This file is indexed.

/usr/include/Rivet/Math/MatrixN.hh is in librivet-dev 1.8.3-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#ifndef RIVET_MATH_MATRIXN
#define RIVET_MATH_MATRIXN

#include "Rivet/Math/MathHeader.hh"
#include "Rivet/Math/MathUtils.hh"
#include "Rivet/Math/Vectors.hh"

#include "Rivet/Math/eigen/matrix.h"

namespace Rivet {


  template <size_t N>
  class Matrix;
  typedef Matrix<4> Matrix4;

  template <size_t N>
  Matrix<N> multiply(const Matrix<N>& a, const Matrix<N>& b);
  template <size_t N>
  Matrix<N> divide(const Matrix<N>&, const double);
  template <size_t N>
  Matrix<N> operator*(const Matrix<N>& a, const Matrix<N>& b);


  ///////////////////////////////////


  /// @brief General \f$ N \f$-dimensional mathematical matrix object.
  template <size_t N>
  class Matrix {
    template <size_t M>
    friend Matrix<M> add(const Matrix<M>&, const Matrix<M>&);
    template <size_t M>
    friend Matrix<M> multiply(const double, const Matrix<M>&);
    template <size_t M>
    friend Matrix<M> multiply(const Matrix<M>&, const Matrix<M>&);
    template <size_t M>
    friend Vector<M> multiply(const Matrix<M>&, const Vector<M>&);
    template <size_t M>
    friend Matrix<M> divide(const Matrix<M>&, const double);

  public:
    static Matrix<N> mkZero() {
      Matrix<N> rtn;
      return rtn;
    }

    static Matrix<N> mkDiag(Vector<N> diag) {
      Matrix<N> rtn;
      for (size_t i = 0; i < N; ++i) {
        rtn.set(i, i, diag[i]);
      }
      return rtn;
    }

    static Matrix<N> mkIdentity() {
      Matrix<N> rtn;
      for (size_t i = 0; i < N; ++i) {
        rtn.set(i, i, 1);
      }
      return rtn;
    }


  public:

    Matrix() {
      _matrix.loadZero();
    }

    Matrix(const Matrix<N>& other) {
      _matrix = other._matrix;
    }

    Matrix& set(const size_t i, const size_t j, const double value) {
      if (i < N && j < N) {
        _matrix(i, j) = value;
      } else {
        throw std::runtime_error("Attempted set access outside matrix bounds.");
      }
      return *this;
    }

    double get(const size_t i, const size_t j) const {
      if (i < N && j < N) {
        return _matrix(i, j);
      } else {
        throw std::runtime_error("Attempted get access outside matrix bounds.");
      }
    }

    Vector<N> getRow(const size_t row) const {
      Vector<N> rtn;
      for (size_t i = 0; i < N; ++i) {
        rtn.set(i, _matrix(row,i));
      }
      return rtn;
    }

    Matrix<N>& setRow(const size_t row, const Vector<N>& r) {
      for (size_t i = 0; i < N; ++i) {
        _matrix(row,i) = r.get(i);
      }
      return *this;
    }

    Vector<N> getColumn(const size_t col) const {
      Vector<N> rtn;
      for (size_t i = 0; i < N; ++i) {
        rtn.set(i, _matrix(i,col));
      }
      return rtn;
    }

    Matrix<N>& setColumn(const size_t col, const Vector<N>& c) {
      for (size_t i = 0; i < N; ++i) {
        _matrix(i,col) = c.get(i);
      }
      return *this;
    }

    Matrix<N> transpose() const {
      Matrix<N> tmp = *this;
      tmp._matrix.replaceWithAdjoint();
      return tmp;
    }

    // Matrix<N>& transposeInPlace() {
    //   _matrix.replaceWithAdjoint();
    //   return *this;
    // }

    /// Calculate inverse
    Matrix<N> inverse() const {
      Matrix<N> tmp;
      tmp._matrix = _matrix.inverse();
      return tmp;
    }

    /// Calculate determinant
    double det() const  {
      return _matrix.determinant();
    }

    /// Calculate trace
    double trace() const {
      double tr = 0.0;
      for (size_t i = 0; i < N; ++i) {
        tr += _matrix(i,i);
      }
      return tr;
      // return _matrix.trace();
    }

    /// Negate
    Matrix<N> operator-() const {
      Matrix<N> rtn;
      rtn._matrix = -_matrix;
      return rtn;
    }

    /// Get dimensionality
    size_t size() const {
      return N;
    }

    /// Index-wise check for nullness, allowing for numerical precision
    bool isZero(double tolerance=1E-5) const {
      for (size_t i=0; i < N; ++i) {
        for (size_t j=0; j < N; ++j) {
          if (! Rivet::isZero(_matrix(i,j), tolerance) ) return false;
        }
      }
      return true;
    }

    /// Check for index-wise equality, allowing for numerical precision
    bool isEqual(Matrix<N> other) const {
      for (size_t i=0; i < N; ++i) {
        for (size_t j=i; j < N; ++j) {
          if (! Rivet::isZero(_matrix(i,j) - other._matrix(i,j)) ) return false;
        }
      }
      return true;
    }

    /// Check for symmetry under transposition
    bool isSymm() const {
      return isEqual(this->transpose());
    }

