Calculate transverse length sq. \f$ \rho^2 \f$ of a Lorentz vector.
inline double polarRadius2(const FourVector& v) {
return v.polarRadius2();
}
/// Synonym for polarRadius2.
inline double perp2(const FourVector& v) {
return v.perp2();
}
/// Synonym for polarRadius2.
inline double rho2(const FourVector& v) {
return v.rho2();
}
/// Calculate transverse length \f$ \rho \f$ of a Lorentz vector.
inline double polarRadius(const FourVector& v) {
return v.polarRadius();
}
/// Synonym for polarRadius.
inline double perp(const FourVector& v) {
return v.perp();
}
/// Synonym for polarRadius.
inline double rho(const FourVector& v) {
return v.rho();
}
/// Calculate azimuthal angle of a Lorentz vector.
inline double azimuthalAngle(const FourVector& v, const PhiMapping mapping = ZERO_2PI) {
return v.azimuthalAngle(mapping);
}
/// Synonym for azimuthalAngle.
inline double phi(const FourVector& v, const PhiMapping mapping = ZERO_2PI) {
return v.phi(mapping);
}
/// Calculate polar angle of a Lorentz vector.
inline double polarAngle(const FourVector& v) {
return v.polarAngle();
}
/// Synonym for polarAngle.
inline double theta(const FourVector& v) {
return v.theta();
}
/// Calculate pseudorapidity of a Lorentz vector.
inline double pseudorapidity(const FourVector& v) {
return v.pseudorapidity();
}
/// Synonym for pseudorapidity.
inline double eta(const FourVector& v) {
return v.eta();
}
////////////////////////////////////////////////
/// Specialized version of the FourVector with momentum/energy functionality.
class FourMomentum : public FourVector {
friend FourMomentum multiply(const double a, const FourMomentum& v);
friend FourMomentum multiply(const FourMomentum& v, const double a);
friend FourMomentum add(const FourMomentum& a, const FourMomentum& b);
friend FourMomentum transform(const LorentzTransform& lt, const FourMomentum& v4);
public:
FourMomentum() { }
template<typename V4>
FourMomentum(const V4& other) {
this->setE(other.t());
this->setPx(other.x());
this->setPy(other.y());
this->setPz(other.z());
}
FourMomentum(const Vector<4>& other)
: FourVector(other) { }
FourMomentum(const double E, const double px, const double py, const double pz) {
this->setE(E);
this->setPx(px);
this->setPy(py);
this->setPz(pz);
}
~FourMomentum() {}
public:
/// Get energy \f$ E \f$ (time component of momentum).
double E() const { return t(); }
/// Get 3-momentum part, \f$ p \f$.
Vector3 p() const { return vector3(); }
/// Get x-component of momentum \f$ p_x \f$.
double px() const { return x(); }
/// Get y-component of momentum \f$ p_y \f$.
double py() const { return y(); }
/// Get z-component of momentum \f$ p_z \f$.
double pz() const { return z(); }
/// Set energy \f$ E \f$ (time component of momentum).
FourMomentum& setE(double E) { setT(E); return *this; }
/// Set x-component of momentum \f$ p_x \f$.
FourMomentum& setPx(double px) { setX(px); return *this; }
/// Set y-component of momentum \f$ p_y \f$.
FourMomentum& setPy(double py) { setY(py); return *this; }
/// Set z-component of momentum \f$ p_z \f$.
FourMomentum& setPz(double pz) { setZ(pz); return *this; }
/// @brief Get the mass \f$ m = \sqrt{E^2 - p^2} \f$ (the Lorentz self-invariant).
