/usr/lib/perl5/PDL/Stats/Kmeans.pm is in libpdl-stats-perl 0.6.2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 | #
# GENERATED WITH PDL::PP! Don't modify!
#
package PDL::Stats::Kmeans;
@EXPORT_OK = qw( random_cluster iv_cluster PDL::PP _random_cluster PDL::PP which_cluster PDL::PP assign PDL::PP centroid PDL::PP _d_p2l );
%EXPORT_TAGS = (Func=>[@EXPORT_OK]);
use PDL::Core;
use PDL::Exporter;
use DynaLoader;
@ISA = ( 'PDL::Exporter','DynaLoader' );
push @PDL::Core::PP, __PACKAGE__;
bootstrap PDL::Stats::Kmeans ;
use Carp;
use PDL::LiteF;
use PDL::NiceSlice;
use PDL::Stats::Basic;
$PDL::onlinedoc->scan(__FILE__) if $PDL::onlinedoc;
=head1 NAME
PDL::Stats::Kmeans -- classic k-means cluster analysis
=head1 DESCRIPTION
Assumes that we have data pdl dim [observation, variable] and the goal is to put observations into clusters based on their values on the variables. The terms "observation" and "variable" are quite arbitrary but serve as a reminder for "that which is being clustered" and "that which is used to cluster".
The terms FUNCTIONS and METHODS are arbitrarily used to refer to methods that are threadable and methods that are non-threadable, respectively.
=head1 SYNOPSIS
Implement a basic k-means procedure,
use PDL::LiteF;
use PDL::NiceSlice;
use PDL::Stats;
my ($data, $idv, $ido) = rtable( $file );
my ($cluster, $centroid, $ss_centroid, $cluster_last);
# start out with 8 random clusters
$cluster = random_cluster( $data->dim(0), 8 );
# iterate to minimize total ss
# stop when no more changes in cluster membership
do {
$cluster_last = $cluster;
($centroid, $ss_centroid) = $data->centroid( $cluster );
$cluster = $data->assign( $centroid );
}
while ( sum(abs($cluster - $cluster_last)) > 0 );
or, use the B<kmeans> function provided here,
my %k = $data->kmeans( \%opt );
print "$_\t$k{$_}\n" for (sort keys %k);
plot the clusters if there are only 2 vars in $data,
use PDL::Graphics::PGPLOT::Window;
my ($win, $c);
$win = pgwin 'xs';
$win->env($data( ,0)->minmax, $data( ,1)->minmax);
$win->points( $data->dice_axis(0,which($k{cluster}->(,$_)))->dog,
{COLOR=>++$c} )
for (0 .. $k{cluster}->dim(1)-1);
=cut
=head1 FUNCTIONS
=cut
=head2 random_cluster
=for sig
Signature: (byte [o]cluster(o,c); int obs=>o; int clu=>c)
=for ref
Creates masks for random mutually exclusive clusters. Accepts two parameters, num_obs and num_cluster. Extra parameter turns into extra dim in mask. May loop a long time if num_cluster approaches num_obs because empty cluster is not allowed.
=for usage
my $cluster = random_cluster( $num_obs, $num_cluster );
=cut
# can't be called on pdl
sub random_cluster {
my ($obs, $clu) = @_;
# extra param in @_ made into extra dim
my $cluster = zeroes @_;
do {
$cluster->inplace->_random_cluster();
} while (PDL::any $cluster->sumover == 0 );
return $cluster;
}
*_random_cluster = \&PDL::_random_cluster;
=head2 which_cluster
=for sig
Signature: (byte a(o,c); int [o]b(o))
Given cluster mask dim [obs x clu], returns the cluster index to which an obs belong.
Does not support overlapping clusters. If an obs has TRUE value for multiple clusters, the returned index is the first cluster the obs belongs to. If an obs has no TRUE value for any cluster, the return val is set to -1 or BAD if the input mask has badflag set.
Usage:
# create a cluster mask dim [obs x clu]
perldl> p $c_mask = iv_cluster [qw(a a b b c c)]
[
[1 1 0 0 0 0]
[0 0 1 1 0 0]
[0 0 0 0 1 1]
]
# get cluster membership list dim [obs]
perldl> p $ic = $c_mask->which_cluster
[0 0 1 1 2 2]
=for bad
which_cluster does handle bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*which_cluster = \&PDL::which_cluster;
=head2 assign
=for sig
Signature: (data(o,v); centroid(c,v); byte [o]cluster(o,c))
=for ref
Takes data pdl dim [obs x var] and centroid pdl dim [cluster x var] and returns mask dim [obs x cluster] to cluster membership. An obs is assigned to the first cluster with the smallest distance (ie sum squared error) to cluster centroid. With bad value, obs is assigned by smallest mean squared error across variables.
