This file is indexed.

/usr/lib/perl5/PDL/LinearAlgebra/Special.pm is in libpdl-linearalgebra-perl 0.08-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
package PDL::LinearAlgebra::Special;
use PDL::Core;
use PDL::NiceSlice;
use PDL::Slices;
use PDL::Basic qw (sequence xvals yvals);
use PDL::MatrixOps qw (identity);
use PDL::LinearAlgebra qw ( );
use PDL::LinearAlgebra::Real;
use PDL::LinearAlgebra::Complex;
use PDL::Exporter;
no warnings 'uninitialized';
@EXPORT_OK  = qw( mhilb mvander mpart mhankel mtoeplitz mtri mpascal mcompanion);
%EXPORT_TAGS = (Func=>[@EXPORT_OK]);

our $VERSION = '0.08';
$VERSION = eval $VERSION;

our @ISA = ( 'PDL::Exporter');

use strict;

=encoding Latin-1

=head1 NAME

PDL::LinearAlgebra::Special - Special matrices for PDL

=head1 SYNOPSIS

 use PDL::LinearAlgebra::Mtype;

 $a = mhilb(5,5);

=head1 DESCRIPTION

This module provides some constructors of well known matrices.

=head1 FUNCTIONS

=head2 mhilb

=for ref

Contruct Hilbert matrix from specifications list or template piddle

=for usage

 PDL(Hilbert)  = mpart(PDL(template) | ARRAY(specification))

=for example

 my $hilb   = mhilb(float,5,5);

=cut

sub mhilb { 
	if(ref($_[0]) && ref($_[0]) eq 'PDL'){
		 my $pdl = shift;
		 $pdl->mhilb(@_);
	}
	else{
		PDL->mhilb(@_);
	}
}
sub PDL::mhilb {
	my $class = shift;
	my $pdl1 = scalar(@_)? $class->new_from_specification(@_) : $class->copy;
	my $pdl2 = scalar(@_)? $class->new_from_specification(@_) : $class->copy;
	1 /  ($pdl1->inplace->axisvals +  $pdl2->inplace->axisvals(1) + 1);
}

=head2 mtri

=for ref

Return zeroed matrix with upper or lower triangular part from another matrix.
Return trapezoid matrix if entry matrix is not square.
Supports threading.
Uses L<tricpy|PDL::LinearAlgebra::Real/tricpy> or L<tricpy|PDL::LinearAlgebra::Complex/ctricpy>.

=for usage

 PDL = mtri(PDL, SCALAR)
 SCALAR : UPPER = 0 | LOWER = 1, default = 0

=for example

 my $a = random(10,10);
 my $b = mtri($a, 0);

=cut

sub mtri{
	my $m = shift;
	$m->mtri(@_);
}

sub PDL::mtri {
	my ($m, $upper) = @_;
	my(@dims) = $m->dims;

	barf("mtri requires a 2-D matrix")
		unless( @dims >= 2);

	my $b = PDL::zeroes $m;
	$m->tricpy($upper, $b);
	$b;
}

sub PDL::Complex::mtri {
	my ($m, $upper) = @_;
	my(@dims) = $m->dims;

	barf("mtri requires a 2-D matrix")
		unless( @dims >= 3);

	my $b = PDL::zeroes $m;
	$m->ctricpy($upper, $b);
	$b;
}

=head2 mvander

Return (primal) Vandermonde matrix from vector.

=for ref

mvander(M,P) is a rectangular version of mvander(P) with M Columns.

=cut

sub mvander($;$) { 
	my $exp =  @_ == 2 ? sequence(shift) : sequence($_[0]->dim(-1));
	$_[0]->dummy(-2)**$exp;	
}

=head2 mpart

=for ref

Return antisymmetric and symmetric part of a real or complex square matrix.

=for usage

 ( PDL(antisymmetric), PDL(symmetric) )  = mpart(PDL, SCALAR(conj))
 conj : if true Return AntiHermitian, Hermitian part.