    /// Check that all off-diagonal elements are zero, allowing for numerical precision
    bool isDiag() const {
      for (size_t i=0; i < N; ++i) {
        for (size_t j=0; j < N; ++j) {
          if (i == j) continue;
          if (! Rivet::isZero(_matrix(i,j)) ) return false;
        }
      }
      return true;
    }

    bool operator==(const Matrix<N>& a) const {
      return _matrix == a._matrix;
    }

    bool operator!=(const Matrix<N>& a) const {
      return _matrix != a._matrix;
    }

    bool operator<(const Matrix<N>& a) const {
      return _matrix < a._matrix;
    }

    bool operator<=(const Matrix<N>& a) const {
      return _matrix <= a._matrix;
    }

    bool operator>(const Matrix<N>& a) const {
      return _matrix > a._matrix;
    }

    bool operator>=(const Matrix<N>& a) const {
      return _matrix >= a._matrix;
    }

    Matrix<N>& operator*=(const Matrix<N>& m) {
      _matrix = _matrix * m._matrix;
      return *this;
    }

    Matrix<N>& operator*=(const double a) {
      _matrix *= a;
      return *this;
    }

    Matrix<N>& operator/=(const double a) {
      _matrix /= a;
      return *this;
    }

    Matrix<N>& operator+=(const Matrix<N>& m) {
      _matrix += m._matrix;
      return *this;
    }

    Matrix<N>& operator-=(const Matrix<N>& m) {
      _matrix -= m._matrix;
      return *this;
    }

  protected:
    typedef Eigen::Matrix<double,N> EMatrix;
    EMatrix _matrix;
  };


  /////////////////////////////////


  template <size_t N>
  inline Matrix<N> add(const Matrix<N>& a, const Matrix<N>& b) {
    Matrix<N> result;
    result._matrix = a._matrix + b._matrix;
    return result;
  }

  template <size_t N>
  inline Matrix<N> subtract(const Matrix<N>& a, const Matrix<N>& b) {
    return add(a, -b);
  }

  template <size_t N>
  inline Matrix<N> operator+(const Matrix<N> a, const Matrix<N>& b) {
    return add(a, b);
  }

  template <size_t N>
  inline Matrix<N> operator-(const Matrix<N> a, const Matrix<N>& b) {
    return subtract(a, b);
  }

  template <size_t N>
  inline Matrix<N> multiply(const double a, const Matrix<N>& m) {
    Matrix<N> rtn;
    rtn._matrix = a * m._matrix;
    return rtn;
  }

  template <size_t N>
  inline Matrix<N> multiply(const Matrix<N>& m, const double a) {
    return multiply(a, m);
  }

  template <size_t N>
  inline Matrix<N> divide(const Matrix<N>& m, const double a) {
    return multiply(1/a, m);
  }

  template <size_t N>
  inline Matrix<N> operator*(const double a, const Matrix<N>& m) {
    return multiply(a, m);
  }

  template <size_t N>
  inline Matrix<N> operator*(const Matrix<N>& m, const double a) {
    return multiply(a, m);
  }

  template <size_t N>
  inline Matrix<N> multiply(const Matrix<N>& a, const Matrix<N>& b) {
    Matrix<N> tmp;
    tmp._matrix = a._matrix * b._matrix;
    return tmp;
  }

  template <size_t N>
  inline Matrix<N> operator*(const Matrix<N>& a, const Matrix<N>& b) {
    return multiply(a, b);
  }


  template <size_t N>
  inline Vector<N> multiply(const Matrix<N>& a, const Vector<N>& b) {
    Vector<N> tmp;
    tmp._vec = a._matrix * b._vec;
    return tmp;
  }

  template <size_t N>
  inline Vector<N> operator*(const Matrix<N>& a, const Vector<N>& b) {
    return multiply(a, b);
  }

  template <size_t N>
  inline Matrix<N> transpose(const Matrix<N>& m) {
    // Matrix<N> tmp;
    // for (size_t i = 0; i < N; ++i) {
    //   for (size_t j = 0; j < N; ++j) {
    //     tmp.set(i, j, m.get(j, i));
    //   }
    // }
    // return tmp;
    return m.transpose();
  }

  template <size_t N>
  inline Matrix<N> inverse(const Matrix<N>& m) {
    return m.inverse();
  }

  template <size_t N>
  inline double det(const Matrix<N>& m) {
    return m.determinant();
  }

  template <size_t N>
  inline double trace(const Matrix<N>& m) {
    return m.trace();
  }


  /////////////////////////////////


  /// Make string representation
  template <size_t N>
  inline string toString(const Matrix<N>& m) {
    ostringstream ss;
    ss << "[ ";
    for (size_t i = 0; i < m.size(); ++i) {
      ss << "( ";
      for (size_t j = 0; j < m.size(); ++j) {
        const double e = m.get(i, j);
        ss << (Rivet::isZero(e) ? 0.0 : e) << " ";
      }
      ss << ") ";
    }
    ss << "]";
    return ss.str();
  }


  /// Stream out string representation
  template <size_t N>
  inline ostream& operator<<(std::ostream& out, const Matrix<N>& m) {
    out << toString(m);
    return out;
  }


  /////////////////////////////////////////////////


  /// Compare two matrices by index, allowing for numerical precision
  template <size_t N>
  inline bool fuzzyEquals(const Matrix<N>& ma, const Matrix<N>& mb, double tolerance=1E-5) {
    for (size_t i = 0; i < N; ++i) {
      for (size_t j = 0; j < N; ++j) {
        const double a = ma.get(i, j);
        const double b = mb.get(i, j);
        if (!Rivet::fuzzyEquals(a, b, tolerance)) return false;
      }
    }
    return true;
  }


  /// External form of numerically safe nullness check
  template <size_t N>
  inline bool isZero(const Matrix<N>& m, double tolerance=1E-5) {
    return m.isZero(tolerance);
  }


}

#endif