This file is indexed.

/usr/include/rdkit/Numerics/Matrix.h is in librdkit-dev 201309-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
//
//  Copyright (C) 2004-2006 Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#ifndef __RD_MATRIX_H__
#define __RD_MATRIX_H__

#include <RDGeneral/Invariant.h>
#include "Vector.h"
#include <iostream>
#include <iomanip>
#include <cstring>
#include <boost/smart_ptr.hpp>

//#ifndef INVARIANT_SILENT_METHOD
//#define INVARIANT_SILENT_METHOD
//#endif

namespace RDNumeric {
  
  //! A matrix class for general, non-square matrices
  template <class TYPE> class Matrix {
  public:

    typedef boost::shared_array<TYPE> DATA_SPTR;

    //! Initialize with a size.
    Matrix(unsigned int nRows, unsigned int nCols) : 
      d_nRows(nRows), d_nCols(nCols), d_dataSize(nRows*nCols) {
      TYPE *data = new TYPE[d_dataSize];
      memset(static_cast<void *>(data),0,d_dataSize*sizeof(TYPE));
      d_data.reset(data);
    };

    //! Initialize with a size and default value.
    Matrix(unsigned int nRows, unsigned int nCols, TYPE val) :
      d_nRows(nRows), d_nCols(nCols), d_dataSize(nRows*nCols) {
      TYPE *data = new TYPE[d_dataSize];
      unsigned int i;
      for (i = 0; i < d_dataSize; i++) {
        data[i] = val;
      }
      d_data.reset(data);
    }

    //! Initialize from a pointer.
    /*!
      <b>NOTE:</b> this does not take ownership of the data,
      if you delete the data externally, this Matrix will be sad.
    */
    Matrix(unsigned int nRows, unsigned int nCols, DATA_SPTR data) :
      d_nRows(nRows), d_nCols(nCols), d_dataSize(nRows*nCols) {
      d_data = data;
    }

    //! copy constructor
    /*! We make a copy of the other vector's data.
     */
    Matrix(const Matrix<TYPE> &other) :
      d_nRows(other.numRows()), d_nCols(other.numCols()), d_dataSize(d_nRows*d_nCols) {
      TYPE *data = new TYPE[d_dataSize];
      const TYPE *otherData = other.getData();
      memcpy(static_cast<void *>(data), static_cast<const void *>(otherData),
	     d_dataSize*sizeof(TYPE));
      d_data.reset(data);
    }

    virtual ~Matrix() {
    }

    //! returns the number of rows
    inline unsigned int numRows() const {
      return d_nRows;
    }
    
    //! returns the number of columns
    inline unsigned int numCols() const {
      return d_nCols;
    }

    inline unsigned int getDataSize() const {
      return d_dataSize;
    }

    //! returns a particular element of the matrix
    inline virtual TYPE getVal(unsigned int i, unsigned int j) const {
      PRECONDITION(i<d_nRows,"bad index");
      PRECONDITION(j<d_nCols,"bad index");
      unsigned int id = i*d_nCols + j;
      return d_data[id];
    }

    //! sets a particular element of the matrix
    inline virtual void setVal(unsigned int i, unsigned int j, TYPE val) {
      PRECONDITION(i<d_nRows,"bad index");
      PRECONDITION(j<d_nCols,"bad index");
      unsigned int id = i*d_nCols + j;
      
      d_data[id] = val;
    }

    //! returns a copy of a row of the matrix
    inline virtual void getRow(unsigned int i, Vector<TYPE> &row) const { 
      PRECONDITION(i<d_nRows,"bad index");
      PRECONDITION(d_nCols == row.size(), "");
      unsigned int id = i*d_nCols;
      TYPE *rData  = row.getData(); 
      TYPE *data = d_data.get();
      memcpy(static_cast<void *>(rData), static_cast<void *>(&data[id]), d_nCols*sizeof(TYPE));
      
