This file is indexed.

/usr/include/openvdb/tree/LeafNode.h is in libopenvdb-dev 2.1.0-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2013 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////

#ifndef OPENVDB_TREE_LEAFNODE_HAS_BEEN_INCLUDED
#define OPENVDB_TREE_LEAFNODE_HAS_BEEN_INCLUDED

#include <iostream>
#include <algorithm> // for std::swap
#include <cstring> // for std::memcpy()
#include <boost/shared_ptr.hpp>
#include <boost/static_assert.hpp>
#include <boost/bind.hpp>
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#include <openvdb/Types.h>
#include <openvdb/util/NodeMasks.h>
#include <openvdb/io/Compression.h> // for io::readData(), etc.
#include "Iterator.h"
#include "Util.h"


class TestLeaf;
template<typename> class TestLeafIO;

namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tree {

/// @brief Templated block class to hold specific data types and a fixed
/// number of values determined by Log2Dim. The actual coordinate
/// dimension of the block is 2^Log2Dim, i.e. Log2Dim=3 corresponds to
/// a LeafNode that spans a 8^3 block.
template<typename T, Index Log2Dim>
class LeafNode
{
public:
    typedef T                            ValueType;
    typedef LeafNode<ValueType, Log2Dim> LeafNodeType;
    typedef boost::shared_ptr<LeafNode>  Ptr;
    typedef util::NodeMask<Log2Dim>      NodeMaskType;

    static const Index
        LOG2DIM     = Log2Dim,      // needed by parent nodes
        TOTAL       = Log2Dim,      // needed by parent nodes
        DIM         = 1 << TOTAL,   // dimension along one coordinate direction
        NUM_VALUES  = 1 << 3 * Log2Dim,
        NUM_VOXELS  = NUM_VALUES,   // total number of voxels represented by this node
        SIZE        = NUM_VALUES,
        LEVEL       = 0;            // level 0 = leaf

    /// @brief ValueConverter<T>::Type is the type of a LeafNode having the same
    /// child hierarchy and dimensions as this node but a different value type, T.
    template<typename OtherValueType>
    struct ValueConverter {
        typedef LeafNode<OtherValueType, Log2Dim> Type;
    };

    /// @brief Stores the actual values in the LeafNode. Its dimension
    /// it fixed to 2^(3*Log2Dim)
    class Buffer
    {
    public:
        /// @brief Empty default constructor
        Buffer(): mData(new ValueType[SIZE]) {}
        /// @brief Constructs a buffer populated with the specified value
        Buffer(const ValueType& val) :  mData(new ValueType[SIZE]) { this->fill(val); }
        /// @brief Copy constructor
        Buffer(const Buffer& other)   : mData(new ValueType[SIZE]) { *this = other; }
        /// @brief Destructor
        ~Buffer() { delete [] mData; }
        /// @brief Populates the buffer with a constant value
        void fill(const ValueType& val)
        {
            ValueType* target = mData;
            Index n = SIZE;
            while (n--) *target++ = val;
        }
        /// Return a const reference to the i'th element of the Buffer
        const ValueType& getValue(Index i) const { assert(i < SIZE); return mData[i]; }
        /// Return a const reference to the i'th element of the Buffer
        const ValueType& operator[](Index i) const { return this->getValue(i); }
        /// Set the i'th value of the Buffer to the specified value
        void setValue(Index i, const ValueType& val) { assert(i < SIZE); mData[i] = val; }
        /// Assigns the values in the other Buffer to this Buffer
        Buffer& operator=(const Buffer& other)
        {
            ValueType* target = mData;
            const ValueType* source = other.mData;
            Index n = SIZE;
            while (n--) *target++ = *source++;
            return *this;
        }
        /// Return true if the values in the other buffer exactly
        /// equates the values in this buffer
        bool operator==(const Buffer& other) const
        {
            const ValueType* target = mData;
            const ValueType* source = other.mData;
            Index n = SIZE;
            while (n && math::isExactlyEqual(*target++, *source++)) --n;
            return n == 0;
        }
        /// Return true if any of the values in the other buffer do
        /// not exactly equate the values in this buffer
        bool operator!=(const Buffer& other) const { return !(other == *this); }
        /// Replace the values in this Buffer with the values in the other Buffer
        void swap(Buffer& other)
        {
            ValueType* tmp = mData;
            mData = other.mData;
            other.mData = tmp;
        }
        /// Return the memory-footprint of this Buffer in units of bytes
        static Index memUsage() { return sizeof(ValueType*) + SIZE * sizeof(ValueType); }
        /// Return the number of values represented in this Buffer
        static Index size() { return SIZE; }

    private:
        /// This direct access method is private since it makes
        /// assumptions about the implementations of the memory layout.
        ValueType& operator[](Index i) { assert(i < SIZE); return mData[i]; }

        friend class ::TestLeaf;
        // Allow the parent LeafNode to access this Buffer's data pointer.
        friend class LeafNode;

        ValueType* mData;
    }; // class Buffer


    /// Default constructor
    LeafNode();

    /// @brief Constructor
    /// @param coords  the grid index coordinates of a voxel
    /// @param value   a value with which to fill the buffer
    /// @param active  the active state to which to initialize all voxels
    explicit LeafNode(const Coord& coords,
                      const ValueType& value = zeroVal<ValueType>(),
                      bool active = false);

    /// Deep copy constructor
    LeafNode(const LeafNode&);

    /// Topology copy constructor
    template<typename OtherValueType>
    LeafNode(const LeafNode<OtherValueType, Log2Dim>& other,
             const ValueType& offValue, const ValueType& onValue, TopologyCopy);