=for example

 my $a = random(10,10);
 my ( $antisymmetric, $symmetric )  = mpart($a);

=cut

*mpart = \&PDL::mpart;

sub PDL::mpart {
	my ($m, $conj) = @_;
	my @dims = $m->dims;

	barf("mpart requires a 2-D square matrix")
		unless( ((@dims == 2) || (@dims == 3)) && $dims[-1] == $dims[-2] );

	# antisymmetric and symmetric part
        return (0.5* ($m - $m->t($conj))),(0.5* ($m + $m->t($conj)));

}

=head2 mhankel

=for ref

Return Hankel matrix also known as persymmetric matrix.
For complex, needs object of type PDL::Complex.

=for usage

 mhankel(c,r), where c and r are vectors, returns matrix whose first column 
 is c and whose last row is r. The last element of c prevails.
 mhankel(c) returns matrix whith element below skew diagonal (anti-diagonal) equals
 to zero. If c is a scalar number, make it from sequence beginning at one.

=for ref

The elements are:

	H (i,j) = c (i+j),  i+j+1 <= m;
	H (i,j) = r (i+j-m+1),  otherwise
	where m is the size of the vector.

If c is a scalar number, it's determinant can be computed by:

			floor(n/2)    n
	Det(H(n)) = (-1)      *      n

=cut

*mhankel = \&PDL::mhankel;

sub PDL::mhankel {
	my ($m, $n) = @_;
	$m = xvals($m) + 1 unless ref($m);
	my @dims = $m->dims;

	$n = PDL::zeroes($m) unless defined $n;
	my $index = xvals($dims[-1]);
	$index = $index->dummy(0) + $index;
	if (@dims == 2){
		$m = mstack($m,$n(,1:));
		$n = $m->re->index($index)->r2C;
		$n((1),).= $m((1),)->index($index);
		return $n;
	}
	else{
		$m = augment($m,$n(1:));
		return $m->index($index)->sever;
	}
}

=head2 mtoeplitz

=for ref

Return toeplitz matrix.
For complex need object of type PDL::Complex.

=for usage

 mtoeplitz(c,r), where c and r are vectors, returns matrix whose first column 
 is c and whose last row is r. The last element of c prevails.
 mtoeplitz(c) returns symmetric matrix.

=cut

*mtoeplitz = \&PDL::mtoeplitz;
sub PDL::mtoeplitz {
	my ($m, $n) = @_;
	my($res, $min);
	
	$n = $m->copy unless defined $n;
	my $mdim= $m->dim(-1);
	my $ndim= $n->dim(-1);
	$res = PDL::new_from_specification('PDL',$m->type,$ndim,$mdim);

	$ndim--;
	$min = $mdim <= $ndim ? $mdim : $ndim;
	if(UNIVERSAL::isa($m,'PDL::Complex')){
		$res= $res->r2C;
		for(1..$min){
			$res(,$_:,($_-1)) .= $n(,1:$ndim-$_+1);
		}
		$mdim--;
		$min = $mdim < $ndim ? $mdim : $ndim;
		for(0..$min){
			$res(,($_),$_:) .= $m(,:$mdim-$_);
		}	
	}
	else{
		for(1..$min){
			$res($_:,($_-1)) .= $n(1:$ndim-$_+1);
		}
		$mdim--;
		$min = $mdim < $ndim ? $mdim : $ndim;
		for(0..$min){
			$res(($_),$_:) .= $m(:$mdim-$_);
		}
	}
	return $res;

}

=head2 mpascal

Return Pascal matrix (from Pascal's triangle) of order N.

=for usage

 mpascal(N,uplo).
 uplo: 
 	0 => upper triangular (Cholesky factor),
 	1 => lower triangular (Cholesky factor),
 	2 => symmetric.

