/usr/lib/petscdir/3.4.2/include/petscdmmesh.hh is in libpetsc3.4.2-dev 3.4.2.dfsg1-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 | #if !defined(__PETSCDMMESH_HH)
#define __PETSCDMMESH_HH
#include <petscdmmesh.h>
#include <functional>
using ALE::Obj;
PetscErrorCode DMMeshView_Sieve(const ALE::Obj<PETSC_MESH_TYPE>& mesh, PetscViewer viewer);
#undef __FUNCT__
#define __FUNCT__ "DMMeshCreateMatrix"
template<typename Mesh, typename Section>
PetscErrorCode DMMeshCreateMatrix(const Obj<Mesh>& mesh, const Obj<Section>& section, MatType mtype, Mat *J, int bs = -1, bool fillMatrix = false)
{
const ALE::Obj<typename Mesh::order_type>& order = mesh->getFactory()->getGlobalOrder(mesh, section->getName(), section);
int localSize = order->getLocalSize();
int globalSize = order->getGlobalSize();
PetscBool isShell, isBlock, isSeqBlock, isMPIBlock, isSymBlock, isSymSeqBlock, isSymMPIBlock, isSymmetric;
PetscErrorCode ierr;
PetscFunctionBegin;
ierr = MatCreate(mesh->comm(), J);CHKERRQ(ierr);
ierr = MatSetSizes(*J, localSize, localSize, globalSize, globalSize);CHKERRQ(ierr);
ierr = MatSetType(*J, mtype);CHKERRQ(ierr);
ierr = MatSetFromOptions(*J);CHKERRQ(ierr);
ierr = PetscStrcmp(mtype, MATSHELL, &isShell);CHKERRQ(ierr);
ierr = PetscStrcmp(mtype, MATBAIJ, &isBlock);CHKERRQ(ierr);
ierr = PetscStrcmp(mtype, MATSEQBAIJ, &isSeqBlock);CHKERRQ(ierr);
ierr = PetscStrcmp(mtype, MATMPIBAIJ, &isMPIBlock);CHKERRQ(ierr);
ierr = PetscStrcmp(mtype, MATSBAIJ, &isSymBlock);CHKERRQ(ierr);
ierr = PetscStrcmp(mtype, MATSEQSBAIJ, &isSymSeqBlock);CHKERRQ(ierr);
ierr = PetscStrcmp(mtype, MATMPISBAIJ, &isSymMPIBlock);CHKERRQ(ierr);
// Check for symmetric storage
isSymmetric = (PetscBool) (isSymBlock || isSymSeqBlock || isSymMPIBlock);
if (!isShell) {
PetscInt *dnz, *onz, bsLocal;
if (bs < 0) {
if (isBlock || isSeqBlock || isMPIBlock || isSymBlock || isSymSeqBlock || isSymMPIBlock) {
const typename Section::chart_type& chart = section->getChart();
for(typename Section::chart_type::const_iterator c_iter = chart.begin(); c_iter != chart.end(); ++c_iter) {
if (section->getFiberDimension(*c_iter)) {
bs = section->getFiberDimension(*c_iter);
break;
}
}
} else {
bs = 1;
}
// Must have same blocksize on all procs (some might have no points)
bsLocal = bs;
ierr = MPI_Allreduce(&bsLocal, &bs, 1, MPIU_INT, MPI_MAX, mesh->comm());CHKERRQ(ierr);
}
ierr = PetscMalloc2(localSize/bs, PetscInt, &dnz, localSize/bs, PetscInt, &onz);CHKERRQ(ierr);
#ifdef USE_NEW_OVERLAP
ierr = preallocateOperatorNewOverlap(mesh, bs, section->getAtlas(), order, dnz, onz, isSymmetric, *J, fillMatrix);CHKERRQ(ierr);
#else
ierr = preallocateOperatorNew(mesh, bs, section->getAtlas(), order, dnz, onz, isSymmetric, *J, fillMatrix);CHKERRQ(ierr);
#endif
ierr = PetscFree2(dnz, onz);CHKERRQ(ierr);
if (isSymmetric) {
ierr = MatSetOption(*J, MAT_IGNORE_LOWER_TRIANGULAR, PETSC_TRUE);CHKERRQ(ierr);
}
}
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "DMMeshCreateGlobalScatter"
template<typename Mesh, typename Section>
PetscErrorCode DMMeshCreateGlobalScatter(const ALE::Obj<Mesh>& m, const ALE::Obj<Section>& s, VecScatter *scatter)
{
const ALE::Obj<typename Mesh::order_type>& globalOrder = m->getFactory()->getGlobalOrder(m, s->getName(), s);
PetscErrorCode ierr;
PetscFunctionBegin;
ierr = DMMeshCreateGlobalScatter(m, s, globalOrder, false, scatter);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "DMMeshCreateGlobalScatter"
template<typename Mesh, typename Section>
PetscErrorCode DMMeshCreateGlobalScatter(const ALE::Obj<Mesh>& m, const ALE::Obj<Section>& s, const ALE::Obj<typename Mesh::label_type>& label, VecScatter *scatter)
{
const ALE::Obj<typename Mesh::order_type>& globalOrder = m->getFactory()->getGlobalOrder(m, s->getName(), s, -1, label);
PetscErrorCode ierr;
PetscFunctionBegin;
ierr = DMMeshCreateGlobalScatter(m, s, globalOrder, false, scatter);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "DMMeshCreateGlobalScatter"
template<typename Mesh, typename Section>
PetscErrorCode DMMeshCreateGlobalScatter(const ALE::Obj<Mesh>& m, const std::string& name, const typename Section::chart_type& points, const ALE::Obj<Section>& s, VecScatter *scatter)
{
const ALE::Obj<typename Mesh::order_type>& globalOrder = m->getFactory()->getGlobalOrder(m, name, points, s);
PetscErrorCode ierr;
PetscFunctionBegin;
ierr = DMMeshCreateGlobalScatter(m, s, globalOrder, false, scatter);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "DMMeshCreateGlobalScatter"
template<typename Mesh, typename Section>
PetscErrorCode DMMeshCreateGlobalScatter(const ALE::Obj<Mesh>& m, const ALE::Obj<Section>& s, const ALE::Obj<typename Mesh::order_type>& globalOrder, bool includeConstraints, VecScatter *scatter)
{
typedef typename Mesh::real_section_type::index_type index_type;
PetscErrorCode ierr;
PetscFunctionBegin;
ierr = PetscLogEventBegin(DMMesh_GetGlobalScatter,0,0,0,0);CHKERRQ(ierr);
const typename Mesh::order_type::chart_type& chart = globalOrder->getChart();
int *localIndices, *globalIndices;
int localSize = globalOrder->getLocalSize();
int overlapSize = -1;
int localIndx = 0, globalIndx = 0;
Vec globalVec, localVec;
IS localIS, globalIS;
ierr = VecCreate(m->comm(), &globalVec);CHKERRQ(ierr);
ierr = VecSetSizes(globalVec, localSize, PETSC_DETERMINE);CHKERRQ(ierr);
ierr = VecSetFromOptions(globalVec);CHKERRQ(ierr);
if (includeConstraints) {
overlapSize = s->sizeWithBC();
ierr = PetscMalloc(overlapSize*sizeof(int), &localIndices);CHKERRQ(ierr);
ierr = PetscMalloc(overlapSize*sizeof(int), &globalIndices);CHKERRQ(ierr);
} else {
overlapSize = s->size();
ierr = PetscMalloc(overlapSize*sizeof(int), &localIndices);CHKERRQ(ierr);
ierr = PetscMalloc(overlapSize*sizeof(int), &globalIndices);CHKERRQ(ierr);
} // if/else
// Loop over all local points
for(typename Mesh::order_type::chart_type::const_iterator p_iter = chart.begin(); p_iter != chart.end(); ++p_iter) {
// Map local indices to global indices
if (includeConstraints) {
s->getIndicesRaw(*p_iter, localIndices, &localIndx, 0);
s->getIndicesRaw(*p_iter, globalOrder, globalIndices, &globalIndx, 0);
} else {
s->getIndices(*p_iter, localIndices, &localIndx, 0, true, true);
s->getIndices(*p_iter, globalOrder, globalIndices, &globalIndx, 0, true, false);
}
//numConstraints += s->getConstraintDimension(*p_iter);
}
// Local arrays also have constraints, which are not mapped
if (localIndx > overlapSize) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ, "Invalid number of local indices %d, should not be greater than %d", localIndx, overlapSize);
if (globalIndx > overlapSize) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ, "Invalid number of global indices %d, should not be greater than %d", globalIndx, overlapSize);
if (globalIndx != localIndx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ, "Mismatched number of global indices %d, and local indices %d", globalIndx, localIndx);
if (m->debug()) {
globalOrder->view("Global Order");
for(int i = 0; i < globalIndx; ++i) {
printf("[%d] localIndex[%d]: %d globalIndex[%d]: %d\n", m->commRank(), i, localIndices[i], i, globalIndices[i]);
}
}
ierr = ISCreateGeneral(PETSC_COMM_SELF, localIndx, localIndices,PETSC_OWN_POINTER, &localIS);CHKERRQ(ierr);
ierr = ISCreateGeneral(PETSC_COMM_SELF, globalIndx, globalIndices,PETSC_OWN_POINTER, &globalIS);CHKERRQ(ierr);
// Can remove this when I test it with NULL
#ifdef PETSC_USE_COMPLEX
ierr = VecCreateSeqWithArray(PETSC_COMM_SELF, 1,s->getStorageSize(), NULL, &localVec);CHKERRQ(ierr);
#else
ierr = VecCreateSeqWithArray(PETSC_COMM_SELF, 1,s->getStorageSize(), s->restrictSpace(), &localVec);CHKERRQ(ierr);
#endif
ierr = VecScatterCreate(localVec, localIS, globalVec, globalIS, scatter);CHKERRQ(ierr);
ierr = ISDestroy(&globalIS);CHKERRQ(ierr);
ierr = ISDestroy(&localIS);CHKERRQ(ierr);
ierr = VecDestroy(&localVec);CHKERRQ(ierr);
ierr = VecDestroy(&globalVec);CHKERRQ(ierr);
ierr = PetscLogEventEnd(DMMesh_GetGlobalScatter,0,0,0,0);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
template<typename Mesh, typename Section>
void createOperator(const ALE::Obj<Mesh>& mesh, const ALE::Obj<Section>& s, const ALE::Obj<Mesh>& op) {
typedef ALE::SieveAlg<Mesh> sieve_alg_type;
typedef ALE::Mesh<PetscInt,PetscScalar> FlexMesh;
const typename Section::chart_type& chart = s->getChart();
// Create local operator
// We do not decorate arrows yet
for(typename Section::chart_type::const_iterator p_iter = chart.begin(); p_iter != chart.end(); ++p_iter) {
const Obj<typename sieve_alg_type::supportArray>& star = sieve_alg_type::star(mesh, *p_iter);
for(typename sieve_alg_type::supportArray::const_iterator s_iter = star->begin(); s_iter != star->end(); ++s_iter) {
const Obj<typename sieve_alg_type::coneArray>& closure = sieve_alg_type::closure(mesh, *s_iter);
for(typename sieve_alg_type::coneArray::const_iterator c_iter = closure->begin(); c_iter != closure->end(); ++c_iter) {
op->getSieve()->addCone(*c_iter, *p_iter);
}
}
}
op->view("Local operator");
// Construct overlap
Obj<FlexMesh::send_overlap_type> sendOverlap = mesh->getSendOverlap();
Obj<FlexMesh::recv_overlap_type> recvOverlap = mesh->getRecvOverlap();
FlexMesh::renumbering_type& renumbering = mesh->getRenumbering();
sendOverlap->view("Mesh send overlap");
recvOverlap->view("Mesh recv overlap");
// Complete operator
typedef ALE::DistributionNew<FlexMesh>::cones_type ConeOverlap;
ALE::Obj<ConeOverlap> overlapCones = ALE::DistributionNew<FlexMesh>::completeCones(op->getSieve(), op->getSieve(), renumbering, sendOverlap, recvOverlap);
op->view("Completed operator");
// Update renumbering and overlap
overlapCones->view("Overlap cones");
Obj<FlexMesh::send_overlap_type> opSendOverlap = op->getSendOverlap();
Obj<FlexMesh::recv_overlap_type> opRecvOverlap = op->getRecvOverlap();
FlexMesh::renumbering_type& opRenumbering = op->getRenumbering();
const typename ConeOverlap::chart_type& overlapChart = overlapCones->getChart();
int p = renumbering.size();
opRenumbering = renumbering;
for(typename ConeOverlap::chart_type::const_iterator p_iter = overlapChart.begin(); p_iter != overlapChart.end(); ++p_iter) {