    }
     
    //! returns a copy of a column of the matrix
    inline virtual void getCol(unsigned int i, Vector<TYPE> &col) const { 
      PRECONDITION(i<d_nCols,"bad index");
      PRECONDITION(d_nRows == col.size(), "");
      unsigned int j,id;
      TYPE *rData  = col.getData(); 
      TYPE *data = d_data.get();
      for (j = 0; j < d_nRows; j++) {
        id = j*d_nCols + i;
        rData[j] = data[id];
      }
    }

    //! returns a pointer to our data array
    inline TYPE *getData() {
      return d_data.get();
    }
    
    //! returns a const pointer to our data array
    inline const TYPE *getData() const {
      return d_data.get();
    }


    //! Copy operator.
    /*! We make a copy of the other Matrix's data.
     */
    
    Matrix<TYPE>& assign(const Matrix<TYPE> &other) {
      PRECONDITION(d_nRows == other.numRows(), "Num rows mismatch in matrix copying");
      PRECONDITION(d_nCols == other.numCols(), "Num cols mismatch in matrix copying");
      const TYPE *otherData = other.getData();
      TYPE *data = d_data.get();
      memcpy(static_cast<void *>(data), static_cast<const void *>(otherData), d_dataSize*sizeof(TYPE));
      return *this;
    }

    //! Matrix addition.
    /*! Perform a element by element addition of other Matrix to this Matrix
     */
    virtual Matrix<TYPE>& operator+=(const Matrix<TYPE> &other) {
      PRECONDITION(d_nRows == other.numRows(), "Num rows mismatch in matrix addition");
      PRECONDITION(d_nCols == other.numCols(), "Num cols mismatch in matrix addition");
      const TYPE *oData = other.getData();
      unsigned int i;
      TYPE *data = d_data.get();
      for (i = 0; i < d_dataSize; i++) {
        data[i] += oData[i];
      }
      return *this;
    }

    //! Matrix subtraction.
    /*! Perform a element by element subtraction of other Matrix from this Matrix
     */
    virtual Matrix<TYPE>& operator-=(const Matrix<TYPE> &other) {
      PRECONDITION(d_nRows == other.numRows(), "Num rows mismatch in matrix addition");
      PRECONDITION(d_nCols == other.numCols(), "Num cols mismatch in matrix addition");
      const TYPE *oData = other.getData();
      unsigned int i;
      TYPE *data = d_data.get();
      for (i = 0; i < d_dataSize; i++) {
        data[i] -= oData[i];
      }
      return *this;
    }

    //! Multiplication by a scalar
    virtual Matrix<TYPE>& operator*=(TYPE scale) {
      unsigned int i;
      TYPE *data = d_data.get();
      for (i = 0; i < d_dataSize; i++) {
        data[i] *= scale;
      }
      return *this;
    }

    //! division by a scalar
    virtual Matrix<TYPE>& operator/=(TYPE scale) {
      unsigned int i;
      TYPE *data = d_data.get();
      for (i = 0; i < d_dataSize; i++) {
        data[i] /= scale;
      }
      return *this;
    }

    //! copies the transpose of this Matrix into another, returns the result
    /*!
      \param transpose the Matrix to store the results

      \return the transpose of this matrix.
         This is just a reference to the argument.

     */
    virtual Matrix<TYPE>& transpose(Matrix<TYPE> &transpose) const {
      unsigned int tRows = transpose.numRows();
      unsigned int tCols = transpose.numCols();
      PRECONDITION(d_nCols == tRows, "Size mismatch during transposing");
      PRECONDITION(d_nRows == tCols, "Size mismatch during transposing");
      unsigned int i, j;
      unsigned int idA, idAt, idT;
      TYPE *tData = transpose.getData(); 
      TYPE *data = d_data.get();
      for (i = 0; i < d_nRows; i++) {
        idA = i*d_nCols;
        for (j = 0; j < d_nCols; j++) {
          idAt = idA + j;
          idT = j*tCols + i;
          tData[idT] = data[idAt];
        }
      }
      return transpose;
    }

  protected:
    Matrix() : d_nRows(0), d_nCols(0), d_dataSize(0), d_data(){} ;
    unsigned int d_nRows;
    unsigned int d_nCols;
    unsigned int d_dataSize;
    DATA_SPTR d_data;
   
  private:
    Matrix<TYPE>& operator=(const Matrix<TYPE> &other);
  };