=for usage
perldl> $centroid = ones 2, 3
perldl> $centroid(0,) .= 0
perldl> p $centroid
[
[0 1]
[0 1]
[0 1]
]
perldl> $b = qsort( random 4, 3 )
perldl> p $b
[
[0.022774068 0.032513883 0.13890034 0.30942479]
[ 0.16943853 0.50262636 0.56251531 0.7152271]
[ 0.23964483 0.59932745 0.60967495 0.78452117]
]
# notice that 1st 3 obs in $b are on average closer to 0
# and last obs closer to 1
perldl> p $b->assign( $centroid )
[
[1 1 1 0] # cluster 0 membership
[0 0 0 1] # cluster 1 membership
]
=for bad
assign does handle bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*assign = \&PDL::assign;
=head2 centroid
=for sig
Signature: (data(o,v); cluster(o,c); float+ [o]m(c,v); float+ [o]ss(c,v))
=for ref
Takes data dim [obs x var] and mask dim [obs x cluster], returns mean and ss (ms when data contains bad values) dim [cluster x var], using data where mask == 1. Multiple cluster membership for an obs is okay. If a cluster is empty all means and ss are set to zero for that cluster.
=for usage
# data is 10 obs x 3 var
perldl> p $d = sequence 10, 3
[
[ 0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28 29]
]
# create two clusters by value on 1st var
perldl> p $a = $d( ,(0)) <= 5
[1 1 1 1 1 1 0 0 0 0]
perldl> p $b = $d( ,(0)) > 5
[0 0 0 0 0 0 1 1 1 1]
perldl> p $c = cat $a, $b
[
[1 1 1 1 1 1 0 0 0 0]
[0 0 0 0 0 0 1 1 1 1]
]
perldl> p $d->centroid($c)
# mean for 2 cluster x 3 var
[
[ 2.5 7.5]
[12.5 17.5]
[22.5 27.5]
]
# ss for 2 cluster x 3 var
[
[17.5 5]
[17.5 5]
[17.5 5]
]
=for bad
centroid does handle bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*centroid = \&PDL::centroid;
sub _scree_ind {
# use as scree cutoff the point with max distance to the line formed
# by the 1st and last points in $self
# it's a heuristic--whether we can get "good" results depends on
# the number of components in $self.
my ($self) = @_;
$self = $self->squeeze;
$self->ndims > 1 and
croak "1D pdl only please";
my $a = zeroes 2, $self->nelem;
$a((0), ) .= sequence $self->nelem;
$a((1), ) .= $self;
my $d = _d_point2line( $a, $a( ,(0)), $a( ,(-1)) );
return $d->maximum_ind;
}
sub _d_point2line {
my ($self, $p1, $p2) = @_;
for ($self, $p1, $p2) {
$_->dim(0) != 2 and
carp "point pdl dim(0) != 2";
}
return _d_p2l( $self->mv(0,-1)->dog, $p1->mv(0,-1)->dog, $p2->mv(0,-1)->dog );
}
*_d_p2l = \&PDL::_d_p2l;
=head2 kmeans
=for ref
Implements classic k-means cluster analysis. Given a number of observations with values on a set of variables, kmeans puts the observations into clusters that maximizes within-cluster similarity with respect to the variables. Tries several different random seeding and clustering in parallel. Stops when cluster assignment of the observations no longer changes. Returns the best result in terms of R2 from the random-seeding trials.
Instead of random seeding, kmeans also accepts manual seeding. This is done by providing a centroid to the function, in which case clustering will proceed from the centroid and there is no multiple tries.
There are two distinct advantages from seeding with a centroid compared to seeding with predefined cluster membership of a subset of the observations ie "seeds",
(1) a centroid could come from a previous study with a different set of observations;
(2) a centroid could even be "fictional", or in more proper parlance, an idealized prototype with respect to the actual data. For example, if there are 10 person's ratings of 1 to 5 on 4 movies, ie a ratings pdl of dim [10 obs x 4 var], providing a centroid like
[
[5 0 0 0]
[0 5 0 0]
[0 0 5 0]
[0 0 0 5]
]
will produce 4 clusters of people with each cluster favoring a different one of the 4 movies. Clusters from an idealized centroid may not give the best result in terms of R2, but they sure are a lot more interpretable.