if (opRenumbering.find(p_iter->second) == opRenumbering.end()) {
opRenumbering[p_iter->second] = p++;
}
}
ALE::SetFromMap<FlexMesh::renumbering_type> opGlobalPoints(opRenumbering);
ALE::OverlapBuilder<>::constructOverlap(opGlobalPoints, opRenumbering, opSendOverlap, opRecvOverlap);
sendOverlap->view("Operator send overlap");
recvOverlap->view("Operator recv overlap");
// Create global order
Obj<FlexMesh::order_type> globalOrder = new FlexMesh::order_type(op->comm(), op->debug());
op->getFactory()->constructLocalOrder(globalOrder, opSendOverlap, opGlobalPoints, s);
op->getFactory()->calculateOffsets(globalOrder);
op->getFactory()->updateOrder(globalOrder, opGlobalPoints);
op->getFactory()->completeOrder(globalOrder, opSendOverlap, opRecvOverlap);
globalOrder->view("Operator global order");
// Create dnz/onz or CSR
};
template<typename Atlas>
class AdjVisitor {
public:
typedef typename ALE::Mesh<PetscInt,PetscScalar>::point_type point_type;
protected:
Atlas& atlas;
ALE::Mesh<PetscInt,PetscScalar>::sieve_type& adjGraph;
point_type p;
public:
AdjVisitor(Atlas& atlas, ALE::Mesh<PetscInt,PetscScalar>::sieve_type& adjGraph) : atlas(atlas), adjGraph(adjGraph) {};
void visitPoint(const point_type& point) {
if (atlas.restrictPoint(point)[0].prefix) {
adjGraph.addCone(point, p);
}
};
template<typename Arrow>
void visitArrow(const Arrow&) {};
public:
void setRoot(const point_type& point) {this->p = point;};
};
#undef __FUNCT__
#define __FUNCT__ "createLocalAdjacencyGraph"
template<typename Mesh, typename Atlas>
PetscErrorCode createLocalAdjacencyGraph(const ALE::Obj<Mesh>& mesh, const ALE::Obj<Atlas>& atlas, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::sieve_type>& adjGraph)
{
typedef typename ALE::ISieveVisitor::TransitiveClosureVisitor<typename Mesh::sieve_type, AdjVisitor<Atlas> > ClosureVisitor;
typedef typename ALE::ISieveVisitor::ConeVisitor<typename Mesh::sieve_type, ClosureVisitor> ConeVisitor;
typedef typename ALE::ISieveVisitor::TransitiveClosureVisitor<typename Mesh::sieve_type, ConeVisitor> StarVisitor;
AdjVisitor<Atlas> adjV(*atlas, *adjGraph);
ClosureVisitor closureV(*mesh->getSieve(), adjV);
ConeVisitor coneV(*mesh->getSieve(), closureV);
StarVisitor starV(*mesh->getSieve(), coneV);
/* In general, we need to get FIAT info that attaches dual basis vectors to sieve points */
const typename Atlas::chart_type& chart = atlas->getChart();
PetscFunctionBegin;
starV.setIsCone(false);
for(typename Atlas::chart_type::const_iterator c_iter = chart.begin(); c_iter != chart.end(); ++c_iter) {
adjV.setRoot(*c_iter);
mesh->getSieve()->support(*c_iter, starV);
closureV.clear();
starV.clear();
}
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "createLocalAdjacencyGraphI"
template<typename Mesh, typename Atlas>
PetscErrorCode createLocalAdjacencyGraphI(const ALE::Obj<Mesh>& mesh, const ALE::Obj<Atlas>& atlas, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::sieve_type>& adjGraph)
{
typedef typename ALE::ISieveVisitor::TransitiveClosureVisitor<typename Mesh::sieve_type, AdjVisitor<Atlas> > ClosureVisitor;
typedef typename ALE::ISieveVisitor::ConeVisitor<typename Mesh::sieve_type, ClosureVisitor> ConeVisitor;
typedef typename ALE::ISieveVisitor::TransitiveClosureVisitor<typename Mesh::sieve_type, ConeVisitor> StarVisitor;
AdjVisitor<Atlas> adjV(*atlas, *adjGraph);
ClosureVisitor closureV(*mesh->getSieve(), adjV);
ConeVisitor coneV(*mesh->getSieve(), closureV);
StarVisitor starV(*mesh->getSieve(), coneV);
/* In general, we need to get FIAT info that attaches dual basis vectors to sieve points */
const typename Atlas::chart_type& chart = atlas->getChart();
PetscFunctionBegin;
// Changes for ISieve
// 1) Add AdjSizeVisitor to set cone sizes
// 2) Add new symmetrizeSizes() to ISieve to calculate support sizes
// 3) Allocate adjGraph
// 4) Change AdjVisitor to stack up cone rather than calling addPoint()
// 5) Get points and call setCone() each time
starV.setIsCone(false);
for(typename Atlas::chart_type::const_iterator c_iter = chart.begin(); c_iter != chart.end(); ++c_iter) {
adjV.setRoot(*c_iter);
mesh->getSieve()->support(*c_iter, starV);
closureV.clear();
starV.clear();
}
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "createLocalAdjacencyGraph"
template<typename Atlas>
PetscErrorCode createLocalAdjacencyGraph(const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar> >& mesh, const ALE::Obj<Atlas>& atlas, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::sieve_type>& adjGraph)
{
typedef ALE::SieveAlg<ALE::Mesh<PetscInt,PetscScalar> > sieve_alg_type;
/* In general, we need to get FIAT info that attaches dual basis vectors to sieve points */
const typename Atlas::chart_type& chart = atlas->getChart();
PetscFunctionBegin;
for(typename Atlas::chart_type::const_iterator c_iter = chart.begin(); c_iter != chart.end(); ++c_iter) {
const Obj<typename sieve_alg_type::supportArray>& star = sieve_alg_type::star(mesh, *c_iter);
for(typename sieve_alg_type::supportArray::const_iterator s_iter = star->begin(); s_iter != star->end(); ++s_iter) {
const Obj<typename sieve_alg_type::coneArray>& closure = sieve_alg_type::closure(mesh, *s_iter);
for(typename sieve_alg_type::coneArray::const_iterator cl_iter = closure->begin(); cl_iter != closure->end(); ++cl_iter) {
adjGraph->addCone(*cl_iter, *c_iter);
}
}
}
PetscFunctionReturn(0);
}
template<typename Arrow>
struct SelectSource : public std::unary_function<Arrow, typename Arrow::source_type>
{
typename Arrow::source_type& operator()(Arrow& x) const {return x.source;}
const typename Arrow::source_type& operator()(const Arrow& x) const {return x.source;}
};
template<class Pair>
struct Select1st : public std::unary_function<Pair, typename Pair::first_type>
{
typename Pair::first_type& operator()(Pair& x) const {return x.first;}
const typename Pair::first_type& operator()(const Pair& x) const {return x.first;}
};
template<typename Mesh, typename Order>
PetscErrorCode globalizeLocalAdjacencyGraph(const ALE::Obj<Mesh>& mesh, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::sieve_type>& adjGraph, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::send_overlap_type>& sendOverlap, const ALE::Obj<Order>& globalOrder)
{
typedef ALE::Mesh<PetscInt,PetscScalar> FlexMesh;
const int debug = mesh->debug();
PetscFunctionBegin;
ALE::PointFactory<typename Mesh::point_type>& pointFactory = ALE::PointFactory<FlexMesh::point_type>::singleton(mesh->comm(), mesh->getSieve()->getChart().max(), mesh->debug());
// Check for points not in sendOverlap
std::set<typename Mesh::point_type> interiorPoints;
std::set<typename Mesh::point_type> overlapSources;
std::set<typename Mesh::sieve_type::arrow_type> overlapArrows;
const Obj<FlexMesh::sieve_type::traits::capSequence>& columns = adjGraph->cap();
for(FlexMesh::sieve_type::traits::capSequence::iterator p_iter = columns->begin(); p_iter != columns->end(); ++p_iter) {
// This optimization does not work because empty points are sent anyway
//if (!sendOverlap->support(*p_iter)->size() && globalOrder->restrictPoint(*p_iter)[0].index) {
if (!sendOverlap->support(*p_iter)->size()) {
interiorPoints.insert(*p_iter);
} else {
// If a point p is in the overlap for process i and an adjacent point q is in the overlap for process j then:
// Replace (q, p) with (q', p)
// Notice I can reverse the arrow because the graph is initially symmetric
if (debug) {std::cout << "["<<globalOrder->commRank()<<"] Checking overlap point " << *p_iter << " for overlap neighbors" << std::endl;}
const Obj<typename FlexMesh::sieve_type::supportSequence>& neighbors = adjGraph->support(*p_iter);
const typename FlexMesh::sieve_type::supportSequence::iterator nEnd = neighbors->end();
for(typename FlexMesh::sieve_type::supportSequence::iterator n_iter = neighbors->begin(); n_iter != nEnd; ++n_iter) {
if (sendOverlap->support(*n_iter)->size()) {
if (debug) {std::cout << "["<<globalOrder->commRank()<<"] Found overlap neighbor " << *n_iter << std::endl;}
const Obj<typename FlexMesh::send_overlap_type::supportSequence>& ranks = sendOverlap->support(*p_iter);
const typename FlexMesh::send_overlap_type::supportSequence::iterator rEnd = ranks->end();
bool equal = true;
for(typename FlexMesh::send_overlap_type::supportSequence::iterator r_iter = ranks->begin(); r_iter != rEnd; ++r_iter) {
const Obj<typename FlexMesh::send_overlap_type::supportSequence>& nRanks = sendOverlap->support(*n_iter);
const typename FlexMesh::send_overlap_type::supportSequence::iterator nrEnd = nRanks->end();
bool found = false;
if (debug) {std::cout << "["<<globalOrder->commRank()<<"] Checking overlap rank " << *r_iter << std::endl;}
for(typename FlexMesh::send_overlap_type::supportSequence::iterator nr_iter = nRanks->begin(); nr_iter != nrEnd; ++nr_iter) {
if (debug) {std::cout << "["<<globalOrder->commRank()<<"] Checking neighbor overlap rank " << *nr_iter << std::endl;}
if (*nr_iter == *r_iter) {
found = true;
break;
}
}
if (!found) {
equal = false;
break;
}
}
if (!equal) {
if (debug) {std::cout << "["<<globalOrder->commRank()<<"] Unequal rank sets, replacing arrow " << *n_iter <<" --> "<<*p_iter << std::endl;}
overlapArrows.insert(typename Mesh::sieve_type::arrow_type(*n_iter, *p_iter));
} else {
if (debug) {std::cout << "["<<globalOrder->commRank()<<"] Equal rank sets, doing nothing for arrow " << *n_iter <<" --> "<<*p_iter << std::endl;}
}
}
}
}
}
// Renumber those points
pointFactory.clear();
pointFactory.setMax(mesh->getSieve()->getChart().max());
pointFactory.renumberPoints(interiorPoints.begin(), interiorPoints.end());
//pointFactory.renumberPoints(overlapArrows.begin(), overlapArrows.end(), SelectSource<typename Mesh::sieve_type::arrow_type>());
// They should use a key extractor: overlapSources.insert(overlapArrows.begin(), overlapArrows.end(), SelectSource<typename Mesh::sieve_type::arrow_type>());
for(typename std::set<typename Mesh::sieve_type::arrow_type>::const_iterator a_iter = overlapArrows.begin(); a_iter != overlapArrows.end(); ++a_iter) {