    /// Topology copy constructor
    template<typename OtherValueType>
    LeafNode(const LeafNode<OtherValueType, Log2Dim>& other,
             const ValueType& background, TopologyCopy);

    /// Destructor.
    ~LeafNode();

    //
    // Statistics
    //
    /// Return log2 of the dimension of this LeafNode, e.g. 3 if dimensions are 8^3
    static Index log2dim() { return Log2Dim; }
    /// Return the number of voxels in each coordinate dimension.
    static Index dim() { return DIM; }
    /// Return the total number of voxels represented by this LeafNode
    static Index size() { return SIZE; }
    /// Return the total number of voxels represented by this LeafNode
    static Index numValues() { return SIZE; }
    /// Return the level of this node, which by definition is zero for LeafNodes
    static Index getLevel() { return LEVEL; }
    /// Append the Log2Dim of this LeafNode to the specified vector
    static void getNodeLog2Dims(std::vector<Index>& dims) { dims.push_back(Log2Dim); }
    /// Return the dimension of child nodes of this LeafNode, which is one for voxels.
    static Index getChildDim() { return 1; }
    /// Return the leaf count for this node, which is one.
    static Index32 leafCount() { return 1; }
    /// Return the non-leaf count for this node, which is zero.
    static Index32 nonLeafCount() { return 0; }

    /// Return the number of voxels marked On.
    Index64 onVoxelCount() const { return mValueMask.countOn(); }
    /// Return the number of voxels marked Off.
    Index64 offVoxelCount() const { return mValueMask.countOff(); }
    Index64 onLeafVoxelCount() const { return onVoxelCount(); }
    Index64 offLeafVoxelCount() const { return offVoxelCount(); }
    static Index64 onTileCount()  { return 0; }
    static Index64 offTileCount() { return 0; }
    /// Return @c true if this node has no active voxels.
    bool isEmpty() const { return mValueMask.isOff(); }
    /// Return @c true if this node contains only active voxels.
    bool isDense() const { return mValueMask.isOn(); }

    /// Return the memory in bytes occupied by this node.
    Index64 memUsage() const;

    /// Expand the given bounding box so that it includes this leaf node's active voxels.
    /// If visitVoxels is false this LeafNode will be approximated as dense, i.e. with all
    /// voxels active. Else the individual active voxels are visited to produce a tight bbox.
    void evalActiveBoundingBox(CoordBBox&, bool visitVoxels = true) const;
    OPENVDB_DEPRECATED void evalActiveVoxelBoundingBox(CoordBBox&) const;

    /// @brief Return the bounding box of this node, i.e., the full index space
    /// spanned by this leaf node.
    CoordBBox getNodeBoundingBox() const { return CoordBBox::createCube(mOrigin, DIM); }

    /// Set the grid index coordinates of this node's local origin.
    void setOrigin(const Coord& origin) { mOrigin = origin; }
    /// @brief Return the grid index coordinates of this node's local origin.
    /// @deprecated Use origin() instead.
    OPENVDB_DEPRECATED const Coord& getOrigin() const { return mOrigin; }
    //@{
    /// Return the grid index coordinates of this node's local origin.
    const Coord& origin() const { return mOrigin; }
    void getOrigin(Coord& origin) const { origin = mOrigin; }
    void getOrigin(Int32& x, Int32& y, Int32& z) const { mOrigin.asXYZ(x, y, z); }
    //@}

    /// Return the linear table offset of the given global or local coordinates.
    static Index coordToOffset(const Coord& xyz);
    /// @brief Return the local coordinates for a linear table offset,
    /// where offset 0 has coordinates (0, 0, 0).
    static Coord offsetToLocalCoord(Index n);
    OPENVDB_DEPRECATED static void offsetToLocalCoord(Index n, Coord& xyz);
    /// Return the global coordinates for a linear table offset.
    Coord offsetToGlobalCoord(Index n) const;

    /// Return a string representation of this node.
    std::string str() const;

    /// @brief Return @c true if the given node (which may have a different @c ValueType
    /// than this node) has the same active value topology as this node.
    template<typename OtherType, Index OtherLog2Dim>
    bool hasSameTopology(const LeafNode<OtherType, OtherLog2Dim>* other) const;

    /// Check for buffer, state and origin equivalence.
    bool operator==(const LeafNode& other) const;
    bool operator!=(const LeafNode& other) const { return !(other == *this); }

protected:
    typedef typename NodeMaskType::OnIterator    MaskOnIterator;
    typedef typename NodeMaskType::OffIterator   MaskOffIterator;
    typedef typename NodeMaskType::DenseIterator MaskDenseIterator;

    // Type tags to disambiguate template instantiations
    struct ValueOn {}; struct ValueOff {}; struct ValueAll {};
    struct ChildOn {}; struct ChildOff {}; struct ChildAll {};

    template<typename MaskIterT, typename NodeT, typename ValueT, typename TagT>
    struct ValueIter:
        // Derives from SparseIteratorBase, but can also be used as a dense iterator,
        // if MaskIterT is a dense mask iterator type.
        public SparseIteratorBase<
            MaskIterT, ValueIter<MaskIterT, NodeT, ValueT, TagT>, NodeT, ValueT>
    {
        typedef SparseIteratorBase<MaskIterT, ValueIter, NodeT, ValueT> BaseT;

        ValueIter() {}
        ValueIter(const MaskIterT& iter, NodeT* parent): BaseT(iter, parent) {}

        ValueT& getItem(Index pos) const { return this->parent().getValue(pos); }
        ValueT& getValue() const { return this->parent().getValue(this->pos()); }