  //! Matrix multiplication
  /*!
    Multiply a Matrix A with a second Matrix B 
    so the result is C = A*B
    
    \param A  the the first Matrix used in the multiplication
    \param B  the Matrix by which to multiply
    \param C  Matrix to use for the results
    
    \return the results of multiplying A by B.
    This is just a reference to C.
  */
  template <class TYPE>
    Matrix<TYPE>& multiply(const Matrix<TYPE> &A, const Matrix<TYPE> &B, 
                           Matrix<TYPE> &C)  {
    unsigned int aRows = A.numRows();
    unsigned int aCols = A.numCols();
    unsigned int cRows = C.numRows(); 
    unsigned int cCols = C.numCols();
    unsigned int bRows = B.numRows();
    unsigned int bCols = B.numCols();
    CHECK_INVARIANT(aCols == bRows, "Size mismatch during multiplication");
    CHECK_INVARIANT(aRows == cRows, "Size mismatch during multiplication");
    CHECK_INVARIANT(bCols == cCols, "Size mismatch during multiplication");
    
    // we have the sizes check do do the multiplication
    TYPE *cData = C.getData();
    const TYPE *bData = B.getData();
    const TYPE *aData = A.getData();
    unsigned int i, j, k;
    unsigned int idA, idAt, idB, idC, idCt;
    for (i = 0; i < aRows; i++) {
      idC = i*cCols;
      idA = i*aCols;
      for (j = 0; j < cCols; j++) {
        idCt = idC + j;
        cData[idCt] = (TYPE)0.0;
        for (k = 0; k < aCols; k++) {
          idAt = idA + k;
          idB = k*bCols + j;
          cData[idCt] += (aData[idAt]*bData[idB]);
        }
      }
    }
    return C;
  };

  //! Matrix-Vector multiplication
  /*!
    Multiply a Matrix A with a Vector x
    so the result is y = A*x
    
    \param A  the matrix used in the multiplication
    \param x  the Vector by which to multiply
    \param y  Vector to use for the results
    
    \return the results of multiplying x by this
    This is just a reference to y.
  */
  template <class TYPE>
    Vector<TYPE>& multiply(const Matrix<TYPE> &A, const Vector<TYPE> &x, 
                           Vector<TYPE> &y) {
    unsigned int aRows = A.numRows();
    unsigned int aCols = A.numCols();
    unsigned int xSiz = x.size();
    unsigned int ySiz = y.size();
    CHECK_INVARIANT(aCols == xSiz, "Size mismatch during multiplication");
    CHECK_INVARIANT(aRows == ySiz, "Size mismatch during multiplication");
    unsigned int i, j;
    unsigned int idA, idAt;
    const TYPE *xData = x.getData();
    const TYPE *aData = A.getData();
    TYPE *yData = y.getData();
    for (i = 0; i < aRows; i++) {
      idA = i*aCols;
      yData[i] = (TYPE)(0.0);
      for (j = 0; j < aCols; j++) {
        idAt = idA + j;
        yData[i] += (aData[idAt]*xData[j]);
      }
    }
    return y;
  };

  typedef Matrix<double> DoubleMatrix;
};

//! ostream operator for Matrix's
template <class TYPE > std::ostream & operator<<(std::ostream& target, 
                                                 const RDNumeric::Matrix<TYPE> &mat) {
  unsigned int nr = mat.numRows();
  unsigned int nc = mat.numCols();
  target << "Rows: " << mat.numRows() << " Columns: " << mat.numCols() << "\n";

  unsigned int i, j;
  for (i = 0; i < nr; i++) {
    for (j = 0; j < nc; j++) {
      target << std::setw(7) << std::setprecision(3) << mat.getVal(i, j);
    }
    target << "\n";
  }
  return target;
}

#endif