overlapSources.insert(a_iter->source);
}
pointFactory.renumberPoints(overlapSources.begin(), overlapSources.end());
typename ALE::PointFactory<typename Mesh::point_type>::renumbering_type& renumbering = pointFactory.getRenumbering();
typename ALE::PointFactory<typename Mesh::point_type>::renumbering_type& invRenumbering = pointFactory.getInvRenumbering();
// Replace points in local adjacency graph
const Obj<FlexMesh::sieve_type::traits::baseSequence>& base = adjGraph->base();
ALE::Obj<std::vector<typename Mesh::point_type> > newCone = new std::vector<typename Mesh::point_type>();
for(FlexMesh::sieve_type::traits::baseSequence::iterator b_iter = base->begin(); b_iter != base->end(); ++b_iter) {
const ALE::Obj<FlexMesh::sieve_type::coneSequence>& cone = adjGraph->cone(*b_iter);
const FlexMesh::sieve_type::coneSequence::iterator cEnd = cone->end();
bool replace = false;
for(FlexMesh::sieve_type::coneSequence::iterator c_iter = cone->begin(); c_iter != cEnd; ++c_iter) {
if (interiorPoints.find(*c_iter) != interiorPoints.end()) {
newCone->push_back(invRenumbering[*c_iter]);
replace = true;
} else {
newCone->push_back(*c_iter);
}
}
if (interiorPoints.find(*b_iter) != interiorPoints.end()) {
adjGraph->clearCone(*b_iter);
adjGraph->setCone(newCone, invRenumbering[*b_iter]);
if (debug) {std::cout << "["<<globalOrder->commRank()<<"]: Replacing cone for " << *b_iter << "("<<invRenumbering[*b_iter]<<") with" << std::endl;}
} else if (replace) {
adjGraph->clearCone(*b_iter);
adjGraph->setCone(newCone, *b_iter);
if (debug) {std::cout << "["<<globalOrder->commRank()<<"]: Replacing cone for " << *b_iter << " with" << std::endl;}
}
if (debug && ((interiorPoints.find(*b_iter) != interiorPoints.end()) || replace)) {
for(typename std::vector<typename Mesh::point_type>::const_iterator c_iter = newCone->begin(); c_iter != newCone->end(); ++c_iter) {
std::cout << "["<<globalOrder->commRank()<<"]: point " << *c_iter << std::endl;
}
}
newCone->clear();
}
// Replace arrows
for(typename std::set<typename Mesh::sieve_type::arrow_type>::const_iterator a_iter = overlapArrows.begin(); a_iter != overlapArrows.end(); ++a_iter) {
if (debug) {std::cout << "["<<globalOrder->commRank()<<"]: Replacing " << a_iter->source<<" --> "<<a_iter->target << " with " << invRenumbering[a_iter->source]<<" --> "<<a_iter->target << std::endl;}
adjGraph->removeArrow(a_iter->source, a_iter->target);
adjGraph->addArrow(invRenumbering[a_iter->source], a_iter->target);
}
// Add new points into ordering
#if 1
for(typename ALE::PointFactory<typename Mesh::point_type>::renumbering_type::const_iterator p_iter = renumbering.begin(); p_iter != renumbering.end(); ++p_iter) {
if (debug) {std::cout << "["<<globalOrder->commRank()<<"]: Updating " << p_iter->first << " to " << globalOrder->restrictPoint(p_iter->second)[0] << std::endl;}
globalOrder->addPoint(p_iter->first);
globalOrder->updatePoint(p_iter->first, globalOrder->restrictPoint(p_iter->second));
}
#else
globalOrder->reallocatePoint(renumbering.begin(), renumbering.end(), Select1st<typename ALE::PointFactory<typename Mesh::point_type>::renumbering_type::const_iterator::value_type>());
for(typename ALE::PointFactory<typename Mesh::point_type>::renumbering_type::const_iterator p_iter = renumbering.begin(); p_iter != renumbering.end(); ++p_iter) {
if (debug) {std::cout << "["<<globalOrder->commRank()<<"]: Updating " << p_iter->first << " to " << globalOrder->restrictPoint(p_iter->second)[0] << std::endl;}
globalOrder->updatePoint(p_iter->first, globalOrder->restrictPoint(p_iter->second));
}
#endif
PetscFunctionReturn(0);
}
template<typename Order>
PetscErrorCode globalizeLocalAdjacencyGraph(const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar> >& mesh, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::sieve_type>& adjGraph, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::send_overlap_type>& sendOverlap, const ALE::Obj<Order>& globalOrder)
{
PetscFunctionBegin;
PetscFunctionReturn(0);
}
template<typename Mesh, typename Order>
PetscErrorCode localizeLocalAdjacencyGraph(const ALE::Obj<Mesh>& mesh, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::sieve_type>& adjGraph, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::send_overlap_type>& sendOverlap, const ALE::Obj<Order>& globalOrder)
{
PetscFunctionBegin;
ALE::PointFactory<typename Mesh::point_type>& pointFactory = ALE::PointFactory<ALE::Mesh<PetscInt,PetscScalar>::point_type>::singleton(mesh->comm(), mesh->getSieve()->getChart().max(), mesh->debug());
typename ALE::PointFactory<typename Mesh::point_type>::renumbering_type& renumbering = pointFactory.getRenumbering();
// Replace points in local adjacency graph
const Obj<ALE::Mesh<PetscInt,PetscScalar>::sieve_type::traits::baseSequence>& base = adjGraph->base();
for(ALE::Mesh<PetscInt,PetscScalar>::sieve_type::traits::baseSequence::iterator b_iter = base->begin(); b_iter != base->end(); ++b_iter) {
// Replace globalized points
if (renumbering.find(*b_iter) != renumbering.end()) {
adjGraph->clearCone(renumbering[*b_iter]);
adjGraph->setCone(adjGraph->cone(*b_iter), renumbering[*b_iter]);
adjGraph->clearCone(*b_iter);
}
}
PetscFunctionReturn(0);
}
template<typename Order>
PetscErrorCode localizeLocalAdjacencyGraph(const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar> >& mesh, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::sieve_type>& adjGraph, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::send_overlap_type>& sendOverlap, const ALE::Obj<Order>& globalOrder)
{
PetscFunctionBegin;
PetscFunctionReturn(0);
}
template<typename Mesh, typename Order>
PetscErrorCode renumberLocalAdjacencyGraph(const ALE::Obj<Mesh>& mesh, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::sieve_type>& adjGraph, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::send_overlap_type>& sendOverlap, const ALE::Obj<Order>& globalOrder)
{
typedef typename ALE::Mesh<PetscInt,PetscScalar> FlexMesh;
ALE::Obj<std::set<typename Mesh::point_type> > newCone = new std::set<typename Mesh::point_type>();
const int debug = mesh->debug();
PetscFunctionBegin;
ALE::PointFactory<typename Mesh::point_type>& pointFactory = ALE::PointFactory<typename FlexMesh::point_type>::singleton(mesh->comm(), mesh->getSieve()->getChart().max(), debug);
pointFactory.constructRemoteRenumbering();
typename ALE::PointFactory<typename Mesh::point_type>::renumbering_type& renumbering = pointFactory.getRenumbering();
typename ALE::PointFactory<typename Mesh::point_type>::remote_renumbering_type& remoteRenumbering = pointFactory.getRemoteRenumbering();
// Replace points in local adjacency graph
const Obj<typename FlexMesh::sieve_type::traits::baseSequence>& base = adjGraph->base();
for(FlexMesh::sieve_type::traits::baseSequence::iterator b_iter = base->begin(); b_iter != base->end(); ++b_iter) {
// Loop over cone checking for remote points that shadow local points
const Obj<FlexMesh::sieve_type::traits::coneSequence>& cone = adjGraph->cone(*b_iter);
const FlexMesh::sieve_type::traits::coneSequence::iterator cEnd = cone->end();
bool replace = false;
if (debug) {std::cout <<"["<<adjGraph->commRank()<<"]: Checking base point " << *b_iter << std::endl;}
for(FlexMesh::sieve_type::traits::coneSequence::iterator c_iter = cone->begin(); c_iter != cEnd; ++c_iter) {
bool useOldPoint = true;
if (debug) {std::cout <<"["<<adjGraph->commRank()<<"]: cone point " << *c_iter;}
if (!globalOrder->isLocal(*c_iter)) {
if (debug) {std::cout << " is nonlocal" << std::endl;}
for(int p = 0; p < adjGraph->commSize(); ++p) {
if (p == adjGraph->commRank()) continue;
if (remoteRenumbering[p].find(*c_iter) != remoteRenumbering[p].end()) {
if (debug) {std::cout <<"["<<adjGraph->commRank()<<"]: found " << *c_iter << " on process " << p << " as point " << remoteRenumbering[p][*c_iter];}
const Obj<FlexMesh::send_overlap_type::traits::coneSequence>& localPoint = sendOverlap->cone(p, remoteRenumbering[p][*c_iter]);
if (localPoint->size()) {
if (debug) {std::cout << " with local match " << *localPoint->begin() << std::endl;}
newCone->insert(*localPoint->begin());
replace = true;
useOldPoint = false;
break;
} else {
if (debug) {std::cout << " but not in sendOverlap" << std::endl;}
}
}
}
} else {
if (debug) {std::cout << " is local" << std::endl;}
if (renumbering.find(*c_iter) != renumbering.end()) {
if (debug) {std::cout <<"["<<adjGraph->commRank()<<"]: found " << *c_iter << " locally as point " << renumbering[*c_iter];}
newCone->insert(renumbering[*c_iter]);
replace = true;
useOldPoint = false;
}
}
if (useOldPoint) {
newCone->insert(*c_iter);
}
}
if (replace) {
if (debug > 1) {
std::cout <<"["<<adjGraph->commRank()<<"]: Replacing cone for " << *b_iter << " due to shadowed points from" << std::endl;
const Obj<FlexMesh::sieve_type::traits::coneSequence>& cone = adjGraph->cone(*b_iter);
const FlexMesh::sieve_type::traits::coneSequence::iterator cEnd = cone->end();
for(typename FlexMesh::sieve_type::traits::coneSequence::iterator c_iter = cone->begin(); c_iter != cEnd; ++c_iter) {
std::cout <<"["<<adjGraph->commRank()<<"]: point " << *c_iter << std::endl;
}
std::cout <<"["<<adjGraph->commRank()<<"]: to" << std::endl;
for(typename std::set<typename Mesh::point_type>::const_iterator c_iter = newCone->begin(); c_iter != newCone->end(); ++c_iter) {
std::cout <<"["<<adjGraph->commRank()<<"]: point " << *c_iter << std::endl;
}
}
adjGraph->setCone(newCone, *b_iter);
newCone->clear();
}
}
PetscFunctionReturn(0);
}
template<typename Order>
PetscErrorCode renumberLocalAdjacencyGraph(const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar> >& mesh, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::sieve_type>& adjGraph, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::send_overlap_type>& sendOverlap, const ALE::Obj<Order>& globalOrder)
{
PetscFunctionBegin;
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "preallocateOperator"
/* Problem:
We want to allocate an operator. This means we want to know the ordering of all unknowns in the sparsity pattern.