        // Note: setItem() can't be called on const iterators.
        void setItem(Index pos, const ValueT& value) const
        {
            this->parent().setValueOnly(pos, value);
        }
        // Note: setValue() can't be called on const iterators.
        void setValue(const ValueT& value) const
        {
            this->parent().setValueOnly(this->pos(), value);
        }

        // Note: modifyItem() can't be called on const iterators.
        template<typename ModifyOp>
        void modifyItem(Index n, const ModifyOp& op) const { this->parent().modifyValue(n, op); }
        // Note: modifyValue() can't be called on const iterators.
        template<typename ModifyOp>
        void modifyValue(const ModifyOp& op) const { this->parent().modifyValue(this->pos(), op); }
    };

    /// Leaf nodes have no children, so their child iterators have no get/set accessors.
    template<typename MaskIterT, typename NodeT, typename TagT>
    struct ChildIter:
        public SparseIteratorBase<MaskIterT, ChildIter<MaskIterT, NodeT, TagT>, NodeT, ValueType>
    {
        ChildIter() {}
        ChildIter(const MaskIterT& iter, NodeT* parent): SparseIteratorBase<
            MaskIterT, ChildIter<MaskIterT, NodeT, TagT>, NodeT, ValueType>(iter, parent) {}
    };

    template<typename NodeT, typename ValueT, typename TagT>
    struct DenseIter: public DenseIteratorBase<
        MaskDenseIterator, DenseIter<NodeT, ValueT, TagT>, NodeT, /*ChildT=*/void, ValueT>
    {
        typedef DenseIteratorBase<MaskDenseIterator, DenseIter, NodeT, void, ValueT> BaseT;
        typedef typename BaseT::NonConstValueType NonConstValueT;

        DenseIter() {}
        DenseIter(const MaskDenseIterator& iter, NodeT* parent): BaseT(iter, parent) {}

        bool getItem(Index pos, void*& child, NonConstValueT& value) const
        {
            value = this->parent().getValue(pos);
            child = NULL;
            return false; // no child
        }

        // Note: setItem() can't be called on const iterators.
        //void setItem(Index pos, void* child) const {}

        // Note: unsetItem() can't be called on const iterators.
        void unsetItem(Index pos, const ValueT& value) const
        {
            this->parent().setValueOnly(pos, value);
        }
    };

public:
    typedef ValueIter<MaskOnIterator, LeafNode, const ValueType, ValueOn>        ValueOnIter;
    typedef ValueIter<MaskOnIterator, const LeafNode, const ValueType, ValueOn>  ValueOnCIter;
    typedef ValueIter<MaskOffIterator, LeafNode, const ValueType, ValueOff>      ValueOffIter;
    typedef ValueIter<MaskOffIterator,const LeafNode,const ValueType,ValueOff>   ValueOffCIter;
    typedef ValueIter<MaskDenseIterator, LeafNode, const ValueType, ValueAll>    ValueAllIter;
    typedef ValueIter<MaskDenseIterator,const LeafNode,const ValueType,ValueAll> ValueAllCIter;
    typedef ChildIter<MaskOnIterator, LeafNode, ChildOn>                         ChildOnIter;
    typedef ChildIter<MaskOnIterator, const LeafNode, ChildOn>                   ChildOnCIter;
    typedef ChildIter<MaskOffIterator, LeafNode, ChildOff>                       ChildOffIter;
    typedef ChildIter<MaskOffIterator, const LeafNode, ChildOff>                 ChildOffCIter;
    typedef DenseIter<LeafNode, ValueType, ChildAll>                             ChildAllIter;
    typedef DenseIter<const LeafNode, const ValueType, ChildAll>                 ChildAllCIter;

    ValueOnCIter  cbeginValueOn() const { return ValueOnCIter(mValueMask.beginOn(), this); }
    ValueOnCIter   beginValueOn() const { return ValueOnCIter(mValueMask.beginOn(), this); }
    ValueOnIter    beginValueOn() { return ValueOnIter(mValueMask.beginOn(), this); }
    ValueOffCIter cbeginValueOff() const { return ValueOffCIter(mValueMask.beginOff(), this); }
    ValueOffCIter  beginValueOff() const { return ValueOffCIter(mValueMask.beginOff(), this); }
    ValueOffIter   beginValueOff() { return ValueOffIter(mValueMask.beginOff(), this); }
    ValueAllCIter cbeginValueAll() const { return ValueAllCIter(mValueMask.beginDense(), this); }
    ValueAllCIter  beginValueAll() const { return ValueAllCIter(mValueMask.beginDense(), this); }
    ValueAllIter   beginValueAll() { return ValueAllIter(mValueMask.beginDense(), this); }

    ValueOnCIter  cendValueOn() const { return ValueOnCIter(mValueMask.endOn(), this); }
    ValueOnCIter   endValueOn() const { return ValueOnCIter(mValueMask.endOn(), this); }
    ValueOnIter    endValueOn() { return ValueOnIter(mValueMask.endOn(), this); }
    ValueOffCIter cendValueOff() const { return ValueOffCIter(mValueMask.endOff(), this); }
    ValueOffCIter  endValueOff() const { return ValueOffCIter(mValueMask.endOff(), this); }
    ValueOffIter   endValueOff() { return ValueOffIter(mValueMask.endOff(), this); }
    ValueAllCIter cendValueAll() const { return ValueAllCIter(mValueMask.endDense(), this); }
    ValueAllCIter  endValueAll() const { return ValueAllCIter(mValueMask.endDense(), this); }
    ValueAllIter   endValueAll() { return ValueAllIter(mValueMask.endDense(), this); }

