/usr/include/openvdb/util/MapsUtil.h is in libopenvdb-dev 2.1.0-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2013 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file MapsUtil.h
#ifndef OPENVDB_UTIL_MAPSUTIL_HAS_BEEN_INCLUDED
#define OPENVDB_UTIL_MAPSUTIL_HAS_BEEN_INCLUDED
#include <openvdb/math/Maps.h>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace util {
// Utility methods for calculating bounding boxes
/// @brief Calculate an axis-aligned bounding box in the given map's domain
/// (e.g., index space) from an axis-aligned bounding box in its range
/// (e.g., world space)
template<typename MapType>
inline void
calculateBounds(const MapType& map, const BBoxd& in, BBoxd& out)
{
const Vec3d& min = in.min();
const Vec3d& max = in.max();
// the pre-image of the 8 corners of the box
Vec3d corners[8];
corners[0] = in.min();;
corners[1] = Vec3d(min(0), min(1), min(2));
corners[2] = Vec3d(max(0), max(1), min(2));
corners[3] = Vec3d(min(0), max(1), min(2));
corners[4] = Vec3d(min(0), min(1), max(2));
corners[5] = Vec3d(max(0), min(1), max(2));
corners[6] = max;
corners[7] = Vec3d(min(0), max(1), max(2));
Vec3d pre_image;
Vec3d& out_min = out.min();
Vec3d& out_max = out.max();
out_min = map.applyInverseMap(corners[0]);
out_max = min;
for (int i = 1; i < 8; ++i) {
pre_image = map.applyInverseMap(corners[i]);
for (int j = 0; j < 3; ++j) {
out_min(j) = std::min( out_min(j), pre_image(j));
out_max(j) = std::max( out_max(j), pre_image(j));
}
}
}
/// @brief Calculate an axis-aligned bounding box in the given map's domain
/// from a spherical bounding box in its range.
template<typename MapType>
inline void
calculateBounds(const MapType& map, const Vec3d& center, const Real radius, BBoxd& out)
{
// On return, out gives a bounding box in continuous index space
// that encloses the sphere.
//
// the image of a sphere under the inverse of the linearMap will be an ellipsoid.
if (math::is_linear<MapType>::value) {
// I want to find extrema for three functions f(x', y', z') = x', or = y', or = z'
// with the constraint that g = (x-xo)^2 + (y-yo)^2 + (z-zo)^2 = r^2.
// Where the point x,y,z is the image of x',y',z'
// Solve: \lambda Grad(g) = Grad(f) and g = r^2.
// Note: here (x,y,z) is the image of (x',y',z'), and the gradient
// is w.r.t the (') space.
//
// This can be solved exactly: e_a^T (x' -xo') =\pm r\sqrt(e_a^T J^(-1)J^(-T)e_a)
// where e_a is one of the three unit vectors. - djh.
/// find the image of the center of the sphere
Vec3d center_pre_image = map.applyInverseMap(center);
std::vector<Vec3d> coordinate_units;
coordinate_units.push_back(Vec3d(1,0,0));
coordinate_units.push_back(Vec3d(0,1,0));
coordinate_units.push_back(Vec3d(0,0,1));
Vec3d& out_min = out.min();
Vec3d& out_max = out.max();
for (int direction = 0; direction < 3; ++direction) {
Vec3d temp = map.applyIJT(coordinate_units[direction]);
double offset =
radius * sqrt(temp.x()*temp.x() + temp.y()*temp.y() + temp.z()*temp.z());
out_min(direction) = center_pre_image(direction) - offset;
out_max(direction) = center_pre_image(direction) + offset;
}
} else {
// This is some unknown map type. In this case, we form an axis-aligned
// bounding box for the sphere in world space and find the pre-images of
// the corners in index space. From these corners we compute an axis-aligned
// bounding box in index space.
BBoxd bounding_box(center - radius*Vec3d(1,1,1), center + radius*Vec3d(1,1,1));
calculateBounds<MapType>(map, bounding_box, out);
}
}
namespace { // anonymous namespace for this helper function
/// @brief Find the intersection of a line passing through the point
/// \f$ (x=0, z=-1/g)\f$ with the circle \f$ (x-xo)^2 + (z-zo)^2 = r^2 \f$
/// at a point tangent to the circle.
/// @return 0 if the focal point (0, -1/g) is inside the circle,
/// 1 if the focal point touches the circle, or 2 when both points are found.
inline int
findTangentPoints(const double g, const double xo, const double zo,
const double r, double& xp, double& zp, double& xm, double& zm)
{
double x2 = xo * xo;
double r2 = r * r;
double xd = g * xo;
double xd2 = xd*xd;
double zd = g * zo + 1.;
double zd2 = zd*zd;
double rd2 = r2*g*g;
double distA = xd2 + zd2;
double distB = distA - rd2;
if (distB > 0) {
double discriminate = sqrt(distB);
xp = xo - xo*rd2/distA + r * zd *discriminate / distA;
xm = xo - xo*rd2/distA - r * zd *discriminate / distA;
zp = (zo*zd2 + zd*g*(x2 - r2) - xo*xo*g - r*xd*discriminate) / distA;
zm = (zo*zd2 + zd*g*(x2 - r2) - xo*xo*g + r*xd*discriminate) / distA;
return 2;
} if (0 >= distB && distB >= -1e-9) {
// the circle touches the focal point (x=0, z = -1/g)
xp = 0; xm = 0;
zp = -1/g; zm = -1/g;
return 1;
}
return 0;
}
} // end anonymous namespace
/// @brief Calculate an axis-aligned bounding box in index space
/// from a spherical bounding box in world space.