The preexisting overlap will not contain information about all unknowns (columns) in the operator.
Solution:
Construct the local sparsity pattern, using globally consistent names for new interior points. Cone complete this
pattern, which gives an augmented overlap structure. Insert offsets for the new, global point ids in the existing
order, and then complete the order. This argues for a recreation of the order, rather than use of an existing
order.
Problem:
Figure out sparsity pattern of the operator, when we have already locally numbered all points. The overlap can
establish common names for shared points, but not for interior points.
Solution:
Create a shared resource that bestows globally consistent names.
*/
template<typename Mesh, typename Atlas>
PetscErrorCode preallocateOperator(const ALE::Obj<Mesh>& mesh, const int bs, const ALE::Obj<Atlas>& atlas, const ALE::Obj<typename Mesh::order_type>& globalOrder, PetscInt dnz[], PetscInt onz[], Mat A)
{
MPI_Comm comm = mesh->comm();
const int rank = mesh->commRank();
const int debug = mesh->debug();
const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar> > adjBundle = new ALE::Mesh<PetscInt,PetscScalar>(comm, debug);
const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::sieve_type> adjGraph = new ALE::Mesh<PetscInt,PetscScalar>::sieve_type(comm, debug);
PetscInt numLocalRows, firstRow;
PetscErrorCode ierr;
PetscFunctionBegin;
adjBundle->setSieve(adjGraph);
numLocalRows = globalOrder->getLocalSize();
firstRow = globalOrder->getGlobalOffsets()[rank];
ierr = createLocalAdjacencyGraph(mesh, atlas, adjGraph);CHKERRQ(ierr);
/* Distribute adjacency graph */
adjBundle->constructOverlap();
typedef typename Mesh::sieve_type::point_type point_type;
typedef typename Mesh::send_overlap_type send_overlap_type;
typedef typename Mesh::recv_overlap_type recv_overlap_type;
typedef typename ALE::Field<send_overlap_type, int, ALE::Section<point_type, point_type> > send_section_type;
typedef typename ALE::Field<recv_overlap_type, int, ALE::Section<point_type, point_type> > recv_section_type;
const Obj<send_overlap_type>& vertexSendOverlap = mesh->getSendOverlap();
const Obj<recv_overlap_type>& vertexRecvOverlap = mesh->getRecvOverlap();
const Obj<send_overlap_type> nbrSendOverlap = new send_overlap_type(comm, debug);
const Obj<recv_overlap_type> nbrRecvOverlap = new recv_overlap_type(comm, debug);
const Obj<send_section_type> sendSection = new send_section_type(comm, debug);
const Obj<recv_section_type> recvSection = new recv_section_type(comm, sendSection->getTag(), debug);
if (mesh->commSize() > 1) {
if (debug > 1) adjGraph->view("Original adjacency graph");
ierr = globalizeLocalAdjacencyGraph(mesh, adjGraph, vertexSendOverlap, globalOrder);
if (debug > 1) adjGraph->view("Globalized adjacency graph");
ALE::Distribution<ALE::Mesh<PetscInt,PetscScalar> >::coneCompletion(vertexSendOverlap, vertexRecvOverlap, adjBundle, sendSection, recvSection);
if (debug > 1) adjGraph->view("Completed adjacency graph");
ierr = localizeLocalAdjacencyGraph(mesh, adjGraph, vertexSendOverlap, globalOrder);
if (debug > 1) adjGraph->view("Localized adjacency graph");
/* Distribute indices for new points */
ALE::Distribution<ALE::Mesh<PetscInt,PetscScalar> >::updateOverlap(vertexSendOverlap, vertexRecvOverlap, sendSection, recvSection, nbrSendOverlap, nbrRecvOverlap);
mesh->getFactory()->completeOrder(globalOrder, nbrSendOverlap, nbrRecvOverlap, true);
if (debug > 1) globalOrder->view("Completed global order");
ierr = renumberLocalAdjacencyGraph(mesh, adjGraph, vertexSendOverlap, globalOrder);
if (debug > 1) adjGraph->view("Renumbered adjacency graph");
}
/* Read out adjacency graph */
const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::sieve_type> graph = adjBundle->getSieve();
const typename Atlas::chart_type& chart = atlas->getChart();
if (debug > 1) graph->view("Adjacency graph");
ierr = PetscMemzero(dnz, numLocalRows/bs * sizeof(PetscInt));CHKERRQ(ierr);
ierr = PetscMemzero(onz, numLocalRows/bs * sizeof(PetscInt));CHKERRQ(ierr);
for(typename Atlas::chart_type::const_iterator c_iter = chart.begin(); c_iter != chart.end(); ++c_iter) {
const typename Atlas::point_type& point = *c_iter;
if (globalOrder->isLocal(point)) {
const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::sieve_type::traits::coneSequence>& adj = graph->cone(point);
const typename Mesh::order_type::value_type& rIdx = globalOrder->restrictPoint(point)[0];
const int row = rIdx.prefix;
const int rSize = rIdx.index/bs;
if ((debug > 1) && ((bs == 1) || rIdx.index%bs)) std::cout << "["<<graph->commRank()<<"]: row "<<row<<": size " << rIdx.index << " bs "<<bs<<std::endl;
if (rSize == 0) continue;
for(ALE::Mesh<PetscInt,PetscScalar>::sieve_type::traits::coneSequence::iterator v_iter = adj->begin(); v_iter != adj->end(); ++v_iter) {
const ALE::Mesh<PetscInt,PetscScalar>::point_type& neighbor = *v_iter;
const typename Mesh::order_type::value_type& cIdx = globalOrder->restrictPoint(neighbor)[0];
const int& cSize = cIdx.index/bs;
if ((debug > 1) && ((bs == 1) || cIdx.index%bs)) std::cout << "["<<graph->commRank()<<"]: col "<<cIdx.prefix<<": size " << cIdx.index << " bs "<<bs<<std::endl;
if (cSize > 0) {
if (globalOrder->isLocal(neighbor)) {
for(int r = 0; r < rSize; ++r) {dnz[(row - firstRow)/bs + r] += cSize;}
} else {
for(int r = 0; r < rSize; ++r) {onz[(row - firstRow)/bs + r] += cSize;}
}
}
}
}
}
if (debug) {
for(int r = 0; r < numLocalRows/bs; r++) {
std::cout << "["<<rank<<"]: dnz["<<r<<"]: " << dnz[r] << " onz["<<r<<"]: " << onz[r] << std::endl;
}
}
ierr = MatSeqAIJSetPreallocation(A, 0, dnz);CHKERRQ(ierr);
ierr = MatMPIAIJSetPreallocation(A, 0, dnz, 0, onz);CHKERRQ(ierr);
ierr = MatSeqBAIJSetPreallocation(A, bs, 0, dnz);CHKERRQ(ierr);
ierr = MatMPIBAIJSetPreallocation(A, bs, 0, dnz, 0, onz);CHKERRQ(ierr);
// TODO: ierr = MatSetOption(A, MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_TRUE);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "preallocateOperator"
template<typename Atlas>
PetscErrorCode preallocateOperator(const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar> >& mesh, const int bs, const ALE::Obj<Atlas>& atlas, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::order_type>& globalOrder, PetscInt dnz[], PetscInt onz[], Mat A)
{
typedef ALE::Mesh<PetscInt,PetscScalar> FlexMesh;
typedef ALE::SieveAlg<FlexMesh> sieve_alg_type;
MPI_Comm comm = mesh->comm();
const ALE::Obj<FlexMesh> adjBundle = new FlexMesh(comm, mesh->debug());
const ALE::Obj<FlexMesh::sieve_type> adjGraph = new FlexMesh::sieve_type(comm, mesh->debug());
const bool bigDebug = mesh->debug() > 1;
PetscInt numLocalRows, firstRow;
///PetscInt *dnz, *onz;
PetscErrorCode ierr;
PetscFunctionBegin;
adjBundle->setSieve(adjGraph);
numLocalRows = globalOrder->getLocalSize();
firstRow = globalOrder->getGlobalOffsets()[mesh->commRank()];
///ierr = PetscMalloc2(numLocalRows, PetscInt, &dnz, numLocalRows, PetscInt, &onz);CHKERRQ(ierr);
/* Create local adjacency graph */
/* In general, we need to get FIAT info that attaches dual basis vectors to sieve points */
const typename Atlas::chart_type& chart = atlas->getChart();
for(typename Atlas::chart_type::const_iterator c_iter = chart.begin(); c_iter != chart.end(); ++c_iter) {
const Obj<typename sieve_alg_type::supportArray>& star = sieve_alg_type::star(mesh, *c_iter);
for(typename sieve_alg_type::supportArray::const_iterator s_iter = star->begin(); s_iter != star->end(); ++s_iter) {
const Obj<typename sieve_alg_type::coneArray>& closure = sieve_alg_type::closure(mesh, *s_iter);
for(typename sieve_alg_type::coneArray::const_iterator cl_iter = closure->begin(); cl_iter != closure->end(); ++cl_iter) {
adjGraph->addCone(*cl_iter, *c_iter);
}
}
}
if (bigDebug) adjGraph->view("Adjacency graph");
/* Distribute adjacency graph */
adjBundle->constructOverlap();
typedef typename FlexMesh::sieve_type::point_type point_type;
typedef typename FlexMesh::send_overlap_type send_overlap_type;
typedef typename FlexMesh::recv_overlap_type recv_overlap_type;
typedef typename ALE::Field<send_overlap_type, int, ALE::Section<point_type, point_type> > send_section_type;
typedef typename ALE::Field<recv_overlap_type, int, ALE::Section<point_type, point_type> > recv_section_type;
const Obj<send_overlap_type>& vertexSendOverlap = mesh->getSendOverlap();
const Obj<recv_overlap_type>& vertexRecvOverlap = mesh->getRecvOverlap();
const Obj<send_overlap_type> nbrSendOverlap = new send_overlap_type(comm, mesh->debug());
const Obj<recv_overlap_type> nbrRecvOverlap = new recv_overlap_type(comm, mesh->debug());
const Obj<send_section_type> sendSection = new send_section_type(comm, mesh->debug());
const Obj<recv_section_type> recvSection = new recv_section_type(comm, sendSection->getTag(), mesh->debug());
ALE::Distribution<FlexMesh>::coneCompletion(vertexSendOverlap, vertexRecvOverlap, adjBundle, sendSection, recvSection);
/* Distribute indices for new points */
///ALE::Distribution<FlexMesh>::updateOverlap(sendSection, recvSection, nbrSendOverlap, nbrRecvOverlap);
ALE::Distribution<FlexMesh>::updateOverlap(vertexSendOverlap, vertexRecvOverlap, sendSection, recvSection, nbrSendOverlap, nbrRecvOverlap);
mesh->getFactory()->completeOrder(globalOrder, nbrSendOverlap, nbrRecvOverlap, true);