    // Note that [c]beginChildOn() and [c]beginChildOff() actually return end iterators,
    // because leaf nodes have no children.
    ChildOnCIter  cbeginChildOn() const { return ChildOnCIter(mValueMask.endOn(), this); }
    ChildOnCIter   beginChildOn() const { return ChildOnCIter(mValueMask.endOn(), this); }
    ChildOnIter    beginChildOn() { return ChildOnIter(mValueMask.endOn(), this); }
    ChildOffCIter cbeginChildOff() const { return ChildOffCIter(mValueMask.endOff(), this); }
    ChildOffCIter  beginChildOff() const { return ChildOffCIter(mValueMask.endOff(), this); }
    ChildOffIter   beginChildOff() { return ChildOffIter(mValueMask.endOff(), this); }
    ChildAllCIter cbeginChildAll() const { return ChildAllCIter(mValueMask.beginDense(), this); }
    ChildAllCIter  beginChildAll() const { return ChildAllCIter(mValueMask.beginDense(), this); }
    ChildAllIter   beginChildAll() { return ChildAllIter(mValueMask.beginDense(), this); }

    ChildOnCIter  cendChildOn() const { return ChildOnCIter(mValueMask.endOn(), this); }
    ChildOnCIter   endChildOn() const { return ChildOnCIter(mValueMask.endOn(), this); }
    ChildOnIter    endChildOn() { return ChildOnIter(mValueMask.endOn(), this); }
    ChildOffCIter cendChildOff() const { return ChildOffCIter(mValueMask.endOff(), this); }
    ChildOffCIter  endChildOff() const { return ChildOffCIter(mValueMask.endOff(), this); }
    ChildOffIter   endChildOff() { return ChildOffIter(mValueMask.endOff(), this); }
    ChildAllCIter cendChildAll() const { return ChildAllCIter(mValueMask.endDense(), this); }
    ChildAllCIter  endChildAll() const { return ChildAllCIter(mValueMask.endDense(), this); }
    ChildAllIter   endChildAll() { return ChildAllIter(mValueMask.endDense(), this); }

    //
    // Buffer management
    //
    /// @brief Exchange this node's data buffer with the given data buffer
    /// without changing the active states of the values.
    void swap(Buffer& other) { mBuffer.swap(other); }
    const Buffer& buffer() const { return mBuffer; }
    Buffer& buffer() { return mBuffer; }

    //
    // I/O methods
    //
    /// @brief Read in just the topology.
    /// @param is        the stream from which to read
    /// @param fromHalf  if true, floating-point input values are assumed to be 16-bit
    void readTopology(std::istream& is, bool fromHalf = false);
    /// @brief Write out just the topology.
    /// @param os      the stream to which to write
    /// @param toHalf  if true, output floating-point values as 16-bit half floats
    void writeTopology(std::ostream& os, bool toHalf = false) const;

    /// @brief Read buffers from a stream.
    /// @param is        the stream from which to read
    /// @param fromHalf  if true, floating-point input values are assumed to be 16-bit
    void readBuffers(std::istream& is, bool fromHalf = false);
    /// @brief Write buffers to a stream.
    /// @param os      the stream to which to write
    /// @param toHalf  if true, output floating-point values as 16-bit half floats
    void writeBuffers(std::ostream& os, bool toHalf = false) const;

    size_t streamingSize(bool toHalf = false) const;

    //
    // Accessor methods
    //
    /// Return the value of the voxel at the given coordinates.
    const ValueType& getValue(const Coord& xyz) const;
    /// Return the value of the voxel at the given linear offset.
    const ValueType& getValue(Index offset) const;

    /// @brief Return @c true if the voxel at the given coordinates is active.
    /// @param xyz       the coordinates of the voxel to be probed
    /// @param[out] val  the value of the voxel at the given coordinates
    bool probeValue(const Coord& xyz, ValueType& val) const;
    /// @brief Return @c true if the voxel at the given offset is active.
    /// @param offset    the linear offset of the voxel to be probed
    /// @param[out] val  the value of the voxel at the given coordinates
    bool probeValue(Index offset, ValueType& val) const;

    /// Return the level (i.e., 0) at which leaf node values reside.
    static Index getValueLevel(const Coord&) { return LEVEL; }

    /// Set the active state of the voxel at the given coordinates but don't change its value.
    void setActiveState(const Coord& xyz, bool on);
    /// Set the active state of the voxel at the given offset but don't change its value.
    void setActiveState(Index offset, bool on) { assert(offset<SIZE); mValueMask.set(offset, on); }

    /// Set the value of the voxel at the given coordinates but don't change its active state.
    void setValueOnly(const Coord& xyz, const ValueType& val);
    /// Set the value of the voxel at the given offset but don't change its active state.
    void setValueOnly(Index offset, const ValueType& val);

    /// Mark the voxel at the given coordinates as inactive but don't change its value.
    void setValueOff(const Coord& xyz) { mValueMask.setOff(LeafNode::coordToOffset(xyz)); }
    /// Mark the voxel at the given offset as inactive but don't change its value.
    void setValueOff(Index offset) { assert(offset < SIZE); mValueMask.setOff(offset); }

    /// Set the value of the voxel at the given coordinates and mark the voxel as inactive.
    void setValueOff(const Coord& xyz, const ValueType& val);
    /// Set the value of the voxel at the given offset and mark the voxel as inactive.
    void setValueOff(Index offset, const ValueType& val);

