/usr/include/Rivet/Math/Vector3.hh is in librivet-dev 1.8.3-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 | #ifndef RIVET_MATH_VECTOR3
#define RIVET_MATH_VECTOR3
#include "Rivet/Math/MathHeader.hh"
#include "Rivet/Math/MathUtils.hh"
#include "Rivet/Math/VectorN.hh"
namespace Rivet {
class Vector3;
typedef Vector3 ThreeVector;
class Matrix3;
Vector3 multiply(const double, const Vector3&);
Vector3 multiply(const Vector3&, const double);
Vector3 add(const Vector3&, const Vector3&);
Vector3 operator*(const double, const Vector3&);
Vector3 operator*(const Vector3&, const double);
Vector3 operator/(const Vector3&, const double);
Vector3 operator+(const Vector3&, const Vector3&);
Vector3 operator-(const Vector3&, const Vector3&);
/// @brief Three-dimensional specialisation of Vector.
class Vector3 : public Vector<3> {
friend class Matrix3;
friend Vector3 multiply(const double, const Vector3&);
friend Vector3 multiply(const Vector3&, const double);
friend Vector3 add(const Vector3&, const Vector3&);
friend Vector3 subtract(const Vector3&, const Vector3&);
public:
Vector3() : Vector<3>() { }
template<typename V3>
Vector3(const V3& other) {
this->setX(other.x());
this->setY(other.y());
this->setZ(other.z());
}
Vector3(const Vector<3>& other) {
this->setX(other.get(0));
this->setY(other.get(1));
this->setZ(other.get(2));
}
Vector3(double x, double y, double z) {
this->setX(x);
this->setY(y);
this->setZ(z);
}
~Vector3() { }
public:
static Vector3 mkX() { return Vector3(1,0,0); }
static Vector3 mkY() { return Vector3(0,1,0); }
static Vector3 mkZ() { return Vector3(0,0,1); }
public:
double x() const { return get(0); }
double y() const { return get(1); }
double z() const { return get(2); }
Vector3& setX(double x) { set(0, x); return *this; }
Vector3& setY(double y) { set(1, y); return *this; }
Vector3& setZ(double z) { set(2, z); return *this; }
double dot(const Vector3& v) const {
return _vec.dot(v._vec);
}
Vector3 cross(const Vector3& v) const {
Vector3 result;
result._vec = _vec.cross(v._vec);
return result;
}
double angle(const Vector3& v) const {
const double localDotOther = unit().dot(v.unit());
if (fuzzyEquals(localDotOther, 1.0)) return 0.0;
else if (fuzzyEquals(localDotOther, -1.0)) return M_PI;
return acos(localDotOther);
}
Vector3 unit() const {
/// @todo What to do in this situation?
if (isZero()) return *this;
else return *this * 1.0/this->mod();
}
double polarRadius2() const {
return x()*x() + y()*y();
}
/// Synonym for polarRadius2
double perp2() const {
return polarRadius2();
}
/// Synonym for polarRadius2
double rho2() const {
return polarRadius2();
}
double polarRadius() const {
return sqrt(polarRadius2());
}
/// Synonym for polarRadius
double perp() const {
return polarRadius();
}
/// Synonym for polarRadius
double rho() const {
return polarRadius();
}
/// Angle subtended by the vector's projection in x-y and the x-axis.
double azimuthalAngle(const PhiMapping mapping = ZERO_2PI) const {
// If this is a null vector, return zero rather than let atan2 set an error state
if (Rivet::isZero(mod2())) return 0.0;
// Calculate the arctan and return in the requested range
const double value = atan2( y(), x() );
return mapAngle(value, mapping);
}
/// Synonym for azimuthalAngle.
double phi(const PhiMapping mapping = ZERO_2PI) const {
return azimuthalAngle(mapping);
}
/// Angle subtended by the vector and the z-axis.
double polarAngle() const {
// Get number beween [0,PI]
const double polarangle = atan2(polarRadius(), z());
return mapAngle0ToPi(polarangle);
}
/// Synonym for polarAngle
double theta() const {
return polarAngle();
}
/// Purely geometric approximation to rapidity; exact for massless particles
/// and in the central region.
double pseudorapidity() const {
return -std::log(tan( 0.5 * polarAngle() ));
}
/// Synonym for pseudorapidity.