/* Read out adjacency graph */
const ALE::Obj<FlexMesh::sieve_type> graph = adjBundle->getSieve();
ierr = PetscMemzero(dnz, numLocalRows/bs * sizeof(PetscInt));CHKERRQ(ierr);
ierr = PetscMemzero(onz, numLocalRows/bs * sizeof(PetscInt));CHKERRQ(ierr);
for(typename Atlas::chart_type::const_iterator c_iter = chart.begin(); c_iter != chart.end(); ++c_iter) {
const typename Atlas::point_type& point = *c_iter;
if (globalOrder->isLocal(point)) {
const ALE::Obj<FlexMesh::sieve_type::traits::coneSequence>& adj = graph->cone(point);
const FlexMesh::order_type::value_type& rIdx = globalOrder->restrictPoint(point)[0];
const int row = rIdx.prefix;
const int rSize = rIdx.index/bs;
if (bigDebug && rIdx.index%bs) std::cout << "["<<graph->commRank()<<"]: row "<<row<<": size " << rIdx.index << " bs "<<bs<<std::endl;
if (rSize == 0) continue;
for(FlexMesh::sieve_type::traits::coneSequence::iterator v_iter = adj->begin(); v_iter != adj->end(); ++v_iter) {
const FlexMesh::point_type& neighbor = *v_iter;
const FlexMesh::order_type::value_type& cIdx = globalOrder->restrictPoint(neighbor)[0];
const int& cSize = cIdx.index/bs;
if (bigDebug && cIdx.index%bs) std::cout << "["<<graph->commRank()<<"]: col "<<cIdx.prefix<<": size " << cIdx.index << " bs "<<bs<<std::endl;
if (cSize > 0) {
if (globalOrder->isLocal(neighbor)) {
for(int r = 0; r < rSize; ++r) {dnz[(row - firstRow)/bs + r] += cSize;}
} else {
for(int r = 0; r < rSize; ++r) {onz[(row - firstRow)/bs + r] += cSize;}
}
}
}
}
}
if (mesh->debug()) {
int rank = mesh->commRank();
for(int r = 0; r < numLocalRows/bs; r++) {
std::cout << "["<<rank<<"]: dnz["<<r<<"]: " << dnz[r] << " onz["<<r<<"]: " << onz[r] << std::endl;
}
}
ierr = MatSeqAIJSetPreallocation(A, 0, dnz);CHKERRQ(ierr);
ierr = MatMPIAIJSetPreallocation(A, 0, dnz, 0, onz);CHKERRQ(ierr);
ierr = MatSeqBAIJSetPreallocation(A, bs, 0, dnz);CHKERRQ(ierr);
ierr = MatMPIBAIJSetPreallocation(A, bs, 0, dnz, 0, onz);CHKERRQ(ierr);
///ierr = PetscFree2(dnz, onz);CHKERRQ(ierr);
///TODO: ierr = MatSetOption(A, MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_TRUE);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "preallocateOperator"
template<typename Atlas>
PetscErrorCode preallocateOperator(const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar> >& mesh, const int bs, const ALE::Obj<Atlas>& rowAtlas, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::order_type>& rowGlobalOrder, const ALE::Obj<Atlas>& colAtlas, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::order_type>& colGlobalOrder, Mat A)
{
typedef ALE::Mesh<PetscInt,PetscScalar> FlexMesh;
typedef ALE::SieveAlg<FlexMesh> sieve_alg_type;
MPI_Comm comm = mesh->comm();
const ALE::Obj<FlexMesh> adjBundle = new FlexMesh(comm, mesh->debug());
const ALE::Obj<FlexMesh::sieve_type> adjGraph = new FlexMesh::sieve_type(comm, mesh->debug());
PetscInt numLocalRows, firstRow;
PetscInt *dnz, *onz;
PetscErrorCode ierr;
PetscFunctionBegin;
adjBundle->setSieve(adjGraph);
numLocalRows = rowGlobalOrder->getLocalSize();
firstRow = rowGlobalOrder->getGlobalOffsets()[mesh->commRank()];
ierr = PetscMalloc2(numLocalRows, PetscInt, &dnz, numLocalRows, PetscInt, &onz);CHKERRQ(ierr);
/* Create local adjacency graph */
/* In general, we need to get FIAT info that attaches dual basis vectors to sieve points */
const typename Atlas::chart_type& chart = rowAtlas->getChart();
for(typename Atlas::chart_type::const_iterator c_iter = chart.begin(); c_iter != chart.end(); ++c_iter) {
const Obj<typename sieve_alg_type::supportArray>& star = sieve_alg_type::star(mesh, *c_iter);
for(typename sieve_alg_type::supportArray::const_iterator s_iter = star->begin(); s_iter != star->end(); ++s_iter) {
const Obj<typename sieve_alg_type::coneArray>& closure = sieve_alg_type::closure(mesh, *s_iter);
for(typename sieve_alg_type::coneArray::const_iterator cl_iter = closure->begin(); cl_iter != closure->end(); ++cl_iter) {
adjGraph->addCone(*cl_iter, *c_iter);
}
}
}
/* Distribute adjacency graph */
adjBundle->constructOverlap();
typedef typename FlexMesh::sieve_type::point_type point_type;
typedef typename FlexMesh::send_overlap_type send_overlap_type;
typedef typename FlexMesh::recv_overlap_type recv_overlap_type;
typedef typename ALE::Field<send_overlap_type, int, ALE::Section<point_type, point_type> > send_section_type;
typedef typename ALE::Field<recv_overlap_type, int, ALE::Section<point_type, point_type> > recv_section_type;
const Obj<send_overlap_type>& vertexSendOverlap = mesh->getSendOverlap();
const Obj<recv_overlap_type>& vertexRecvOverlap = mesh->getRecvOverlap();
const Obj<send_overlap_type> nbrSendOverlap = new send_overlap_type(comm, mesh->debug());
const Obj<recv_overlap_type> nbrRecvOverlap = new recv_overlap_type(comm, mesh->debug());
const Obj<send_section_type> sendSection = new send_section_type(comm, mesh->debug());
const Obj<recv_section_type> recvSection = new recv_section_type(comm, sendSection->getTag(), mesh->debug());
ALE::Distribution<FlexMesh>::coneCompletion(vertexSendOverlap, vertexRecvOverlap, adjBundle, sendSection, recvSection);
/* Distribute indices for new points */
ALE::Distribution<FlexMesh>::updateOverlap(vertexSendOverlap, vertexRecvOverlap, sendSection, recvSection, nbrSendOverlap, nbrRecvOverlap);
mesh->getFactory()->completeOrder(rowGlobalOrder, nbrSendOverlap, nbrRecvOverlap, true);
mesh->getFactory()->completeOrder(colGlobalOrder, nbrSendOverlap, nbrRecvOverlap, true);
/* Read out adjacency graph */
const ALE::Obj<FlexMesh::sieve_type> graph = adjBundle->getSieve();
ierr = PetscMemzero(dnz, numLocalRows/bs * sizeof(PetscInt));CHKERRQ(ierr);
ierr = PetscMemzero(onz, numLocalRows/bs * sizeof(PetscInt));CHKERRQ(ierr);
for(typename Atlas::chart_type::const_iterator c_iter = chart.begin(); c_iter != chart.end(); ++c_iter) {
const typename Atlas::point_type& point = *c_iter;
if (rowGlobalOrder->isLocal(point)) {
const ALE::Obj<FlexMesh::sieve_type::traits::coneSequence>& adj = graph->cone(point);
const FlexMesh::order_type::value_type& rIdx = rowGlobalOrder->restrictPoint(point)[0];
const int row = rIdx.prefix;
const int rSize = rIdx.index/bs;
//if (rIdx.index%bs) std::cout << "["<<graph->commRank()<<"]: row "<<row<<": size " << rIdx.index << " bs "<<bs<<std::endl;
if (rSize == 0) continue;
for(FlexMesh::sieve_type::traits::coneSequence::iterator v_iter = adj->begin(); v_iter != adj->end(); ++v_iter) {
const FlexMesh::point_type& neighbor = *v_iter;
const FlexMesh::order_type::value_type& cIdx = colGlobalOrder->restrictPoint(neighbor)[0];
const int& cSize = cIdx.index/bs;
//if (cIdx.index%bs) std::cout << "["<<graph->commRank()<<"]: col "<<cIdx.prefix<<": size " << cIdx.index << " bs "<<bs<<std::endl;
if (cSize > 0) {
if (colGlobalOrder->isLocal(neighbor)) {
for(int r = 0; r < rSize; ++r) {dnz[(row - firstRow)/bs + r] += cSize;}
} else {
for(int r = 0; r < rSize; ++r) {onz[(row - firstRow)/bs + r] += cSize;}
}
}
}
}
}
if (mesh->debug()) {
int rank = mesh->commRank();
for(int r = 0; r < numLocalRows/bs; r++) {
std::cout << "["<<rank<<"]: dnz["<<r<<"]: " << dnz[r] << " onz["<<r<<"]: " << onz[r] << std::endl;
}
}
ierr = MatSeqAIJSetPreallocation(A, 0, dnz);CHKERRQ(ierr);
ierr = MatMPIAIJSetPreallocation(A, 0, dnz, 0, onz);CHKERRQ(ierr);
ierr = MatSeqBAIJSetPreallocation(A, bs, 0, dnz);CHKERRQ(ierr);
ierr = MatMPIBAIJSetPreallocation(A, bs, 0, dnz, 0, onz);CHKERRQ(ierr);
ierr = PetscFree2(dnz, onz);CHKERRQ(ierr);
ierr = MatSetOption(A, MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_TRUE);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "createAllocationVectors"
template<typename Atlas, typename Order>
PetscErrorCode createAllocationVectors(const int bs, const ALE::Obj<Atlas>& atlas, const ALE::Obj<Order>& globalOrder, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::sieve_type>& adjGraph, PetscBool isSymmetric, PetscInt dnz[], PetscInt onz[])
{
typedef ALE::Mesh<PetscInt,PetscScalar> FlexMesh;
const typename Atlas::chart_type& chart = atlas->getChart();
PetscInt numLocalRows = globalOrder->getLocalSize();
PetscInt firstRow = globalOrder->getGlobalOffsets()[atlas->commRank()];
PetscErrorCode ierr;
PetscFunctionBegin;
ierr = PetscMemzero(dnz, numLocalRows/bs * sizeof(PetscInt));CHKERRQ(ierr);
ierr = PetscMemzero(onz, numLocalRows/bs * sizeof(PetscInt));CHKERRQ(ierr);
for(typename Atlas::chart_type::const_iterator c_iter = chart.begin(); c_iter != chart.end(); ++c_iter) {
const typename Atlas::point_type& point = *c_iter;
if (globalOrder->isLocal(point)) {
const ALE::Obj<typename FlexMesh::sieve_type::coneSequence>& adj = adjGraph->cone(point);
const typename Order::value_type& rIdx = globalOrder->restrictPoint(point)[0];
const int row = rIdx.prefix;
const int rSize = rIdx.index/bs;
if ((atlas->debug() > 1) && ((bs == 1) || (rIdx.index%bs == 0))) std::cout << "["<<adjGraph->commRank()<<"]: row "<<row<<": size " << rIdx.index << " bs "<<bs<<std::endl;
if (rSize == 0) continue;
for(typename FlexMesh::sieve_type::coneSequence::iterator v_iter = adj->begin(); v_iter != adj->end(); ++v_iter) {
const typename Atlas::point_type& neighbor = *v_iter;
const typename Order::value_type& cIdx = globalOrder->restrictPoint(neighbor)[0];
const int col = cIdx.prefix>=0 ? cIdx.prefix : -(cIdx.prefix+1);