    /// Mark the voxel at the given coordinates as active but don't change its value.
    void setValueOn(const Coord& xyz) { mValueMask.setOn(LeafNode::coordToOffset(xyz)); }
    /// Mark the voxel at the given offset as active but don't change its value.
    void setValueOn(Index offset) { assert(offset < SIZE); mValueMask.setOn(offset); }
    /// Set the value of the voxel at the given coordinates and mark the voxel as active.
    void setValueOn(const Coord& xyz, const ValueType& val) {
        this->setValueOn(LeafNode::coordToOffset(xyz), val);
    }
    /// Set the value of the voxel at the given coordinates and mark the voxel as active.
    void setValue(const Coord& xyz, const ValueType& val) { this->setValueOn(xyz, val); };
    /// Set the value of the voxel at the given offset and mark the voxel as active.
    void setValueOn(Index offset, const ValueType& val) {
        mBuffer[offset] = val;
        mValueMask.setOn(offset);
    }

    /// @brief Apply a functor to the value of the voxel at the given offset
    /// and mark the voxel as active.
    template<typename ModifyOp>
    void modifyValue(Index offset, const ModifyOp& op)
    {
        op(mBuffer[offset]);
        mValueMask.setOn(offset);
    }
    /// @brief Apply a functor to the value of the voxel at the given coordinates
    /// and mark the voxel as active.
    template<typename ModifyOp>
    void modifyValue(const Coord& xyz, const ModifyOp& op)
    {
        this->modifyValue(this->coordToOffset(xyz), op);
    }

    /// Apply a functor to the voxel at the given coordinates.
    template<typename ModifyOp>
    void modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op)
    {
        const Index offset = this->coordToOffset(xyz);
        bool state = mValueMask.isOn(offset);
        op(mBuffer[offset], state);
        mValueMask.set(offset, state);
    }

    /// Mark all voxels as active but don't change their values.
    void setValuesOn() { mValueMask.setOn(); }
    /// Mark all voxels as inactive but don't change their values.
    void setValuesOff() { mValueMask.setOff(); }

    /// Return @c true if the voxel at the given coordinates is active.
    bool isValueOn(const Coord& xyz) const {return this->isValueOn(LeafNode::coordToOffset(xyz));}
    /// Return @c true if the voxel at the given offset is active.
    bool isValueOn(Index offset) const { return mValueMask.isOn(offset); }

    /// Return @c false since leaf nodes never contain tiles.
    static bool hasActiveTiles() { return false; }

    /// Set all voxels within an axis-aligned box to the specified value and active state.
    void fill(const CoordBBox& bbox, const ValueType&, bool active = true);

    /// Set all voxels to the specified value but don't change their active states.
    void fill(const ValueType& value);
    /// Set all voxels to the specified value and active state.
    void fill(const ValueType& value, bool active);

    /// @brief Copy into a dense grid the values of the voxels that lie within
    /// a given bounding box.
    ///
    /// @param bbox   inclusive bounding box of the voxels to be copied into the dense grid
    /// @param dense  dense grid with a stride in @e z of one (see tools::Dense
    ///               in tools/Dense.h for the required API)
    ///
    /// @note @a bbox is assumed to be identical to or contained in the coordinate domains
    /// of both the dense grid and this node, i.e., no bounds checking is performed.
    /// @note Consider using tools::CopyToDense in tools/Dense.h
    /// instead of calling this method directly.
    template<typename DenseT>
    void copyToDense(const CoordBBox& bbox, DenseT& dense) const;

    /// @brief Copy from a dense grid into this node the values of the voxels
    /// that lie within a given bounding box.
    /// @details Only values that are different (by more than the given tolerance)
    /// from the background value will be active.  Other values are inactive
    /// and truncated to the background value.
    ///
    /// @param bbox        inclusive bounding box of the voxels to be copied into this node
    /// @param dense       dense grid with a stride in @e z of one (see tools::Dense
    ///                    in tools/Dense.h for the required API)
    /// @param background  background value of the tree that this node belongs to
    /// @param tolerance   tolerance within which a value equals the background value
    ///
    /// @note @a bbox is assumed to be identical to or contained in the coordinate domains
    /// of both the dense grid and this node, i.e., no bounds checking is performed.
    /// @note Consider using tools::CopyFromDense in tools/Dense.h
    /// instead of calling this method directly.
    template<typename DenseT>
    void copyFromDense(const CoordBBox& bbox, const DenseT& dense,
                       const ValueType& background, const ValueType& tolerance);

    /// @brief Return the value of the voxel at the given coordinates.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    const ValueType& getValueAndCache(const Coord& xyz, AccessorT&) const
    {
        return this->getValue(xyz);
    }

    /// @brief Return @c true if the voxel at the given coordinates is active.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    bool isValueOnAndCache(const Coord& xyz, AccessorT&) const { return this->isValueOn(xyz); }

    /// @brief Change the value of the voxel at the given coordinates and mark it as active.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    void setValueAndCache(const Coord& xyz, const ValueType& val, AccessorT&)
    {
        this->setValueOn(xyz, val);
    }

    /// @brief Change the value of the voxel at the given coordinates
    /// but preserve its state.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    void setValueOnlyAndCache(const Coord& xyz, const ValueType& val, AccessorT&)
    {
        this->setValueOnly(xyz, val);
    }

    /// @brief Apply a functor to the value of the voxel at the given coordinates
    /// and mark the voxel as active.
    /// @note Used internally by ValueAccessor.
    template<typename ModifyOp, typename AccessorT>
    void modifyValueAndCache(const Coord& xyz, const ModifyOp& op, AccessorT&)
    {
        this->modifyValue(xyz, op);
    }