/// @note This specialization is optimized for a frustum map
template<>
inline void
calculateBounds<math::NonlinearFrustumMap>(const math::NonlinearFrustumMap& frustum,
const Vec3d& center, const Real radius, BBoxd& out)
{
// The frustum is a nonlinear map followed by a uniform scale, rotation, translation.
// First we invert the translation, rotation and scale to find the spherical pre-image
// of the sphere in "local" coordinates where the frustum is aligned with the near plane
// on the z=0 plane and the "camera" is located at (x=0, y=0, z=-1/g).
// check that the internal map has no shear.
const math::AffineMap& secondMap = frustum.secondMap();
// test if the linear part has shear or non-uniform scaling
if (!frustum.hasSimpleAffine()) {
// In this case, we form an axis-aligned bounding box for sphere in world space
// and find the pre_images of the corners in voxel space. From these corners we
// compute an axis-algined bounding box in voxel-spae
BBoxd bounding_box(center - radius*Vec3d(1,1,1), center + radius*Vec3d(1,1,1));
calculateBounds<math::NonlinearFrustumMap>(frustum, bounding_box, out);
return;
}
// for convenience
Vec3d& out_min = out.min();
Vec3d& out_max = out.max();
Vec3d centerLS = secondMap.applyInverseMap(center);
Vec3d voxelSize = secondMap.voxelSize();
// all the voxels have the same size since we know this is a simple affine map
double radiusLS = radius / voxelSize(0);
double gamma = frustum.getGamma();
double xp;
double zp;
double xm;
double zm;
int soln_number;
// the bounding box in index space for the points in the frustum
const BBoxd& bbox = frustum.getBBox();
// initialize min and max
const double x_min = bbox.min().x();
const double y_min = bbox.min().y();
const double z_min = bbox.min().z();
const double x_max = bbox.max().x();
const double y_max = bbox.max().y();
const double z_max = bbox.max().z();
out_min.x() = x_min;
out_max.x() = x_max;
out_min.y() = y_min;
out_max.y() = y_max;
Vec3d extreme;
Vec3d extreme2;
Vec3d pre_image;
// find the x-range
soln_number = findTangentPoints(gamma, centerLS.x(), centerLS.z(), radiusLS, xp, zp, xm, zm);
if (soln_number == 2) {
extreme.x() = xp;
extreme.y() = centerLS.y();
extreme.z() = zp;
// location in world space of the tangent point
extreme2 = secondMap.applyMap(extreme);
// convert back to voxel space
pre_image = frustum.applyInverseMap(extreme2);
out_max.x() = std::max(x_min, std::min(x_max, pre_image.x()));
const Vec3d tmpPlus = extreme2;
extreme.x() = xm;
extreme.y() = centerLS.y();
extreme.z() = zm;
// location in world space of the tangent point
extreme2 = secondMap.applyMap(extreme);
const Vec3d tmpMinus = extreme2;
// convert back to voxel space
pre_image = frustum.applyInverseMap(extreme2);
out_min.x() = std::max(x_min, std::min(x_max, pre_image.x()));
} else if (soln_number == 1) {
// the circle was tangent at the focal point
} else if (soln_number == 0) {
// the focal point was inside the circle
}
// find the y-range
soln_number = findTangentPoints(gamma, centerLS.y(), centerLS.z(), radiusLS, xp, zp, xm, zm);
if (soln_number == 2) {
extreme.x() = centerLS.x();
extreme.y() = xp;
extreme.z() = zp;
// location in world space of the tangent point
extreme2 = secondMap.applyMap(extreme);
// convert back to voxel space
pre_image = frustum.applyInverseMap(extreme2);
out_max.y() = std::max(y_min, std::min(y_max, pre_image.y()));
const Vec3d tmpPlus = extreme2;
extreme.x() = centerLS.x();
extreme.y() = xm;
extreme.z() = zm;
extreme2 = secondMap.applyMap(extreme);
const Vec3d tmpMinus = extreme2;
// convert back to voxel space
pre_image = frustum.applyInverseMap(extreme2);
out_min.y() = std::max(y_min, std::min(y_max, pre_image.y()));
} else if (soln_number == 1) {
// the circle was tangent at the focal point
} else if (soln_number == 0) {
// the focal point was inside the circle
}
// the near and far
// the closest point. The front of the frustum is at 0 in index space
double near_dist = std::max(centerLS.z() - radiusLS, 0.);
// the farthest point. The back of the frustum is at mDepth in index space
double far_dist = std::min(centerLS.z() + radiusLS, frustum.getDepth() );
Vec3d near_point(0.f, 0.f, near_dist);
Vec3d far_point(0.f, 0.f, far_dist);
out_min.z() = std::max(z_min, frustum.applyInverseMap(secondMap.applyMap(near_point)).z());
out_max.z() = std::min(z_max, frustum.applyInverseMap(secondMap.applyMap(far_point)).z());
}
} // namespace util
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_UTIL_MAPSUTIL_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2013 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|