/usr/include/ql/methods/lattices/lattice.hpp is in libquantlib0-dev 1.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb
Copyright (C) 2004, 2005 StatPro Italia srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file lattice.hpp
\brief Tree-based lattice-method class
*/
#ifndef quantlib_tree_based_lattice_hpp
#define quantlib_tree_based_lattice_hpp
#include <ql/numericalmethod.hpp>
#include <ql/discretizedasset.hpp>
#include <ql/patterns/curiouslyrecurring.hpp>
namespace QuantLib {
//! Tree-based lattice-method base class
/*! This class defines a lattice method that is able to rollback
(with discount) a discretized asset object. It will be based
on one or more trees.
Derived classes must implement the following interface:
\code
public:
DiscountFactor discount(Size i, Size index) const;
Size descendant(Size i, Size index, Size branch) const;
Real probability(Size i, Size index, Size branch) const;
\endcode
and may implement the following:
\code
public:
void stepback(Size i,
const Array& values,
Array& newValues) const;
\endcode
\ingroup lattices
*/
template <class Impl>
class TreeLattice : public Lattice,
public CuriouslyRecurringTemplate<Impl> {
public:
TreeLattice(const TimeGrid& timeGrid,
Size n)
: Lattice(timeGrid), n_(n) {
QL_REQUIRE(n>0, "there is no zeronomial lattice!");
statePrices_ = std::vector<Array>(1, Array(1, 1.0));
statePricesLimit_ = 0;
}
//! \name Lattice interface
//@{
void initialize(DiscretizedAsset&, Time t) const;
void rollback(DiscretizedAsset&, Time to) const;
void partialRollback(DiscretizedAsset&, Time to) const;
//! Computes the present value of an asset using Arrow-Debrew prices
Real presentValue(DiscretizedAsset&) const;
//@}
const Array& statePrices(Size i) const;
void stepback(Size i,
const Array& values,
Array& newValues) const;
protected:
void computeStatePrices(Size until) const;
// Arrow-Debrew state prices
mutable std::vector<Array> statePrices_;
private:
Size n_;
mutable Size statePricesLimit_;
};
// template definitions
template <class Impl>
void TreeLattice<Impl>::computeStatePrices(Size until) const {
for (Size i=statePricesLimit_; i<until; i++) {
statePrices_.push_back(Array(this->impl().size(i+1), 0.0));
for (Size j=0; j<this->impl().size(i); j++) {
DiscountFactor disc = this->impl().discount(i,j);
Real statePrice = statePrices_[i][j];
for (Size l=0; l<n_; l++) {
statePrices_[i+1][this->impl().descendant(i,j,l)] +=
statePrice*disc*this->impl().probability(i,j,l);
}
}
}
statePricesLimit_ = until;
}
template <class Impl>
const Array& TreeLattice<Impl>::statePrices(Size i) const {
if (i>statePricesLimit_)
computeStatePrices(i);
return statePrices_[i];
}
template <class Impl>
inline Real TreeLattice<Impl>::presentValue(DiscretizedAsset& asset) const {
Size i = t_.index(asset.time());
return DotProduct(asset.values(), statePrices(i));
}
template <class Impl>
inline void TreeLattice<Impl>::initialize(DiscretizedAsset& asset, Time t) const {
Size i = t_.index(t);
asset.time() = t;
asset.reset(this->impl().size(i));
}
template <class Impl>
inline void TreeLattice<Impl>::rollback(DiscretizedAsset& asset, Time to) const {
partialRollback(asset,to);
asset.adjustValues();
}
template <class Impl>
void TreeLattice<Impl>::partialRollback(DiscretizedAsset& asset,
Time to) const {
Time from = asset.time();
if (close(from,to))
return;
QL_REQUIRE(from > to,
"cannot roll the asset back to" << to
<< " (it is already at t = " << from << ")");
Integer iFrom = Integer(t_.index(from));
Integer iTo = Integer(t_.index(to));
for (Integer i=iFrom-1; i>=iTo; --i) {
Array newValues(this->impl().size(i));
this->impl().stepback(i, asset.values(), newValues);
asset.time() = t_[i];
asset.values() = newValues;
// skip the very last adjustment
if (i != iTo)
asset.adjustValues();
}
}
template <class Impl>
void TreeLattice<Impl>::stepback(Size i, const Array& values,
Array& newValues) const {
#pragma omp parallel for
for (Size j=0; j<this->impl().size(i); j++) {
Real value = 0.0;
for (Size l=0; l<n_; l++) {
value += this->impl().probability(i,j,l) *
values[this->impl().descendant(i,j,l)];
}
value *= this->impl().discount(i,j);
newValues[j] = value;
}
}
}
#endif
|