If clustering has to be done from predefined clusters of seeds, simply calculate the centroid using the B<centroid> function and feed it to kmeans,
my ($centroid, $ss) = $rating($iseeds, )->centroid( $seeds_cluster );
my %k = $rating->kmeans( { CNTRD=>$centroid } );
kmeans supports bad value*.
=for options
Default options (case insensitive):
V => 1, # prints simple status
FULL => 0, # returns results for all seeding trials
CNTRD => PDL->null, # optional. pdl [clu x var]. disables next 3 opts
NTRY => 5, # num of random seeding trials
NSEED => 1000, # num of initial seeds, use NSEED up to max obs
NCLUS => 3, # num of clusters
=for usage
Usage:
# suppose we have 4 person's ratings on 5 movies
perldl> p $rating = ceil( random(4, 5) * 5 )
[
[3 2 2 3]
[2 4 5 4]
[5 3 2 3]
[3 3 1 5]
[4 3 3 2]
]
# we want to put the 4 persons into 2 groups
perldl> %k = $rating->kmeans( {NCLUS=>2} )
# by default prints back options used
# as well as info for all tries and iterations
CNTRD => Null
FULL => 0
NCLUS => 2
NSEED => 4
NTRY => 5
V => 1
ss total: 20.5
iter 0 R2 [0.024390244 0.024390244 0.26829268 0.4796748 0.4796748]
iter 1 R2 [0.46341463 0.46341463 0.4796748 0.4796748 0.4796748]
perldl> p "$_\t$k{$_}\n" for (sort keys %k)
R2 0.479674796747968
centroid # mean ratings for 2 group x 5 movies
[
[ 3 2.3333333]
[ 2 4.3333333]
[ 5 2.6666667]
[ 3 3]
[ 4 2.6666667]
]
cluster # 4 persons' membership in two groups
[
[1 0 0 0]
[0 1 1 1]
]
n [1 3] # cluster size
ss
[
[ 0 0.66666667]
[ 0 0.66666667]
[ 0 0.66666667]
[ 0 8]
[ 0 0.66666667]
]
Now, for the valiant, kmeans is threadable. Say you gathered 10 persons' ratings on 5 movies from 2 countries, so the data is dim [10,5,2], and you want to put the 10 persons from each country into 3 clusters, just specify NCLUS => [3,1], and there you have it. The key is for NCLUS to include $data->ndims - 1 numbers. The 1 in [3,1] turns into a dummy dim, so the 3-cluster operation is repeated on both countries. Similarly, when seeding, CNTRD needs to have ndims that at least match the data ndims. Extra dims in CNTRD will lead to threading (convenient if you want to try out different centroid locations, for example, but you will have to hand pick the best result). See stats_kmeans.t for examples w 3D and 4D data.
*With bad value, R2 is based on average of variances instead of sum squared error.
=cut
*kmeans = \&PDL::kmeans;
sub PDL::kmeans {
my ($self, $opt) = @_;
my %opt = (
V => 1, # prints simple status
FULL => 0, # returns results for all seeding trials
CNTRD => PDL->null, # optional. pdl [clu x var]. disables next 3 opts
NTRY => 5, # num of random seeding trials
NSEED => 1000, # num of initial seeds, use NSEED up to max obs
NCLUS => 3, # num of clusters
);
$opt and $opt{uc $_} = $opt->{$_} for (keys %$opt);
if (defined($opt{CNTRD}) and $opt{CNTRD}->nelem) {
$opt{NTRY} = 1;
$opt{NSEED} = $self->dim(0);
$opt{NCLUS} = $opt{CNTRD}->dim(0);
}
else {
$opt{NSEED} = pdl($self->dim(0), $opt{NSEED})->min;
}
$opt{V} and print STDERR "$_\t=> $opt{$_}\n" for (sort keys %opt);
my $ss_ms = $self->badflag? 'ms' : 'ss';
my $ss_total
= $self->badflag? $self->var->average : $self->ss->sumover;
$opt{V} and print STDERR "overall $ss_ms:\t$ss_total\n";
my ($centroid, $ss_cv, $R2, $clus_this, $clus_last);
# NTRY made into extra dim in $cluster for threading
my @nclus = (ref $opt{NCLUS} eq 'ARRAY')? @{$opt{NCLUS}} : ($opt{NCLUS});
$clus_this
= (defined($opt{CNTRD}) and $opt{CNTRD}->nelem) ?
