This file is indexed.

/usr/share/doc/libplplot12/examples/octave/x22c.m is in libplplot-dev 5.10.0-0ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
## Copyright (C) 2004-2006 Andrew Ross
## Copyright (C) 2004 Rafael Laboissiere
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by the
## Free Software Foundation; either version 2 of the License, or (at your
## option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## This file is part of plplot_octave.
## It is based on the corresponding demo function of PLplot.

# Simple line plot and multiple windows demo.

1;

global xmax;

function ix22c

  ## Parse and process command line arguments */

  ##    plparseopts(&argc, argv, PL_PARSE_FULL);

  ## Initialize plplot */
  plinit;

  ## Set up the data */
  ## Original case */

  circulation;

  narr = 6;
  fill = 0;

  arrow_x = [-0.5 0.5 0.3 0.5 0.3 0.5];
  arrow_y = [0.0 0.0 0.2 0.0 -0.2 0.0];
  arrow2_x = [-0.5 0.3 0.3 0.5 0.3 0.3];
  arrow2_y = [0.0 0.0   0.2 0.0 -0.2 0.0];

  ## Set arrow style using arrow_x and arrow_y then
  ## plot using these arrows.
  plsvect(arrow_x', arrow_y', fill);
  constriction(1);

  ## Set arrow style using arrow2_x and arrow2_y then
  ## plot using these filled arrows. */
  fill = 1;
  plsvect(arrow2_x', arrow2_y', fill);
  constriction(2);

  constriction2;

  plsvect([],[],0);

  potential;

  ## Don't forget to call plend1  to finish off! */

  plend1();

endfunction

function circulation
  nx = 20;
  ny = 20;

  dx = 1.0;
  dy = 1.0;

  xmin = -nx/2*dx;
  xmax = nx/2*dx;
  ymin = -ny/2*dy;
  ymax = ny/2*dy;

  xg = [xmin+dx/2:dx:xmax-dx/2]'*ones(1,ny);
  yg = ones(nx,1)*[ymin+dy/2:dy:ymax-dy/2];
  u = yg;
  v = -xg;

  ## Plot vectors with default arrows 
  plenv(xmin, xmax, ymin, ymax, 0, 0);
  pllab("(x)", "(y)", "#frPLplot Example 22 - circulation");
  plcol0(2);
  plvect2(u,v,0.0,xg,yg);
  plcol0(1);

end

## Vector plot of flow through a constricted pipe
function constriction( astyle )
  nx = 20;
  ny = 20;

  dx = 1.0;
  dy = 1.0;

  xmin = -nx/2*dx;
  xmax = nx/2*dx;
  ymin = -ny/2*dy;
  ymax = ny/2*dy;

  Q = 2.0;
  xg = [xmin+dx/2:dx:xmax-dx/2]'*ones(1,ny);
  yg = ones(nx,1)*[ymin+dy/2:dy:ymax-dy/2];

  b = ymax/4.0.*(3-cos(pi*xg/xmax));
  dbdx = ymax/4.0.*sin(pi*xg/xmax)*pi/xmax.*yg./b;
  u = Q*ymax./b.*(abs(yg)<b);
  v = dbdx.*u.*(abs(yg)<b);

  plenv(xmin, xmax, ymin, ymax, 0, 0);
  title = sprintf( "#frPLplot Example 22 - constriction (arrow style %d)", astyle );

  pllab("(x)", "(y)", title );
  plcol0(2);
  plvect2(u,v,-1.0,xg,yg);
  plcol0(1);

end

##
## Global transform function for a constriction using data passed in
## This is the same transformation used in constriction.
##
function [xt, yt] = transform( x, y, data )
    global xmax;
    xt = x;
    yt = y / 4.0 * ( 3 - cos( pi * x / xmax ) );
end

## Vector plot of flow through a constricted pipe with
## a coordinate transformation
function constriction2()

  global xmax;
  
  nx = 20;
  ny = 20;
  nc = 11;
  nseg = 20;

  dx = 1.0;
  dy = 1.0;

  xmin = -nx/2*dx;
  xmax = nx/2*dx;
  ymin = -ny/2*dy;
  ymax = ny/2*dy;

  plstransform( @transform, [] );