///
/// For spacelike momenta, the mass will be -sqrt(|mass2|).
double mass() const {
// assert(Rivet::isZero(mass2()) || mass2() > 0);
// if (Rivet::isZero(mass2())) {
// return 0.0;
// } else {
// return sqrt(mass2());
// }
return sign(mass2()) * sqrt(fabs(mass2()));
}
/// Get the squared mass \f$ m^2 = E^2 - p^2 \f$ (the Lorentz self-invariant).
double mass2() const {
return invariant();
}
/// Calculate the rapidity.
double rapidity() const {
return 0.5 * std::log( (E() + pz()) / (E() - pz()) );
}
/// Calculate the squared transverse momentum \f$ p_T^2 \f$.
double pT2() const {
return vector3().polarRadius2();
}
/// Calculate the transverse momentum \f$ p_T \f$.
double pT() const {
return sqrt(pT2());
}
/// Calculate the transverse energy \f$ E_T^2 = E^2 \sin^2{\theta} \f$.
double Et2() const {
return Et() * Et();
}
/// Calculate the transverse energy \f$ E_T = E \sin{\theta} \f$.
double Et() const {
return E() * sin(polarAngle());
}
/// Calculate the boost vector (in units of \f$ \beta \f$).
Vector3 boostVector() const {
// const Vector3 p3 = vector3();
// const double m2 = mass2();
// if (Rivet::isZero(m2)) return p3.unit();
// else {
// // Could also do this via beta = tanh(rapidity), but that's
// // probably more messy from a numerical hygiene point of view.
// const double p2 = p3.mod2();
// const double beta = sqrt( p2 / (m2 + p2) );
// return beta * p3.unit();
// }
/// @todo Be careful about c=1 convention...
return Vector3(px()/E(), py()/E(), pz()/E());
}
/// Struct for sorting by increasing energy
struct byEAscending {
bool operator()(const FourMomentum& left, const FourMomentum& right) const{
double pt2left = left.E();
double pt2right = right.E();
return pt2left < pt2right;
}
bool operator()(const FourMomentum* left, const FourMomentum* right) const{
return (*this)(left, right);
}
};
/// Struct for sorting by decreasing energy
struct byEDescending {
bool operator()(const FourMomentum& left, const FourMomentum& right) const{
return byEAscending()(right, left);
}
bool operator()(const FourMomentum* left, const FourVector* right) const{
return (*this)(left, right);
}
};
/// Multiply by a scalar
FourMomentum& operator*=(double a) {
_vec = multiply(a, *this)._vec;
return *this;
}
/// Divide by a scalar
FourMomentum& operator/=(double a) {
_vec = multiply(1.0/a, *this)._vec;
return *this;
}
/// Subtract from this 4-vector. NB time as well as space components are subtracted.
FourMomentum& operator+=(const FourMomentum& v) {
_vec = add(*this, v)._vec;
return *this;
}
/// Subtract from this 4-vector. NB time as well as space components are subtracted.
FourMomentum& operator-=(const FourMomentum& v) {
_vec = add(*this, -v)._vec;
return *this;
}
/// Multiply all components (time and space) by -1.
FourMomentum operator-() const {
FourMomentum result;
result._vec = -_vec;
return result;
}
};
inline FourMomentum multiply(const double a, const FourMomentum& v) {
FourMomentum result;
result._vec = a * v._vec;
return result;
}
inline FourMomentum multiply(const FourMomentum& v, const double a) {
return multiply(a, v);
}
inline FourMomentum operator*(const double a, const FourMomentum& v) {
return multiply(a, v);
}
inline FourMomentum operator*(const FourMomentum& v, const double a) {
return multiply(a, v);
}
inline FourMomentum operator/(const FourMomentum& v, const double a) {
return multiply(1.0/a, v);
}
inline FourMomentum add(const FourMomentum& a, const FourMomentum& b) {
FourMomentum result;
result._vec = a._vec + b._vec;
return result;
}
inline FourMomentum operator+(const FourMomentum& a, const FourMomentum& b) {
return add(a, b);
}
inline FourMomentum operator-(const FourMomentum& a, const FourMomentum& b) {
return add(a, -b);
}
/// Get the mass \f$ m = \sqrt{E^2 - p^2} \f$ (the Lorentz self-invariant) of a momentum 4-vector.
inline double mass(const FourMomentum& v) {
return v.mass();
}
/// Get the squared mass \f$ m^2 = E^2 - p^2 \f$ (the Lorentz self-invariant) of a momentum 4-vector.
inline double mass2(const FourMomentum& v) {
return v.mass2();
}
/// Calculate the rapidity of a momentum 4-vector.