=for ref

This matrix is obtained by writing Pascal's triangle (whose elements are binomial
coefficients from index and/or index sum) as a matrix and truncating appropriately.
The symmetric Pascal is positive definite, it's inverse has integer entries.

Their determinants are all equal to one and:

	S = L * U
	where S, L, U are symmetric, lower and upper pascal matrix respectively.


=cut

*mpascal = \&PDL::mpascal;
sub PDL::mpascal {
	my ($m, $n) = @_;
	my ($mat, $error, $warning);
	
	$mat = eval{
		require PDL::Stat::Distributions;
		$mat = xvals($m);
		if ($n > 1){
			return PDL::Stat::Distributions::choose($mat + $mat->dummy(0),$mat);		
		}
		else{
			$mat = PDL::Stat::Distributions::choose($mat,$mat->dummy(0));
			return $n ? $mat->xchg(0,1)->mtri(1) : $mat->mtri;
		}
	};
	if ($@){
		$mat = eval{
			require PDL::GSLSF::GAMMA;
			if ($n > 1){
				$mat = xvals($m);
				return PDL::GSLSF::GAMMA::gsl_sf_choose($mat + $mat->dummy(0),$mat);					
			}else{
				$mat = xvals($m, $m);
				return (PDL::GSLSF::GAMMA::gsl_sf_choose($mat->tritosym,$mat->xchg(0,1)->tritosym))[0]->mtri($n);
			}
		};
		if ($@){
			warn("mpascal: can't compute binomial coefficients with neither".
				" PDL::Stat::Distributions nor PDL::GSLSF::GAMMA\n");
			return;
		}
	}
	$mat;
}

=head2 mcompanion

Return a matrix with characteristic polynomial equal to p if p is monic.
If p is not monic the characteristic polynomial of A is equal to p/c where c is the 
coefficient of largest degree in p (here p is in descending order).

=for usage

 mcompanion(PDL(p),SCALAR(charpol)).
 charpol: 
 	0 => first row is -P(1:n-1)/P(0),
 	1 => last column is -P(1:n-1)/P(0),

=cut

*mcompanion = \&PDL::mcompanion;
sub PDL::mcompanion{
	my ($m, $char) = @_;
	my( @dims, $dim, $ret);
	$m = $m->{PDL} if (UNIVERSAL::isa($m, 'HASH') && exists $m->{PDL});
	@dims = $m->dims;
	$dim = $dims[-1] - 1;
	if (@dims == 2){
		if($char){
			$ret = (-$m->slice(",1:$dim")->dummy(2)/$m->slice(",0"))->cmstack(identity($dim-1)->r2C->mstack(zeroes(2,$dim-1)->dummy(1)));
		}
		else{
			#zeroes($dim-1)->dummy(0)->augment(identity($dim-1))->mstack(-$m->slice("$dim:1")->dummy(-1)/$m->slice("(0)"));
			$ret = zeroes($dim-1)->r2C->dummy(2)->cmstack(identity($dim-1)->r2C)->mstack(-$m->slice(",$dim:1")->dummy(1)/$m->slice(",(0)"));
		}	
	}
	else{
		if($char){
			$ret = (-$m->slice("1:$dim")->dummy(-1)/$m->slice("0"))->mstack(identity($dim-1)->augment(zeroes($dim-1)->dummy(0)));
		}
		else{
			#zeroes($dim-1)->dummy(0)->augment(identity($dim-1))->mstack(-$m->slice("$dim:1")->dummy(-1)/$m->slice("(0)"));
			$ret = zeroes($dim-1)->dummy(-1)->mstack(identity($dim-1))->augment(-$m->slice("$dim:1")->dummy(0)/$m->slice("(0)"));
		}
	}
	$ret->sever;
}


=head1 AUTHOR

Copyright (C) Grégory Vanuxem 2005-2007.

This library is free software; you can redistribute it and/or modify
it under the terms of the artistic license as specified in the Artistic
file.

=cut

# Exit with OK status

1;