  Q = 2.0;
  xg = [xmin+dx/2:dx:xmax-dx/2]'*ones(1,ny);
  yg = ones(nx,1)*[ymin+dy/2:dy:ymax-dy/2];

  b = ymax/4.0.*(3.0-cos(pi*xg/xmax));
  u = Q*ymax./b;
  v = zeros(nx,ny);

  clev = Q + (0:(nc-1))*Q/(nc-1);

  plenv(xmin, xmax, ymin, ymax, 0, 0);
  pllab("(x)", "(y)", "#frPLplot Example 22 - constriction with plstransform" );
  plcol0(2);
  plshades(u, xmin+dx/2,xmax-dx/2,ymin+dy/2,ymax-dy/2,clev',0.0,1,1.0,0);
  plvect2(u,v,-1.0,xg,yg);
  ## Plot edges using plpath (which accounts for coordinate transformation) rather than plline
  plpath( nseg, xmin, ymax, xmax, ymax );
  plpath( nseg, xmin, ymin, xmax, ymin );
  plcol0(1);

  plstransform( [], [] );

end

## Vector plot of the gradient of a shielded potential (see example 9)

function potential
  nper = 100;
  nlevel = 10;
  nr = 20;
  ntheta = 20;

  ## Potential inside a conducting cylinder (or sphere) by method of images.
  ## Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
  ## Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
  ## Also put in smoothing term at small distances.

  rmax = nr;
    
  eps = 2.;

  q1 = 1.;
  d1 = rmax/4.;

  q1i = - q1*rmax/d1;
  d1i = rmax^2/d1;

  q2 = -1.;
  d2 = rmax/4.;
  
  q2i = - q2*rmax/d2;
  d2i = rmax^2/d2;

  r = [0.5:1:nr-0.5];
  dtheta = 2*pi/(ntheta-1);
  theta = [dtheta/2:dtheta:2*pi+dtheta/2];
  x = r'*cos(theta);
  y = r'*sin(theta);
  div1 = sqrt((x-d1).^2 + (y-d1).^2 + eps^2);
  div1i = sqrt((x-d1i).^2 + (y-d1i).^2 + eps^2);
  div2 = sqrt((x-d2).^2 + (y+d2).^2 + eps^2);
  div2i = sqrt((x-d2i).^2 + (y+d2i).^2 + eps^2);
  z = q1*div1.^-1 + q1i*div1i.^-1 + q2*div2.^-1 + q2i*div2i.^-1;
  u = -q1*(x-d1)./div1.^3 - q1i*(x-d1i)./div1i.^3 - q2*(x-d2)./div2.^3 - q2i*(x-d2i)./div2i.^3;
  v = -q1*(y-d1)./div1.^3 - q1i*(y-d1i)./div1i.^3 - q2*(y+d2)./div2.^3 - q2i*(y+d2i)./div2i.^3;

  xmin = min(min(x));
  xmax = max(max(x));
  ymin = min(min(y));
  ymax = max(max(y));
  zmin = min(min(z));
  zmax = max(max(z));

  plenv(xmin, xmax, ymin, ymax, 0, 0);
  pllab("(x)", "(y)", "#frPLplot Example 22 - potential gradient vector plot");
  ## Plot contours of the potential
  dz = (zmax-zmin)/nlevel;
  clevel = [zmin+dz/2:dz:zmax-dz/2];
  plcol0(3);
  pllsty(2);
  plcont2(z,1,nr,1,ntheta,clevel',x,y);
  pllsty(1);
  plcol0(1);

  ## Plot the vectors of the gradient of the potential
  plcol0(2);
  plvect2(u,v,25.0,x,y);
  plcol0(1);

  ## Plot the perimeter of the cylinder
  theta = [0:2*pi/(nper-1):2*pi];
  px = rmax*cos(theta);
  py = rmax*sin(theta);
  plline(px',py');
end

ix22c