const int& cSize = cIdx.index/bs;
if ((atlas->debug() > 1) && ((bs == 1) || (cIdx.index%bs == 0))) std::cout << "["<<adjGraph->commRank()<<"]: col "<<col<<": size " << cIdx.index << " bs "<<bs<<std::endl;
if (cSize > 0) {
if (isSymmetric && (col < row)) {
if (atlas->debug() > 1) {std::cout << "["<<adjGraph->commRank()<<"]: Rejecting row "<<row<<" col " << col <<std::endl;}
continue;
}
if (globalOrder->isLocal(neighbor)) {
for(int r = 0; r < rSize; ++r) {dnz[(row - firstRow)/bs + r] += cSize;}
} else {
for(int r = 0; r < rSize; ++r) {onz[(row - firstRow)/bs + r] += cSize;}
}
}
}
}
}
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "fillMatrixWithZero"
template<typename Atlas, typename Order>
PetscErrorCode fillMatrixWithZero(Mat A, const int bs, const ALE::Obj<Atlas>& atlas, const ALE::Obj<Order>& globalOrder, const ALE::Obj<ALE::Mesh<PetscInt,PetscScalar>::sieve_type>& adjGraph, PetscBool isSymmetric, PetscInt dnz[], PetscInt onz[])
{
typedef ALE::Mesh<PetscInt,PetscScalar> FlexMesh;
const typename Atlas::chart_type& chart = atlas->getChart();
PetscInt numLocalRows = globalOrder->getLocalSize();
PetscInt firstRow = globalOrder->getGlobalOffsets()[atlas->commRank()];
PetscInt maxRowLen = 0;
PetscErrorCode ierr;
PetscFunctionBegin;
for(PetscInt r = 0; r < numLocalRows/bs; ++r) {
maxRowLen = std::max(maxRowLen, dnz[r] + onz[r]);
}
PetscInt *cols = new PetscInt[maxRowLen];
PetscScalar *values = new PetscScalar[maxRowLen];
ierr = PetscMemzero((void *) values, maxRowLen * sizeof(PetscScalar));CHKERRQ(ierr);
for(typename Atlas::chart_type::const_iterator c_iter = chart.begin(); c_iter != chart.end(); ++c_iter) {
const typename Atlas::point_type& point = *c_iter;
int rowLen = 0;
if (globalOrder->isLocal(point)) {
const ALE::Obj<typename FlexMesh::sieve_type::coneSequence>& adj = adjGraph->cone(point);
const typename Order::value_type& rIdx = globalOrder->restrictPoint(point)[0];
const int row = rIdx.prefix;
const int rSize = rIdx.index/bs;
if (rSize == 0) continue;
for(typename FlexMesh::sieve_type::coneSequence::iterator v_iter = adj->begin(); v_iter != adj->end(); ++v_iter) {
const typename Atlas::point_type& neighbor = *v_iter;
const typename Order::value_type& cIdx = globalOrder->restrictPoint(neighbor)[0];
const int col = cIdx.prefix>=0 ? cIdx.prefix : -(cIdx.prefix+1);
const int& cSize = cIdx.index/bs;
if (cSize > 0) {
if (isSymmetric && (col < row)) {
continue;
}
for(int c = col; c < col+cSize; ++c) {
cols[rowLen++] = c;
}
}
}
for(int r = 0; r < rSize; ++r) {
PetscInt fullRow = row + r;
if (rowLen != dnz[(row - firstRow)/bs+r]+onz[(row - firstRow)/bs+r]) {
SETERRQ5(atlas->comm(), PETSC_ERR_ARG_WRONG, "Invalid row length %d, should be dnz[%d]: %d + onz[%d]: %d", rowLen, (row - firstRow)/bs+r, dnz[(row - firstRow)/bs+r], (row - firstRow)/bs+r, onz[(row - firstRow)/bs+r]);
}
ierr = MatSetValues(A, 1, &fullRow, rowLen, cols, values, INSERT_VALUES);CHKERRQ(ierr);
}
}
}
delete [] cols;
delete [] values;
ierr = MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "preallocateOperatorNew"
template<typename Mesh, typename Atlas>
PetscErrorCode preallocateOperatorNew(const ALE::Obj<Mesh>& mesh, const int bs, const ALE::Obj<Atlas>& atlas, const ALE::Obj<typename Mesh::order_type>& globalOrder, PetscInt dnz[], PetscInt onz[], PetscBool isSymmetric, Mat A, bool fillMatrix = false)
{
typedef ALE::Mesh<PetscInt,PetscScalar> FlexMesh;
typedef typename Mesh::sieve_type sieve_type;
typedef typename Mesh::point_type point_type;
typedef typename Mesh::send_overlap_type send_overlap_type;
typedef typename Mesh::recv_overlap_type recv_overlap_type;
const ALE::Obj<FlexMesh::sieve_type> adjGraph = new FlexMesh::sieve_type(mesh->comm(), mesh->debug());
PetscInt numLocalRows = globalOrder->getLocalSize();
PetscInt firstRow = globalOrder->getGlobalOffsets()[mesh->commRank()];
const PetscInt debug = mesh->debug()/3;
PetscErrorCode ierr;
PetscFunctionBegin;
// Create local adjacency graph
if (debug) mesh->view("Input Mesh");
if (debug) globalOrder->view("Initial Global Order");
ierr = createLocalAdjacencyGraph(mesh, atlas, adjGraph);CHKERRQ(ierr);
if (debug) adjGraph->view("Adjacency Graph");
// Complete adjacency graph
typedef ALE::ConeSection<FlexMesh::sieve_type> cones_wrapper_type;
typedef ALE::Section<ALE::Pair<int, point_type>, point_type> cones_type;
Obj<cones_wrapper_type> cones = new cones_wrapper_type(adjGraph);
Obj<cones_type> overlapCones = new cones_type(adjGraph->comm(), adjGraph->debug());
const Obj<send_overlap_type>& sendOverlap = mesh->getSendOverlap();
const Obj<recv_overlap_type>& recvOverlap = mesh->getRecvOverlap();
const Obj<send_overlap_type> nbrSendOverlap = new send_overlap_type(mesh->comm(), mesh->debug());
const Obj<recv_overlap_type> nbrRecvOverlap = new recv_overlap_type(mesh->comm(), mesh->debug());
ALE::Pullback::SimpleCopy::copy(sendOverlap, recvOverlap, cones, overlapCones);
if (debug) overlapCones->view("Overlap Cones");
// Now overlapCones has the neighbors for any point in the overlap, in the remote numbering
// Copy overlaps
{
const Obj<typename send_overlap_type::traits::capSequence> sPoints = sendOverlap->cap();
const typename send_overlap_type::traits::capSequence::iterator sEnd = sPoints->end();
for(typename send_overlap_type::traits::capSequence::iterator p_iter = sPoints->begin(); p_iter != sEnd; ++p_iter) {
const Obj<typename send_overlap_type::supportSequence> support = sendOverlap->support(*p_iter);
const typename send_overlap_type::supportSequence::iterator supEnd = support->end();
for(typename send_overlap_type::supportSequence::iterator s_iter = support->begin(); s_iter != supEnd; ++s_iter) {
nbrSendOverlap->addArrow(*p_iter, *s_iter, s_iter.color());
}
}
const Obj<typename recv_overlap_type::traits::baseSequence> rPoints = recvOverlap->base();
const typename recv_overlap_type::traits::baseSequence::iterator rEnd = rPoints->end();
for(typename recv_overlap_type::traits::baseSequence::iterator p_iter = rPoints->begin(); p_iter != rEnd; ++p_iter) {
const Obj<typename recv_overlap_type::coneSequence> cone = recvOverlap->cone(*p_iter);
const typename recv_overlap_type::coneSequence::iterator cEnd = cone->end();
for(typename recv_overlap_type::coneSequence::iterator c_iter = cone->begin(); c_iter != cEnd; ++c_iter) {
nbrRecvOverlap->addArrow(*c_iter, *p_iter, c_iter.color());
}
}
}
if (debug) nbrSendOverlap->view("Initial Send Overlap");
if (debug) nbrRecvOverlap->view("Initial Recv Overlap");
// Update neighbor send overlap from local adjacency
typedef typename send_overlap_type::target_type rank_type;
const Obj<typename send_overlap_type::traits::capSequence> sPoints = sendOverlap->cap();
const typename send_overlap_type::traits::capSequence::iterator sEnd = sPoints->end();
for(typename send_overlap_type::traits::capSequence::iterator p_iter = sPoints->begin(); p_iter != sEnd; ++p_iter) {
const point_type& localPoint = *p_iter;
const Obj<typename send_overlap_type::supportSequence>& ranks = sendOverlap->support(localPoint);
const typename send_overlap_type::supportSequence::iterator rEnd = ranks->end();
for(typename send_overlap_type::supportSequence::iterator r_iter = ranks->begin(); r_iter != rEnd; ++r_iter) {
const Obj<typename FlexMesh::sieve_type::coneSequence>& adj = adjGraph->cone(localPoint);
typename FlexMesh::sieve_type::coneSequence::iterator adjEnd = adj->end();
for(typename FlexMesh::sieve_type::coneSequence::iterator c_iter = adj->begin(); c_iter != adjEnd; ++c_iter) {
// Check for interior points
if (!recvOverlap->coneContains(*c_iter, ALE::IsEqual<rank_type>(*r_iter))) {
nbrSendOverlap->addArrow(*c_iter, *r_iter, -1);
}
}
}
}
if (debug) nbrSendOverlap->view("Modified Send Overlap");
// Update neighbor recv overlap and local adjacency
const Obj<typename recv_overlap_type::traits::baseSequence> rPoints = recvOverlap->base();
const typename recv_overlap_type::traits::baseSequence::iterator rEnd = rPoints->end();
point_type maxPoint = std::max(*std::max_element(adjGraph->cap()->begin(), adjGraph->cap()->end()),
*std::max_element(adjGraph->base()->begin(), adjGraph->base()->end())) + 1;
for(typename recv_overlap_type::traits::baseSequence::iterator p_iter = rPoints->begin(); p_iter != rEnd; ++p_iter) {
const point_type& localPoint = *p_iter;
const Obj<typename recv_overlap_type::coneSequence>& ranks = recvOverlap->cone(localPoint);
const typename recv_overlap_type::coneSequence::iterator rEnd = ranks->end();
for(typename recv_overlap_type::coneSequence::iterator r_iter = ranks->begin(); r_iter != rEnd; ++r_iter) {
const int rank = *r_iter;
const point_type& remotePoint = r_iter.color();
const int size = overlapCones->getFiberDimension(typename cones_type::point_type(rank, remotePoint));
const typename cones_type::value_type *values = overlapCones->restrictPoint(typename cones_type::point_type(rank, remotePoint));
for(int i = 0; i < size; ++i) {
// Check for interior point
if (!sendOverlap->cone(rank, values[i])->size()) {
// Check that we have not seen it before
const Obj<typename recv_overlap_type::supportSequence>& newPoints = nbrRecvOverlap->support(rank, values[i]);
point_type newPoint;
if (!newPoints->size()) {
typename Mesh::order_type::value_type value(-1, 0);
newPoint = maxPoint++;
globalOrder->updatePoint(newPoint, &value); // Mark the new point as nonlocal