inline double rapidity(const FourMomentum& v) {
return v.rapidity();
}
/// Calculate the squared transverse momentum \f$ p_T^2 \f$ of a momentum 4-vector.
inline double pT2(const FourMomentum& v) {
return v.pT2();
}
/// Calculate the transverse momentum \f$ p_T \f$ of a momentum 4-vector.
inline double pT(const FourMomentum& v) {
return v.pT();
}
/// Calculate the transverse energy squared, \f$ E_T^2 = E^2 \sin^2{\theta} \f$ of a momentum 4-vector.
inline double Et2(const FourMomentum& v) {
return v.Et2();}
/// Calculate the transverse energy \f$ E_T = E \sin{\theta} \f$ of a momentum 4-vector.
inline double Et(const FourMomentum& v) {
return v.Et();
}
/// Calculate the velocity boost vector of a momentum 4-vector.
inline Vector3 boostVector(const FourMomentum& v) {
return v.boostVector();
}
//////////////////////////////////////////////////////
/// @name \f$ \Delta R \f$ calculations from 4-vectors
//@{
/// @brief Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two four-vectors.
/// There is a scheme ambiguity for momentum-type four vectors as to whether
/// the pseudorapidity (a purely geometric concept) or the rapidity (a
/// relativistic energy-momentum quantity) is to be used: this can be chosen
/// via the optional scheme parameter. Use of this scheme option is
/// discouraged in this case since @c RAPIDITY is only a valid option for
/// vectors whose type is really the FourMomentum derived class.
inline double deltaR(const FourVector& a, const FourVector& b,
RapScheme scheme = PSEUDORAPIDITY) {
switch (scheme) {
case PSEUDORAPIDITY :
return deltaR(a.vector3(), b.vector3());
case RAPIDITY:
{
const FourMomentum* ma = dynamic_cast<const FourMomentum*>(&a);
const FourMomentum* mb = dynamic_cast<const FourMomentum*>(&b);
if (!ma || !mb) {
string err = "deltaR with scheme RAPIDITY can only be called with FourMomentum objects, not FourVectors";
throw std::runtime_error(err);
}
return deltaR(*ma, *mb, scheme);
}
default:
throw std::runtime_error("The specified deltaR scheme is not yet implemented");
}
}
/// @brief Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two four-vectors.
/// There is a scheme ambiguity for momentum-type four vectors
/// as to whether the pseudorapidity (a purely geometric concept) or the
/// rapidity (a relativistic energy-momentum quantity) is to be used: this can
/// be chosen via the optional scheme parameter.
inline double deltaR(const FourVector& v,
double eta2, double phi2,
RapScheme scheme = PSEUDORAPIDITY) {
switch (scheme) {
case PSEUDORAPIDITY :
return deltaR(v.vector3(), eta2, phi2);
case RAPIDITY:
{
const FourMomentum* mv = dynamic_cast<const FourMomentum*>(&v);
if (!mv) {
string err = "deltaR with scheme RAPIDITY can only be called with FourMomentum objects, not FourVectors";
throw std::runtime_error(err);
}
return deltaR(*mv, eta2, phi2, scheme);
}
default:
throw std::runtime_error("The specified deltaR scheme is not yet implemented");
}
}
/// @brief Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two four-vectors.
/// There is a scheme ambiguity for momentum-type four vectors
/// as to whether the pseudorapidity (a purely geometric concept) or the
/// rapidity (a relativistic energy-momentum quantity) is to be used: this can
/// be chosen via the optional scheme parameter.
inline double deltaR(double eta1, double phi1,
const FourVector& v,
RapScheme scheme = PSEUDORAPIDITY) {
switch (scheme) {
case PSEUDORAPIDITY :
return deltaR(eta1, phi1, v.vector3());
case RAPIDITY:
{
const FourMomentum* mv = dynamic_cast<const FourMomentum*>(&v);
if (!mv) {
string err = "deltaR with scheme RAPIDITY can only be called with FourMomentum objects, not FourVectors";
throw std::runtime_error(err);
}
return deltaR(eta1, phi1, *mv, scheme);
}
default:
throw std::runtime_error("The specified deltaR scheme is not yet implemented");
}
}
/// @brief Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two four-vectors.