double eta() const {
return pseudorapidity();
}
public:
Vector3& operator*=(const double a) {
_vec = multiply(a, *this)._vec;
return *this;
}
Vector3& operator/=(const double a) {
_vec = multiply(1.0/a, *this)._vec;
return *this;
}
Vector3& operator+=(const Vector3& v) {
_vec = add(*this, v)._vec;
return *this;
}
Vector3& operator-=(const Vector3& v) {
_vec = subtract(*this, v)._vec;
return *this;
}
Vector3 operator-() const {
Vector3 rtn;
rtn._vec = -_vec;
return rtn;
}
};
inline double dot(const Vector3& a, const Vector3& b) {
return a.dot(b);
}
inline Vector3 cross(const Vector3& a, const Vector3& b) {
return a.cross(b);
}
inline Vector3 multiply(const double a, const Vector3& v) {
Vector3 result;
result._vec = a * v._vec;
return result;
}
inline Vector3 multiply(const Vector3& v, const double a) {
return multiply(a, v);
}
inline Vector3 operator*(const double a, const Vector3& v) {
return multiply(a, v);
}
inline Vector3 operator*(const Vector3& v, const double a) {
return multiply(a, v);
}
inline Vector3 operator/(const Vector3& v, const double a) {
return multiply(1.0/a, v);
}
inline Vector3 add(const Vector3& a, const Vector3& b) {
Vector3 result;
result._vec = a._vec + b._vec;
return result;
}
inline Vector3 subtract(const Vector3& a, const Vector3& b) {
Vector3 result;
result._vec = a._vec - b._vec;
return result;
}
inline Vector3 operator+(const Vector3& a, const Vector3& b) {
return add(a, b);
}
inline Vector3 operator-(const Vector3& a, const Vector3& b) {
return subtract(a, b);
}
// More physicsy coordinates etc.
/// Angle (in radians) between two 3-vectors.
inline double angle(const Vector3& a, const Vector3& b) {
return a.angle(b);
}
/// Calculate transverse length sq. \f$ \rho^2 \f$ of a 3-vector.
inline double polarRadius2(const Vector3& v) {
return v.polarRadius2();
}
/// Synonym for polarRadius2.
inline double perp2(const Vector3& v) {
return v.perp2();
}
/// Synonym for polarRadius2.
inline double rho2(const Vector3& v) {
return v.rho2();
}
/// Calculate transverse length \f$ \rho \f$ of a 3-vector.
inline double polarRadius(const Vector3& v) {
return v.polarRadius();
}
/// Synonym for polarRadius.
inline double perp(const Vector3& v) {
return v.perp();
}
/// Synonym for polarRadius.
inline double rho(const Vector3& v) {
return v.rho();
}
/// @brief Calculate azimuthal angle of a 3-vector.
/// Returns a number in (-pi, pi] or in [0, 2pi) according to the mapping scheme selected
inline double azimuthalAngle(const Vector3& v, const PhiMapping mapping = ZERO_2PI) {
return v.azimuthalAngle(mapping);
}
/// Synonym for azimuthalAngle.
inline double phi(const Vector3& v, const PhiMapping mapping = ZERO_2PI) {
return v.phi(mapping);
}
/// Calculate polar angle of a 3-vector.
inline double polarAngle(const Vector3& v) {
return v.polarAngle();
}
/// Synonym for polarAngle.
inline double theta(const Vector3& v) {
return v.theta();
}
/// Calculate pseudorapidity of a 3-vector.
inline double pseudorapidity(const Vector3& v) {
return v.pseudorapidity();
}
/// Synonym for pseudorapidity.
inline double eta(const Vector3& v) {
return v.eta();
}
/////////////////////////////////////////////////////
/// @name \f$ |\Delta eta| \f$ calculations from 3-vectors
//@{
/// Calculate the difference in pseudorapidity between two spatial vectors.
inline double deltaEta(const Vector3& a, const Vector3& b) {
return deltaEta(a.pseudorapidity(), b.pseudorapidity());
}
/// Calculate the difference in pseudorapidity between two spatial vectors.
inline double deltaEta(const Vector3& v, double eta2) {
return deltaEta(v.pseudorapidity(), eta2);
}
/// Calculate the difference in pseudorapidity between two spatial vectors.
inline double deltaEta(double eta1, const Vector3& v) {
return deltaEta(eta1, v.pseudorapidity());
}
//@}
/// @name \f$ \Delta phi \f$ calculations from 3-vectors
//@{
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaPhi(const Vector3& a, const Vector3& b) {
return deltaPhi(a.azimuthalAngle(), b.azimuthalAngle());
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaPhi(const Vector3& v, double phi2) {
return deltaPhi(v.azimuthalAngle(), phi2);
}
/// Calculate the difference in azimuthal angle between two spatial vectors.
inline double deltaPhi(double phi1, const Vector3& v) {
return deltaPhi(phi1, v.azimuthalAngle());
}
//@}
/// @name \f$ \Delta R \f$ calculations from 3-vectors
//@{
/// Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two spatial vectors.
inline double deltaR(const Vector3& a, const Vector3& b) {
return deltaR(a.pseudorapidity(), a.azimuthalAngle(),
b.pseudorapidity(), b.azimuthalAngle());
}
/// Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two spatial vectors.
inline double deltaR(const Vector3& v, double eta2, double phi2) {
return deltaR(v.pseudorapidity(), v.azimuthalAngle(), eta2, phi2);
}
/// Calculate the 2D rapidity-azimuthal ("eta-phi") distance between two spatial vectors.
inline double deltaR(double eta1, double phi1, const Vector3& v) {
return deltaR(eta1, phi1, v.pseudorapidity(), v.azimuthalAngle());
}
//@}
}
#endif
|