$self->assign( $opt{CNTRD}->dummy(-1) ) # put dummy(-1) to match NTRY
: random_cluster($opt{NSEED}, @nclus, $opt{NTRY} )
;
($centroid, $ss_cv) = $self(0:$opt{NSEED} - 1, )->centroid( $clus_this );
# now obs in $clus_this matches $self
$clus_this = $self->assign( $centroid );
($centroid, $ss_cv) = $self->centroid( $clus_this );
my $iter = 0;
do {
$R2 = $self->badflag? 1 - $ss_cv->average->average / $ss_total
: 1 - $ss_cv->sumover->sumover / $ss_total
;
$opt{V} and print STDERR join(' ',('iter', $iter++, 'R2', $R2)) . "\n";
$clus_last = $clus_this;
$clus_this = $self->assign( $centroid );
($centroid, $ss_cv) = $self->centroid( $clus_this );
}
while ( any long(abs($clus_this - $clus_last))->sumover->sumover > 0 );
$opt{FULL} and
return (
centroid => PDL::squeeze( $centroid ),
cluster => PDL::squeeze( $clus_this ),
n => PDL::squeeze( $clus_this )->sumover,
R2 => PDL::squeeze( $R2 ),
$ss_ms => PDL::squeeze( $ss_cv ),
);
# xchg/mv(-1,0) leaves it as was if single dim--unlike transpose
my $i_best = $R2->mv(-1,0)->maximum_ind;
$R2->getndims == 1 and
return (
centroid => $centroid->dice_axis(-1,$i_best)->sever->squeeze,
cluster => $clus_this->dice_axis(-1,$i_best)->sever->squeeze,
n => $clus_this->dice_axis(-1,$i_best)->sever->squeeze->sumover,
R2 => $R2->dice_axis(-1,$i_best)->sever->squeeze,
$ss_ms => $ss_cv->dice_axis(-1,$i_best)->sever->squeeze,
);
# now for threading beyond 2D data
# can't believe i'm using a perl loop :P
$i_best = $i_best->flat->sever;
my @i_best = map { $opt{NTRY} * $_ + $i_best(($_)) }
0 .. $i_best->nelem - 1;
my @shapes;
for ($centroid, $clus_this, $R2) {
my @dims = $_->dims;
pop @dims;
push @shapes, \@dims;
}
$clus_this = $clus_this->mv(-1,2)->clump(2..$clus_this->ndims-1)->dice_axis(2,\@i_best)->reshape( @{ $shapes[1] } )->sever,
return (
centroid =>
$centroid->mv(-1,2)->clump(2..$centroid->ndims-1)->dice_axis(2,\@i_best)->reshape( @{ $shapes[0] } )->sever,
cluster => $clus_this,
n => $clus_this->sumover,
R2 =>
$R2->mv(-1,0)->clump(0..$R2->ndims-1)->dice_axis(0,\@i_best)->reshape( @{ $shapes[2] } )->sever,
$ss_ms =>
$ss_cv->mv(-1,2)->clump(2..$ss_cv->ndims-1)->dice_axis(2,\@i_best)->reshape( @{ $shapes[0] } )->sever,
);
}
=head1 METHODS
=head2 iv_cluster
=for ref
Turns an independent variable into a cluster pdl. Returns cluster pdl and level-to-pdl_index mapping in list context and cluster pdl only in scalar context.
This is the method used for mean and var in anova. The difference between iv_cluster and dummy_code is that iv_cluster returns pdl dim [obs x level] whereas dummy_code returns pdl dim [obs x (level - 1)].