/// There is a scheme ambiguity for momentum-type four vectors
/// as to whether the pseudorapidity (a purely geometric concept) or the
/// rapidity (a relativistic energy-momentum quantity) is to be used: this can
/// be chosen via the optional scheme parameter.
inline double deltaR(const FourMomentum& a, const FourMomentum& b,
RapScheme scheme = PSEUDORAPIDITY) {
switch (scheme) {
case PSEUDORAPIDITY:
return deltaR(a.vector3(), b.vector3());
case RAPIDITY:
return deltaR(a.rapidity(), a.azimuthalAngle(), b.rapidity(), b.azimuthalAngle());
default:
throw std::runtime_error("The specified deltaR scheme is not yet implemented");
}
}
/// @brief Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two four-vectors.
/// There is a scheme ambiguity for momentum-type four vectors
/// as to whether the pseudorapidity (a purely geometric concept) or the
/// rapidity (a relativistic energy-momentum quantity) is to be used: this can
/// be chosen via the optional scheme parameter.
inline double deltaR(const FourMomentum& v,
double eta2, double phi2,
RapScheme scheme = PSEUDORAPIDITY) {
switch (scheme) {
case PSEUDORAPIDITY:
return deltaR(v.vector3(), eta2, phi2);
case RAPIDITY:
return deltaR(v.rapidity(), v.azimuthalAngle(), eta2, phi2);
default:
throw std::runtime_error("The specified deltaR scheme is not yet implemented");
}
}
/// @brief Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two four-vectors.
/// There is a scheme ambiguity for momentum-type four vectors
/// as to whether the pseudorapidity (a purely geometric concept) or the
/// rapidity (a relativistic energy-momentum quantity) is to be used: this can
/// be chosen via the optional scheme parameter.
inline double deltaR(double eta1, double phi1,
const FourMomentum& v,
RapScheme scheme = PSEUDORAPIDITY) {
switch (scheme) {
case PSEUDORAPIDITY:
return deltaR(eta1, phi1, v.vector3());
case RAPIDITY:
return deltaR(eta1, phi1, v.rapidity(), v.azimuthalAngle());
default:
throw std::runtime_error("The specified deltaR scheme is not yet implemented");
}
}
/// @brief Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two four-vectors.
/// There is a scheme ambiguity for momentum-type four vectors
/// as to whether the pseudorapidity (a purely geometric concept) or the
/// rapidity (a relativistic energy-momentum quantity) is to be used: this can
/// be chosen via the optional scheme parameter.
inline double deltaR(const FourMomentum& a, const FourVector& b,
RapScheme scheme = PSEUDORAPIDITY) {
switch (scheme) {
case PSEUDORAPIDITY:
return deltaR(a.vector3(), b.vector3());
case RAPIDITY:
return deltaR(a.rapidity(), a.azimuthalAngle(), FourMomentum(b).rapidity(), b.azimuthalAngle());
default:
throw std::runtime_error("The specified deltaR scheme is not yet implemented");
}
}
/// @brief Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two four-vectors.
/// There is a scheme ambiguity for momentum-type four vectors
/// as to whether the pseudorapidity (a purely geometric concept) or the
/// rapidity (a relativistic energy-momentum quantity) is to be used: this can
/// be chosen via the optional scheme parameter.
inline double deltaR(const FourVector& a, const FourMomentum& b,
RapScheme scheme = PSEUDORAPIDITY) {
switch (scheme) {
case PSEUDORAPIDITY:
return deltaR(a.vector3(), b.vector3());
case RAPIDITY:
return deltaR(FourMomentum(a).rapidity(), a.azimuthalAngle(), b.rapidity(), b.azimuthalAngle());
default:
throw std::runtime_error("The specified deltaR scheme is not yet implemented");
}
}
/// @brief Calculate the 2D rapidity-azimuthal ("eta-phi") distance between a
/// three-vector and a four-vector.
inline double deltaR(const FourMomentum& a, const Vector3& b) {
return deltaR(a.vector3(), b);
}
/// @brief Calculate the 2D rapidity-azimuthal ("eta-phi") distance between a
/// three-vector and a four-vector.