nbrRecvOverlap->addArrow(rank, newPoint, values[i]);
} else {
newPoint = *newPoints->begin();
}
adjGraph->addArrow(newPoint, localPoint);
adjGraph->addArrow(localPoint, newPoint);
} else {
// Might provide an unknown link for already known point
const point_type oldPoint = *sendOverlap->cone(rank, values[i])->begin();
adjGraph->addArrow(oldPoint, localPoint);
adjGraph->addArrow(localPoint, oldPoint);
}
}
}
}
if (debug) nbrRecvOverlap->view("Modified Recv Overlap");
if (debug) adjGraph->view("Modified Adjacency Graph");
mesh->getFactory()->completeOrder(globalOrder, nbrSendOverlap, nbrRecvOverlap);
if (debug) globalOrder->view("Modified Global Order");
// Read out adjacency graph
const typename Atlas::chart_type& chart = atlas->getChart();
ierr = PetscMemzero(dnz, numLocalRows/bs * sizeof(PetscInt));CHKERRQ(ierr);
ierr = PetscMemzero(onz, numLocalRows/bs * sizeof(PetscInt));CHKERRQ(ierr);
for(typename Atlas::chart_type::const_iterator c_iter = chart.begin(); c_iter != chart.end(); ++c_iter) {
const typename Atlas::point_type& point = *c_iter;
if (globalOrder->isLocal(point)) {
const ALE::Obj<typename FlexMesh::sieve_type::traits::coneSequence>& adj = adjGraph->cone(point);
const typename Mesh::order_type::value_type& rIdx = globalOrder->restrictPoint(point)[0];
const int row = rIdx.prefix;
const int rSize = rIdx.index/bs;
if ((mesh->debug() > 1) && ((bs == 1) || (rIdx.index%bs == 0))) std::cout << "["<<adjGraph->commRank()<<"]: row "<<row<<": size " << rIdx.index << " bs "<<bs<<std::endl;
if (rSize == 0) continue;
for(typename FlexMesh::sieve_type::traits::coneSequence::iterator v_iter = adj->begin(); v_iter != adj->end(); ++v_iter) {
const typename Mesh::point_type& neighbor = *v_iter;
const typename Mesh::order_type::value_type& cIdx = globalOrder->restrictPoint(neighbor)[0];
const int col = cIdx.prefix>=0 ? cIdx.prefix : -(cIdx.prefix+1);
const int& cSize = cIdx.index/bs;
if ((mesh->debug() > 1) && ((bs == 1) || (cIdx.index%bs == 0))) std::cout << "["<<adjGraph->commRank()<<"]: col "<<col<<": size " << cIdx.index << " bs "<<bs<<std::endl;
if (cSize > 0) {
if (isSymmetric && (col < row)) {
if (mesh->debug() > 1) {std::cout << "["<<adjGraph->commRank()<<"]: Rejecting row "<<row<<" col " << col <<std::endl;}
continue;
}
if (globalOrder->isLocal(neighbor)) {
for(int r = 0; r < rSize; ++r) {dnz[(row - firstRow)/bs + r] += cSize;}
} else {
for(int r = 0; r < rSize; ++r) {onz[(row - firstRow)/bs + r] += cSize;}
}
}
}
}
}
// Set matrix pattern
ierr = MatSeqAIJSetPreallocation(A, 0, dnz);CHKERRQ(ierr);
ierr = MatMPIAIJSetPreallocation(A, 0, dnz, 0, onz);CHKERRQ(ierr);
ierr = MatSeqBAIJSetPreallocation(A, bs, 0, dnz);CHKERRQ(ierr);
ierr = MatMPIBAIJSetPreallocation(A, bs, 0, dnz, 0, onz);CHKERRQ(ierr);
ierr = MatSeqSBAIJSetPreallocation(A, bs, 0, dnz);CHKERRQ(ierr);
ierr = MatMPISBAIJSetPreallocation(A, bs, 0, dnz, 0, onz);CHKERRQ(ierr);
ierr = MatSetOption(A, MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_TRUE);CHKERRQ(ierr);
// Fill matrix with zeros
if (fillMatrix) {
int maxRowLen = 0;
for(int r = 0; r < numLocalRows/bs; ++r) {
maxRowLen = std::max(maxRowLen, dnz[r] + onz[r]);
}
PetscInt *cols = new PetscInt[maxRowLen];
PetscScalar *values = new PetscScalar[maxRowLen];
ierr = PetscMemzero((void *) values, maxRowLen * sizeof(PetscScalar));CHKERRQ(ierr);
for(typename Atlas::chart_type::const_iterator c_iter = chart.begin(); c_iter != chart.end(); ++c_iter) {
const typename Atlas::point_type& point = *c_iter;
int rowLen = 0;
if (globalOrder->isLocal(point)) {
const ALE::Obj<typename FlexMesh::sieve_type::traits::coneSequence>& adj = adjGraph->cone(point);
const typename Mesh::order_type::value_type& rIdx = globalOrder->restrictPoint(point)[0];
const int row = rIdx.prefix;
const int rSize = rIdx.index/bs;
if (rSize == 0) continue;
for(typename FlexMesh::sieve_type::traits::coneSequence::iterator v_iter = adj->begin(); v_iter != adj->end(); ++v_iter) {
const typename Mesh::point_type& neighbor = *v_iter;
const typename Mesh::order_type::value_type& cIdx = globalOrder->restrictPoint(neighbor)[0];
const int col = cIdx.prefix>=0 ? cIdx.prefix : -(cIdx.prefix+1);
const int& cSize = cIdx.index/bs;
if (cSize > 0) {
if (isSymmetric && (col < row)) {
continue;
}
for(int c = col; c < col+cSize; ++c) {
cols[rowLen++] = c;
}
}
}
for(int r = 0; r < rSize; ++r) {
PetscInt fullRow = row + r;
if (rowLen != dnz[(row - firstRow)/bs+r]+onz[(row - firstRow)/bs+r]) {
SETERRQ5(mesh->comm(), PETSC_ERR_ARG_WRONG, "Invalid row length %d, should be dnz[%d]: %d + onz[%d]: %d", rowLen, (row - firstRow)/bs+r, dnz[(row - firstRow)/bs+r], (row - firstRow)/bs+r, onz[(row - firstRow)/bs+r]);
}
ierr = MatSetValues(A, 1, &fullRow, rowLen, cols, values, INSERT_VALUES);CHKERRQ(ierr);
}
}
}
delete [] cols;
delete [] values;
ierr = MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
}
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "preallocateOperatorNewOverlap"
template<typename Mesh, typename Atlas>
PetscErrorCode preallocateOperatorNewOverlap(const ALE::Obj<Mesh>& mesh, const int bs, const ALE::Obj<Atlas>& atlas, const ALE::Obj<typename Mesh::order_type>& globalOrder, PetscInt dnz[], PetscInt onz[], PetscBool isSymmetric, Mat A, bool fillMatrix = false)
{
typedef ALE::Mesh<PetscInt,PetscScalar> FlexMesh;
typedef typename Mesh::sieve_type sieve_type;
typedef typename Mesh::point_type point_type;
typedef typename Mesh::send_overlap_type send_overlap_type;
typedef typename Mesh::recv_overlap_type recv_overlap_type;
const ALE::Obj<FlexMesh::sieve_type> adjGraph = new FlexMesh::sieve_type(mesh->comm(), mesh->debug());
const PetscInt debug = mesh->debug()/3;
PetscErrorCode ierr;
PetscFunctionBegin;
// Create local adjacency graph
if (debug) mesh->view("Input Mesh");
if (debug) globalOrder->view("Initial Global Order");
ierr = createLocalAdjacencyGraph(mesh, atlas, adjGraph);CHKERRQ(ierr);
if (debug) adjGraph->view("Adjacency Graph");
// Complete adjacency graph
typedef ALE::ConeSection<FlexMesh::sieve_type> cones_wrapper_type;
typedef ALE::Section<ALE::Pair<int, point_type>, point_type> cones_type;
Obj<cones_wrapper_type> cones = new cones_wrapper_type(adjGraph);
Obj<cones_type> overlapCones = new cones_type(adjGraph->comm(), adjGraph->debug());
const Obj<send_overlap_type>& sendOverlap = mesh->getSendOverlap();
const Obj<recv_overlap_type>& recvOverlap = mesh->getRecvOverlap();
const Obj<send_overlap_type> nbrSendOverlap = new send_overlap_type(mesh->comm(), mesh->debug());
const Obj<recv_overlap_type> nbrRecvOverlap = new recv_overlap_type(mesh->comm(), mesh->debug());
// Now overlapCones will have the neighbors for any point in the overlap, in the remote numbering
ALE::Pullback::SimpleCopy::copy(sendOverlap, recvOverlap, cones, overlapCones);
if (debug) overlapCones->view("Overlap Cones");
// TODO Copy overlaps
sendOverlap->copy(nbrSendOverlap.ptr());
recvOverlap->copy(nbrRecvOverlap.ptr());
if (debug) nbrSendOverlap->view("Initial Send Overlap");
if (debug) nbrRecvOverlap->view("Initial Recv Overlap");
// TODO Update neighbor send overlap from local adjacency
// For each localPoint in sendOverlap
// For each rank receiving this point
// For each adjPoint in adjGraph->cone(point)
// If recvOverlap does not contain an arrow (rank, adjPoint, *), meaning the point is not interior to the domain
// nbrSendOverlap->addArrow(adjPoint, rank, -1)
const typename send_overlap_type::baseSequence::iterator sBegin = sendOverlap->baseBegin();
const typename send_overlap_type::baseSequence::iterator sEnd = sendOverlap->baseEnd();
for(typename send_overlap_type::baseSequence::iterator r_iter = sBegin; r_iter != sEnd; ++r_iter) {
const typename send_overlap_type::target_type rank = *r_iter;
const typename send_overlap_type::coneSequence::iterator pBegin = sendOverlap->coneBegin(*r_iter);
const typename send_overlap_type::coneSequence::iterator pEnd = sendOverlap->coneEnd(*r_iter);
for(typename send_overlap_type::coneSequence::iterator p_iter = pBegin; p_iter != pEnd; ++p_iter) {
const typename send_overlap_type::source_type localPoint = *p_iter;
const typename FlexMesh::sieve_type::coneSequence::iterator adjBegin = adjGraph->cone(localPoint)->begin();
const typename FlexMesh::sieve_type::coneSequence::iterator adjEnd = adjGraph->cone(localPoint)->end();
for(typename FlexMesh::sieve_type::coneSequence::iterator a_iter = adjBegin; a_iter != adjEnd; ++a_iter) {
const typename FlexMesh::sieve_type::coneSequence::iterator::value_type adjPoint = *a_iter;
// Deal with duplication at the assembly stage
nbrSendOverlap->addArrow(adjPoint, rank, -1);
}
}
}
nbrSendOverlap->assemble();
nbrSendOverlap->assemblePoints();
if (debug) nbrSendOverlap->view("Modified Send Overlap");
// Let maxPoint be the first point not contained in adjGraph
point_type maxPoint = std::max(*std::max_element(adjGraph->cap()->begin(), adjGraph->cap()->end()),
*std::max_element(adjGraph->base()->begin(), adjGraph->base()->end())) + 1;
// TODO Update neighbor recv overlap and local adjacency
// For each point in recvOverlap
// For each rank sending this point
// For each adjPoint in the overlap cone from adjGraph for this point
// If adjPoint is interior, meaning sendOverlap has no arrow (rank, *, adjPoint) CAN THIS EVER HAPPEN???