    /// Apply a functor to the voxel at the given coordinates.
    /// @note Used internally by ValueAccessor.
    template<typename ModifyOp, typename AccessorT>
    void modifyValueAndActiveStateAndCache(const Coord& xyz, const ModifyOp& op, AccessorT&)
    {
        this->modifyValueAndActiveState(xyz, op);
    }

    /// @brief Change the value of the voxel at the given coordinates and mark it as inactive.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    void setValueOffAndCache(const Coord& xyz, const ValueType& value, AccessorT&)
    {
        this->setValueOff(xyz, value);
    }

    /// @brief Set the active state of the voxel at the given coordinates
    /// without changing its value.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    void setActiveStateAndCache(const Coord& xyz, bool on, AccessorT&)
    {
        this->setActiveState(xyz, on);
    }

    /// @brief Return @c true if the voxel at the given coordinates is active
    /// and return the voxel value in @a val.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    bool probeValueAndCache(const Coord& xyz, ValueType& val, AccessorT&) const
    {
        return this->probeValue(xyz, val);
    }

    /// @brief Return the value of the voxel at the given coordinates and return
    /// its active state and level (i.e., 0) in @a state and @a level.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    const ValueType& getValue(const Coord& xyz, bool& state, int& level, AccessorT&) const
    {
        const Index offset = this->coordToOffset(xyz);
        state = mValueMask.isOn(offset);
        level = LEVEL;
        return mBuffer[offset];
    }

    /// @brief Return the LEVEL (=0) at which leaf node values reside.
    /// @note Used internally by ValueAccessor (note last argument is a dummy).
    template<typename AccessorT>
    static Index getValueLevelAndCache(const Coord&, AccessorT&) { return LEVEL; }

    /// @brief Return a const reference to the first value in the buffer.
    /// @note Though it is potentially risky you can convert this
    /// to a non-const pointer by means of const_case<ValueType*>&.
    const ValueType& getFirstValue() const { return mBuffer[0]; }
    /// Return a const reference to the last value in the buffer.
    const ValueType& getLastValue() const { return mBuffer[SIZE - 1]; }

    /// @brief Replace inactive occurrences of @a oldBackground with @a newBackground,
    /// and inactive occurrences of @a -oldBackground with @a -newBackground.
    void resetBackground(const ValueType& oldBackground, const ValueType& newBackground);

    /// @brief Overwrite each inactive value in this node and in any child nodes with
    /// a new value whose magnitude is equal to the specified background value and whose
    /// sign is consistent with that of the lexicographically closest active value.
    /// @details This is primarily useful for propagating the sign from the (active) voxels
    /// in a narrow-band level set to the inactive voxels outside the narrow band.
    void signedFloodFill(const ValueType& background);

    /// @brief Overwrite each inactive value in this node and in any child nodes with
    /// either @a outside or @a inside, depending on the sign of the lexicographically
    /// closest active value.
    /// @details Specifically, an inactive value is set to @a outside if the closest active
    /// value in the lexicographic direction is positive, otherwise it is set to @a inside.
    void signedFloodFill(const ValueType& outside, const ValueType& inside);

    void negate();

    void voxelizeActiveTiles() {};

    template<MergePolicy Policy> void merge(const LeafNode&);
    template<MergePolicy Policy> void merge(const ValueType& tileValue, bool tileActive);
    template<MergePolicy Policy>
    void merge(const LeafNode& other, const ValueType& /*bg*/, const ValueType& /*otherBG*/);

    /// @brief Union this node's set of active values with the active values
    /// of the other node, whose @c ValueType may be different. So a
    /// resulting voxel will be active if either of the original voxels
    /// were active.
    ///
    /// @note This operation modifies only active states, not values.
    template<typename OtherType>
    void topologyUnion(const LeafNode<OtherType, Log2Dim>& other);

    /// @brief Intersect this node's set of active values with the active values
    /// of the other node, whose @c ValueType may be different. So a
    /// resulting voxel will be active only if both of the original voxels
    /// were active.
    ///
    /// @details The last dummy argument is required to match the signature
    /// for InternalNode::topologyIntersection.
    ///
    /// @note This operation modifies only active states, not
    /// values. Also note that this operation can result in all voxels
    /// being inactive so consider subsequnetly calling prune.
    template<typename OtherType>
    void topologyIntersection(const LeafNode<OtherType, Log2Dim>& other, const ValueType&);

    /// @brief Difference this node's set of active values with the active values
    /// of the other node, whose @c ValueType may be different. So a
    /// resulting voxel will be active only if the original voxel is
    /// active in this LeafNode and inactive in the other LeafNode.
    ///
    /// @details The last dummy argument is required to match the signature
    /// for InternalNode::topologyDifference.
    ///
    /// @note This operation modifies only active states, not
    /// values. Also note that this operation can result in all voxels
    /// being inactive so consider subsequnetly calling prune.
    template<typename OtherType>
    void topologyDifference(const LeafNode<OtherType, Log2Dim>& other, const ValueType&);

    template<typename CombineOp>
    void combine(const LeafNode& other, CombineOp& op);
    template<typename CombineOp>
    void combine(const ValueType& value, bool valueIsActive, CombineOp& op);

    template<typename CombineOp>
    void combine2(const LeafNode& other, const ValueType&, bool valueIsActive, CombineOp&);
    template<typename CombineOp>
    void combine2(const ValueType&, const LeafNode& other, bool valueIsActive, CombineOp&);
    template<typename CombineOp>
    void combine2(const LeafNode& b0, const LeafNode& b1, CombineOp&);