inline double deltaR(const Vector3& a, const FourMomentum& b) {
return deltaR(a, b.vector3());
}
/// @brief Calculate the 2D rapidity-azimuthal ("eta-phi") distance between a
/// three-vector and a four-vector.
inline double deltaR(const FourVector& a, const Vector3& b) {
return deltaR(a.vector3(), b);
}
/// @brief Calculate the 2D rapidity-azimuthal ("eta-phi") distance between a
/// three-vector and a four-vector.
inline double deltaR(const Vector3& a, const FourVector& b) {
return deltaR(a, b.vector3());
}
//@}
/// @name \f$ \Delta phi \f$ calculations from 4-vectors
//@{
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaPhi(const FourMomentum& a, const FourMomentum& b) {
return deltaPhi(a.vector3(), b.vector3());
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaPhi(const FourMomentum& v, double phi2) {
return deltaPhi(v.vector3(), phi2);
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaPhi(double phi1, const FourMomentum& v) {
return deltaPhi(phi1, v.vector3());
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaPhi(const FourVector& a, const FourVector& b) {
return deltaPhi(a.vector3(), b.vector3());
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaPhi(const FourVector& v, double phi2) {
return deltaPhi(v.vector3(), phi2);
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaPhi(double phi1, const FourVector& v) {
return deltaPhi(phi1, v.vector3());
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaPhi(const FourVector& a, const FourMomentum& b) {
return deltaPhi(a.vector3(), b.vector3());
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaPhi(const FourMomentum& a, const FourVector& b) {
return deltaPhi(a.vector3(), b.vector3());
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaPhi(const FourVector& a, const Vector3& b) {
return deltaPhi(a.vector3(), b);
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaPhi(const Vector3& a, const FourVector& b) {
return deltaPhi(a, b.vector3());
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaPhi(const FourMomentum& a, const Vector3& b) {
return deltaPhi(a.vector3(), b);
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaPhi(const Vector3& a, const FourMomentum& b) {
return deltaPhi(a, b.vector3());
}
//@}
/// @name \f$ |\Delta eta| \f$ calculations from 4-vectors
//@{
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaEta(const FourMomentum& a, const FourMomentum& b) {
return deltaEta(a.vector3(), b.vector3());
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaEta(const FourMomentum& v, double eta2) {
return deltaEta(v.vector3(), eta2);
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaEta(double eta1, const FourMomentum& v) {
return deltaEta(eta1, v.vector3());
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaEta(const FourVector& a, const FourVector& b) {
return deltaEta(a.vector3(), b.vector3());
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaEta(const FourVector& v, double eta2) {
return deltaEta(v.vector3(), eta2);
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaEta(double eta1, const FourVector& v) {
return deltaEta(eta1, v.vector3());
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaEta(const FourVector& a, const FourMomentum& b) {
return deltaEta(a.vector3(), b.vector3());
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaEta(const FourMomentum& a, const FourVector& b) {
return deltaEta(a.vector3(), b.vector3());
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaEta(const FourVector& a, const Vector3& b) {
return deltaEta(a.vector3(), b);
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaEta(const Vector3& a, const FourVector& b) {
return deltaEta(a, b.vector3());
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaEta(const FourMomentum& a, const Vector3& b) {
return deltaEta(a.vector3(), b);
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaEta(const Vector3& a, const FourMomentum& b) {
return deltaEta(a, b.vector3());
}
//@}
//////////////////////////////////////////////////////
/// @name 4-vector string representations
//@{
/// Render a 4-vector as a string.
inline std::string toString(const FourVector& lv) {
ostringstream out;
out << "(" << (fabs(lv.t()) < 1E-30 ? 0.0 : lv.t())
<< "; " << (fabs(lv.x()) < 1E-30 ? 0.0 : lv.x())
<< ", " << (fabs(lv.y()) < 1E-30 ? 0.0 : lv.y())
<< ", " << (fabs(lv.z()) < 1E-30 ? 0.0 : lv.z())
<< ")";
return out.str();
}
/// Write a 4-vector to an ostream.
inline std::ostream& operator<<(std::ostream& out, const FourVector& lv) {
out << toString(lv);
return out;
}
//@}
}
#endif
|