// If nbrRevOverlap has arrow (rank, newPoint, adjPoint)
// Let newPoint = maxPoint, increment maxPoint
// Add arrows (point, newPoint) and (newPoint, point) to adjGraph
// Else
// Add arrows (point, newPoint) and (newPoint, point) to adjGraph
// Else
// Why would we see a new connection for an old point??? Need an example
// We have the arrow (rank, oldPoint, adjPoint)
// Add arrows (point, oldPoint) and (oldPoint, point) to adjGraph
const typename recv_overlap_type::capSequence::iterator rBegin = recvOverlap->capBegin();
const typename recv_overlap_type::capSequence::iterator rEnd = recvOverlap->capEnd();
for(typename recv_overlap_type::capSequence::iterator r_iter = rBegin; r_iter != rEnd; ++r_iter) {
const int rank = *r_iter;
const typename recv_overlap_type::supportSequence::iterator pBegin = recvOverlap->supportBegin(*r_iter);
const typename recv_overlap_type::supportSequence::iterator pEnd = recvOverlap->supportEnd(*r_iter);
for(typename recv_overlap_type::supportSequence::iterator p_iter = pBegin; p_iter != pEnd; ++p_iter) {
const point_type& localPoint = *p_iter;
const point_type& remotePoint = p_iter.color();
const int size = overlapCones->getFiberDimension(typename cones_type::point_type(rank, remotePoint));
const typename cones_type::value_type *values = overlapCones->restrictPoint(typename cones_type::point_type(rank, remotePoint));
for(int i = 0; i < size; ++i) {
const typename recv_overlap_type::supportSequence::iterator newPointsBegin = nbrRecvOverlap->supportBegin(rank, values[i]);
const int numNewPoints = nbrRecvOverlap->getSupportSize(rank, values[i]);
point_type newPoint;
if (!numNewPoints) {
typename Mesh::order_type::value_type value(-1, 0);
newPoint = maxPoint++;
globalOrder->updatePoint(newPoint, &value); // Mark the new point as nonlocal
nbrRecvOverlap->addArrow(rank, newPoint, values[i]);
} else {
newPoint = *newPointsBegin;
}
adjGraph->addArrow(newPoint, localPoint);
adjGraph->addArrow(localPoint, newPoint);
}
}
}
nbrRecvOverlap->assemble();
nbrRecvOverlap->assemblePoints();
if (debug) nbrRecvOverlap->view("Modified Recv Overlap");
if (debug) adjGraph->view("Modified Adjacency Graph");
// Update global order
mesh->getFactory()->completeOrder(globalOrder, nbrSendOverlap, nbrRecvOverlap);
if (debug) globalOrder->view("Modified Global Order");
// Read out adjacency graph
ierr = createAllocationVectors(bs, atlas, globalOrder, adjGraph, isSymmetric, dnz, onz);
// Set matrix pattern
ierr = MatSeqAIJSetPreallocation(A, 0, dnz);CHKERRQ(ierr);
ierr = MatMPIAIJSetPreallocation(A, 0, dnz, 0, onz);CHKERRQ(ierr);
ierr = MatSeqBAIJSetPreallocation(A, bs, 0, dnz);CHKERRQ(ierr);
ierr = MatMPIBAIJSetPreallocation(A, bs, 0, dnz, 0, onz);CHKERRQ(ierr);
ierr = MatSeqSBAIJSetPreallocation(A, bs, 0, dnz);CHKERRQ(ierr);
ierr = MatMPISBAIJSetPreallocation(A, bs, 0, dnz, 0, onz);CHKERRQ(ierr);
ierr = MatSetUp(A);
ierr = MatSetOption(A, MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_TRUE);CHKERRQ(ierr);
// Fill matrix with zeros
if (fillMatrix) {ierr = fillMatrixWithZero(A, bs, atlas, globalOrder, adjGraph, isSymmetric, dnz, onz);CHKERRQ(ierr);}
PetscFunctionReturn(0);
}
template<typename Mesh, typename Atlas>
PetscErrorCode preallocateOperatorI(const ALE::Obj<Mesh>& mesh, const int bs, const ALE::Obj<Atlas>& atlas, const ALE::Obj<typename Mesh::order_type>& globalOrder, PetscInt dnz[], PetscInt onz[], PetscBool isSymmetric, Mat A)
{
typedef typename Mesh::sieve_type sieve_type;
typedef typename Mesh::point_type point_type;
typedef typename Mesh::send_overlap_type send_overlap_type;
typedef typename Mesh::recv_overlap_type recv_overlap_type;
const ALE::Obj<typename Mesh::sieve_type> adjGraph = new typename Mesh::sieve_type(mesh->comm(), mesh->debug());
PetscInt numLocalRows = globalOrder->getLocalSize();
PetscInt firstRow = globalOrder->getGlobalOffsets()[mesh->commRank()];
const PetscInt debug = 0;
PetscErrorCode ierr;
PetscFunctionBegin;
// Create local adjacency graph
if (debug) mesh->view("Input Mesh");
if (debug) globalOrder->view("Initial Global Order");
adjGraph->setChart(mesh);
ierr = createLocalAdjacencyGraphI(mesh, atlas, adjGraph);CHKERRQ(ierr);
if (debug) adjGraph->view("Adjacency Graph");
// Will have to reallocate() adjGraph after adding arrows
// Rewrite read out from adjGraph to use visitors
// Set matrix pattern
ierr = MatSeqAIJSetPreallocation(A, 0, dnz);CHKERRQ(ierr);
ierr = MatMPIAIJSetPreallocation(A, 0, dnz, 0, onz);CHKERRQ(ierr);
ierr = MatSeqBAIJSetPreallocation(A, bs, 0, dnz);CHKERRQ(ierr);
ierr = MatMPIBAIJSetPreallocation(A, bs, 0, dnz, 0, onz);CHKERRQ(ierr);
ierr = MatSeqSBAIJSetPreallocation(A, bs, 0, dnz);CHKERRQ(ierr);
ierr = MatMPISBAIJSetPreallocation(A, bs, 0, dnz, 0, onz);CHKERRQ(ierr);
ierr = MatSetOption(A, MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_TRUE);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "updateOperator"
template<typename Sieve, typename Visitor>
PetscErrorCode updateOperator(Mat A, const Sieve& sieve, Visitor& iV, const PETSC_MESH_TYPE::point_type& e, PetscScalar array[], InsertMode mode)
{
PetscFunctionBegin;
ALE::ISieveTraversal<Sieve>::orientedClosure(sieve, e, iV);
const PetscInt *indices = iV.getValues();
const int numIndices = iV.getSize();
PetscErrorCode ierr;
ierr = PetscLogEventBegin(DMMesh_updateOperator,0,0,0,0);CHKERRQ(ierr);
if (sieve.debug()) {
ierr = PetscPrintf(PETSC_COMM_SELF, "[%d]mat for element %d\n", sieve.commRank(), e);CHKERRQ(ierr);
for(int i = 0; i < numIndices; i++) {
ierr = PetscPrintf(PETSC_COMM_SELF, "[%d]mat indices[%d] = %d\n", sieve.commRank(), i, indices[i]);CHKERRQ(ierr);
}
for(int i = 0; i < numIndices; i++) {
ierr = PetscPrintf(PETSC_COMM_SELF, "[%d]", sieve.commRank());CHKERRQ(ierr);
for(int j = 0; j < numIndices; j++) {
#ifdef PETSC_USE_COMPLEX
ierr = PetscPrintf(PETSC_COMM_SELF, " (%g,%g)", PetscRealPart(array[i*numIndices+j]), PetscImaginaryPart(array[i*numIndices+j]));CHKERRQ(ierr);
#else
ierr = PetscPrintf(PETSC_COMM_SELF, " %g", array[i*numIndices+j]);CHKERRQ(ierr);
#endif
}
ierr = PetscPrintf(PETSC_COMM_SELF, "\n");CHKERRQ(ierr);
}
}
ierr = MatSetValues(A, numIndices, indices, numIndices, indices, array, mode);
if (ierr) {
PetscErrorCode ierr2;
ierr2 = PetscPrintf(PETSC_COMM_SELF, "[%d]ERROR in updateOperator: point %d\n", sieve.commRank(), e);CHKERRQ(ierr2);
for(int i = 0; i < numIndices; i++) {
ierr2 = PetscPrintf(PETSC_COMM_SELF, "[%d]mat indices[%d] = %d\n", sieve.commRank(), i, indices[i]);CHKERRQ(ierr2);
}
CHKERRQ(ierr);
}
ierr = PetscLogEventEnd(DMMesh_updateOperator,0,0,0,0);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#undef __FUNCT__
#define __FUNCT__ "updateOperator"
template<typename Sieve, typename Visitor>
PetscErrorCode updateOperator(Mat A, const Sieve& rowSieve, Visitor& iVr, const PETSC_MESH_TYPE::point_type& rowE, const Sieve& colSieve, Visitor& iVc, const PETSC_MESH_TYPE::point_type& colE, PetscScalar array[], InsertMode mode)
{
PetscFunctionBegin;
ALE::ISieveTraversal<Sieve>::orientedClosure(rowSieve, rowE, iVr);
ALE::ISieveTraversal<Sieve>::orientedClosure(colSieve, colE, iVc);
const PetscInt *rowIndices = iVr.getValues();
const int numRowIndices = iVr.getSize();
const PetscInt *colIndices = iVc.getValues();
const int numColIndices = iVc.getSize();
PetscErrorCode ierr;
ierr = PetscLogEventBegin(DMMesh_updateOperator,0,0,0,0);CHKERRQ(ierr);
if (rowSieve.debug()) {
ierr = PetscPrintf(PETSC_COMM_SELF, "[%d]mat for element %d,%d\n", rowSieve.commRank(), rowE, colE);CHKERRQ(ierr);
for(int i = 0; i < numRowIndices; i++) {
ierr = PetscPrintf(PETSC_COMM_SELF, "[%d]mat row indices[%d] = %d\n", rowSieve.commRank(), i, rowIndices[i]);CHKERRQ(ierr);
}
for(int i = 0; i < numColIndices; i++) {
ierr = PetscPrintf(PETSC_COMM_SELF, "[%d]mat col indices[%d] = %d\n", rowSieve.commRank(), i, colIndices[i]);CHKERRQ(ierr);
}
for(int i = 0; i < numRowIndices; i++) {
ierr = PetscPrintf(PETSC_COMM_SELF, "[%d]", rowSieve.commRank());CHKERRQ(ierr);
for(int j = 0; j < numColIndices; j++) {
#ifdef PETSC_USE_COMPLEX
ierr = PetscPrintf(PETSC_COMM_SELF, " (%g,%g)", PetscRealPart(array[i*numColIndices+j]), PetscImaginaryPart(array[i*numColIndices+j]));CHKERRQ(ierr);
#else
ierr = PetscPrintf(PETSC_COMM_SELF, " %g", array[i*numColIndices+j]);CHKERRQ(ierr);
#endif
}
ierr = PetscPrintf(PETSC_COMM_SELF, "\n");CHKERRQ(ierr);
}
}
ierr = MatSetValues(A, numRowIndices, rowIndices, numColIndices, colIndices, array, mode);
if (ierr) {
PetscErrorCode ierr2;
ierr2 = PetscPrintf(PETSC_COMM_SELF, "[%d]ERROR in updateOperator: point %d,%d\n", rowSieve.commRank(), rowE, colE);CHKERRQ(ierr2);
for(int i = 0; i < numRowIndices; i++) {
ierr2 = PetscPrintf(PETSC_COMM_SELF, "[%d]mat row indices[%d] = %d\n", rowSieve.commRank(), i, rowIndices[i]);CHKERRQ(ierr2);
}
for(int i = 0; i < numColIndices; i++) {
ierr2 = PetscPrintf(PETSC_COMM_SELF, "[%d]mat col indices[%d] = %d\n", rowSieve.commRank(), i, colIndices[i]);CHKERRQ(ierr2);
}
CHKERRQ(ierr);
}
ierr = PetscLogEventEnd(DMMesh_updateOperator,0,0,0,0);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
#endif // __PETSCDMMESH_HH
|