    /// @brief Calls the templated functor BBoxOp with bounding box
    /// information. An additional level argument is provided to the
    /// callback.
    ///
    /// @note The bounding boxes are guarenteed to be non-overlapping.
    template<typename BBoxOp> void visitActiveBBox(BBoxOp&) const;

    template<typename VisitorOp> void visit(VisitorOp&);
    template<typename VisitorOp> void visit(VisitorOp&) const;

    template<typename OtherLeafNodeType, typename VisitorOp>
    void visit2Node(OtherLeafNodeType& other, VisitorOp&);
    template<typename OtherLeafNodeType, typename VisitorOp>
    void visit2Node(OtherLeafNodeType& other, VisitorOp&) const;
    template<typename IterT, typename VisitorOp>
    void visit2(IterT& otherIter, VisitorOp&, bool otherIsLHS = false);
    template<typename IterT, typename VisitorOp>
    void visit2(IterT& otherIter, VisitorOp&, bool otherIsLHS = false) const;

    //@{
    /// This function exists only to enable template instantiation.
    template<typename PruneOp> void pruneOp(PruneOp&) {}
    void prune(const ValueType& /*tolerance*/ = zeroVal<ValueType>()) {}
    void pruneInactive(const ValueType&) {}
    void addLeaf(LeafNode*) {}
    template<typename AccessorT>
    void addLeafAndCache(LeafNode*, AccessorT&) {}
    template<typename NodeT>
    NodeT* stealNode(const Coord&, const ValueType&, bool) { return NULL; }
    template<typename NodeT>
    NodeT* probeNode(const Coord&) { return NULL; }
    template<typename NodeT>
    const NodeT* probeConstNode(const Coord&) const { return NULL; }
    //@}

    void addTile(Index level, const Coord&, const ValueType&, bool);
    void addTile(Index offset, const ValueType&, bool);
    template<typename AccessorT>
    void addTileAndCache(Index, const Coord&, const ValueType&, bool, AccessorT&);

    //@{
    /// @brief Return a pointer to this node.
    LeafNode* touchLeaf(const Coord&) { return this; }
    template<typename AccessorT>
    LeafNode* touchLeafAndCache(const Coord&, AccessorT&) { return this; }
    template<typename NodeT, typename AccessorT>
    NodeT* probeNodeAndCache(const Coord&, AccessorT&)
    {
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
        if (!(boost::is_same<NodeT,LeafNode>::value)) return NULL;
        return reinterpret_cast<NodeT*>(this);
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
    }
    LeafNode* probeLeaf(const Coord&) { return this; }
    template<typename AccessorT>
    LeafNode* probeLeafAndCache(const Coord&, AccessorT&) { return this; }
    //@}
    //@{
    /// @brief Return a @const pointer to this node.
    const LeafNode* probeConstLeaf(const Coord&) const { return this; }
    template<typename AccessorT>
    const LeafNode* probeConstLeafAndCache(const Coord&, AccessorT&) const { return this; }
    template<typename AccessorT>
    const LeafNode* probeLeafAndCache(const Coord&, AccessorT&) const { return this; }
    const LeafNode* probeLeaf(const Coord&) const { return this; }
    template<typename NodeT, typename AccessorT>
    const NodeT* probeConstNodeAndCache(const Coord&, AccessorT&) const
    {
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
        if (!(boost::is_same<NodeT,LeafNode>::value)) return NULL;
        return reinterpret_cast<const NodeT*>(this);
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
    }
    //@}

    /// Return @c true if all of this node's values have the same active state
    /// and are equal to within the given tolerance, and return the value in @a constValue
    /// and the active state in @a state.
    bool isConstant(ValueType& constValue, bool& state,
                    const ValueType& tolerance = zeroVal<ValueType>()) const;
    /// Return @c true if all of this node's values are inactive.
    bool isInactive() const { return mValueMask.isOff(); }

protected:
    friend class ::TestLeaf;
    template<typename> friend class ::TestLeafIO;

    // During topology-only construction, access is needed
    // to protected/private members of other template instances.
    template<typename, Index> friend class LeafNode;

    friend struct ValueIter<MaskOnIterator, LeafNode, ValueType, ValueOn>;
    friend struct ValueIter<MaskOffIterator, LeafNode, ValueType, ValueOff>;
    friend struct ValueIter<MaskDenseIterator, LeafNode, ValueType, ValueAll>;
    friend struct ValueIter<MaskOnIterator, const LeafNode, ValueType, ValueOn>;
    friend struct ValueIter<MaskOffIterator, const LeafNode, ValueType, ValueOff>;
    friend struct ValueIter<MaskDenseIterator, const LeafNode, ValueType, ValueAll>;

    // Allow iterators to call mask accessor methods (see below).
    /// @todo Make mask accessors public?
    friend class IteratorBase<MaskOnIterator, LeafNode>;
    friend class IteratorBase<MaskOffIterator, LeafNode>;
    friend class IteratorBase<MaskDenseIterator, LeafNode>;

    /// Buffer containing the actual data values
    Buffer mBuffer;
    /// Bitmask that determines which voxels are active
    NodeMaskType mValueMask;
    /// Global grid index coordinates (x,y,z) of the local origin of this node
    Coord mOrigin;

    // Mask accessors
public:
    bool isValueMaskOn(Index n) const { return mValueMask.isOn(n); }
    bool isValueMaskOn() const { return mValueMask.isOn(); }
    bool isValueMaskOff(Index n) const { return mValueMask.isOff(n); }
    bool isValueMaskOff() const { return mValueMask.isOff(); }
    const NodeMaskType& getValueMask() const { return mValueMask; }
    NodeMaskType& getValueMask() { return mValueMask; }
    void setValueMask(const NodeMaskType& mask) { mValueMask = mask; }
    bool isChildMaskOn(Index) const { return false; } // leaf nodes have no children
    bool isChildMaskOff(Index) const { return true; }
    bool isChildMaskOff() const { return true; }
protected:
    void setValueMask(Index n, bool on) { mValueMask.set(n, on); }
    void setValueMaskOn(Index n)  { mValueMask.setOn(n); }
    void setValueMaskOff(Index n) { mValueMask.setOff(n); }