=for usage
Usage:
perldl> @bake = qw( y y y n n n )
# accepts @ ref or 1d pdl
perldl> p $bake = iv_cluster( \@bake )
[
[1 1 1 0 0 0]
[0 0 0 1 1 1]
]
perldl> p $rating = sequence 6
[0 1 2 3 4 5]
perldl> p $rating->centroid( $bake )
# mean for each iv level
[
[1 4]
]
# ss
[
[2 2]
]
=cut
*iv_cluster = \&PDL::iv_cluster;
sub PDL::iv_cluster {
my ($var_ref) = @_;
# pdl->uniq puts elem in order. so instead list it to maintain old order
if (ref $var_ref eq 'PDL') {
$var_ref = $var_ref->squeeze;
$var_ref->getndims > 1 and
croak "multidim pdl passed for single var!";
$var_ref = [ list $var_ref ];
}
my ($var, $map_ref) = PDL::Stats::Basic::_array_to_pdl( $var_ref );
my $var_a = zeroes byte, $var->nelem, $var->max + 1;
for my $l (0 .. $var->max) {
my $v = $var_a( ,$l);
$v->index( which $var == $l ) .= 1;
}
return wantarray? ($var_a, $map_ref) : $var_a;
}
=head2 pca_cluster
Assgin variables to components ie clusters based on pca loadings or scores. One way to seed kmeans (see Ding & He, 2004, and Su & Dy, 2004 for other ways of using pca with kmeans). Variables are assigned to their most associated component. Note that some components may not have any variable that is most associated with them, so the returned number of clusters may be smaller than NCOMP.
Default options (case insensitive):
V => 1,
ABS => 1, # high pos and neg loadings on a comp in same cluster
NCOMP => undef, # max number of components to consider. determined by
# scree plot black magic if not specified
PLOT => 1, # pca scree plot with cutoff at NCOMP
Usage:
# say we need to cluster a group of documents
# $data is pdl dim [word x doc]
($data, $idd, $idw) = get_data 'doc_word_info.txt';
perldl> %p = $data->pca;
# $cluster is pdl mask dim [doc x ncomp]
perldl> $cluster = $p{loading}->pca_cluster;
# pca clusters var while kmeans clusters obs. hence transpose
perldl> ($m, $ss) = $data->transpose->centroid( $cluster );
perldl> %k = $data->transpose->kmeans( { cntrd=>$m } );
# take a look at cluster 0 doc ids
perldl> p join("\n", @$idd[ list which $k{cluster}->( ,0) ]);
=cut
*pca_cluster = \&PDL::pca_cluster;
sub PDL::pca_cluster {
my ($self, $opt) = @_;
my %opt = (
V => 1,
ABS => 1, # high pos and neg loadings on a comp in same cluster
NCOMP => undef, # max number of components to consider. determined by
# scree plot black magic if not specified
PLOT => 1, # pca scree plot with cutoff at NCOMP
);
$opt and $opt{uc $_} = $opt->{$_} for (keys %$opt);
my $var = sumover($self ** 2) / $self->dim(0);
if (!$opt{NCOMP}) {
# here's the black magic part
my $comps = ($self->dim(1) > 300)? int($self->dim(1) * .1)
: pdl($self->dim(1), 30)->min
;
$var = $var(0:$comps-1)->sever;
$opt{NCOMP} = _scree_ind( $var );
}
$opt{PLOT} and do {
require PDL::Stats::GLM;
$var->plot_scree( {NCOMP=>$var->dim(0), CUT=>$opt{NCOMP}} );
};
my $c = $self->( ,0:$opt{NCOMP}-1)->transpose->abs->maximum_ind;
if ($opt{ABS}) {
$c = $c->iv_cluster;
}
else {
my @c = map { ($self->($_,$c($_)) >= 0)? $c($_)*2 : $c($_)*2 + 1 }
( 0 .. $c->dim(0)-1 );
$c = iv_cluster( \@c );
}
$opt{V} and print STDERR "cluster membership mask as " . $c->info . "\n";
return $c;
}
=head1 REFERENCES
Ding, C., & He, X. (2004). K-means clustering via principal component analysis. Proceedings of the 21st International Conference on Machine Learning, 69, 29.
Su, T., & Dy, J. (2004). A deterministic method for initializing K-means clustering. 16th IEEE International Conference on Tools with Artificial Intelligence, 784-786.
Romesburg, H.C. (1984). Cluster Analysis for Researchers. NC: Lulu Press.
Wikipedia (retrieved June, 2009). K-means clustering. http://en.wikipedia.org/wiki/K-means_algorithm
=head1 AUTHOR
Copyright (C) 2009 Maggie J. Xiong <maggiexyz users.sourceforge.net>
All rights reserved. There is no warranty. You are allowed to redistribute this software / documentation as described in the file COPYING in the PDL distribution.
=cut
;
# Exit with OK status
1;
|