    /// Compute the origin of the leaf node that contains the voxel with the given coordinates.
    static void evalNodeOrigin(Coord& xyz) { xyz &= ~(DIM - 1); }

    template<typename NodeT, typename VisitorOp, typename ChildAllIterT>
    static inline void doVisit(NodeT&, VisitorOp&);

    template<typename NodeT, typename OtherNodeT, typename VisitorOp,
             typename ChildAllIterT, typename OtherChildAllIterT>
    static inline void doVisit2Node(NodeT& self, OtherNodeT& other, VisitorOp&);

    template<typename NodeT, typename VisitorOp,
             typename ChildAllIterT, typename OtherChildAllIterT>
    static inline void doVisit2(NodeT& self, OtherChildAllIterT&, VisitorOp&, bool otherIsLHS);

}; // end of LeafNode class


////////////////////////////////////////

template<typename T, Index Log2Dim>
inline
LeafNode<T, Log2Dim>::LeafNode():
    mValueMask(),//default is off!
    mOrigin(0, 0, 0)
{
}


template<typename T, Index Log2Dim>
inline
LeafNode<T, Log2Dim>::LeafNode(const Coord& xyz, const ValueType& val, bool active):
    mBuffer(val),
    mValueMask(active),
    mOrigin(xyz & (~(DIM - 1)))
{
}

template<typename T, Index Log2Dim>
template<typename OtherValueType>
inline
LeafNode<T, Log2Dim>::LeafNode(const LeafNode<OtherValueType, Log2Dim>& other,
                               const ValueType& background, TopologyCopy):
    mBuffer(background),
    mValueMask(other.mValueMask),
    mOrigin(other.mOrigin)
{
}

template<typename T, Index Log2Dim>
template<typename OtherValueType>
inline
LeafNode<T, Log2Dim>::LeafNode(const LeafNode<OtherValueType, Log2Dim>& other,
    const ValueType& offValue, const ValueType& onValue, TopologyCopy):
    mValueMask(other.mValueMask),
    mOrigin(other.mOrigin)
{
    for (Index i = 0; i < SIZE; ++i) {
        mBuffer[i] = (mValueMask.isOn(i) ? onValue : offValue);
    }
}

template<typename T, Index Log2Dim>
inline
LeafNode<T, Log2Dim>::LeafNode(const LeafNode &other):
    mBuffer(other.mBuffer),
    mValueMask(other.mValueMask),
    mOrigin(other.mOrigin)
{
}


template<typename T, Index Log2Dim>
inline
LeafNode<T, Log2Dim>::~LeafNode()
{
}

template<typename T, Index Log2Dim>
inline std::string
LeafNode<T, Log2Dim>::str() const
{
    std::ostringstream ostr;
    ostr << "LeafNode @" << mOrigin << ": " << mBuffer;
    return ostr.str();
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline Index
LeafNode<T, Log2Dim>::coordToOffset(const Coord& xyz)
{
    assert ((xyz[0] & (DIM-1u)) < DIM && (xyz[1] & (DIM-1u)) < DIM && (xyz[2] & (DIM-1u)) < DIM);
    return ((xyz[0] & (DIM-1u)) << 2*Log2Dim)
        +  ((xyz[1] & (DIM-1u)) <<  Log2Dim)
        +   (xyz[2] & (DIM-1u));
}

template<typename T, Index Log2Dim>
inline Coord
LeafNode<T, Log2Dim>::offsetToLocalCoord(Index n)
{
    assert(n<(1<< 3*Log2Dim));
    Coord xyz;
    xyz.setX(n >> 2*Log2Dim);
    n &= ((1<<2*Log2Dim)-1);
    xyz.setY(n >> Log2Dim);
    xyz.setZ(n & ((1<<Log2Dim)-1));
    return xyz;
}

//deprecated
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::offsetToLocalCoord(Index n, Coord &xyz)
{
    assert(n<(1<< 3*Log2Dim));
    xyz.setX(n >> 2*Log2Dim);
    n &= ((1<<2*Log2Dim)-1);
    xyz.setY(n >> Log2Dim);
    xyz.setZ(n & ((1<<Log2Dim)-1));
}


template<typename T, Index Log2Dim>
inline Coord
LeafNode<T, Log2Dim>::offsetToGlobalCoord(Index n) const
{
    return (this->offsetToLocalCoord(n) + this->origin());
}


////////////////////////////////////////


template<typename ValueT, Index Log2Dim>
inline const ValueT&
LeafNode<ValueT, Log2Dim>::getValue(const Coord& xyz) const
{
    return this->getValue(LeafNode::coordToOffset(xyz));
}

template<typename ValueT, Index Log2Dim>
inline const ValueT&
LeafNode<ValueT, Log2Dim>::getValue(Index offset) const
{
    assert(offset < SIZE);
    return mBuffer[offset];
}


template<typename T, Index Log2Dim>
inline bool
LeafNode<T, Log2Dim>::probeValue(const Coord& xyz, ValueType& val) const
{
    return this->probeValue(LeafNode::coordToOffset(xyz), val);
}

template<typename T, Index Log2Dim>
inline bool
LeafNode<T, Log2Dim>::probeValue(Index offset, ValueType& val) const
{
    assert(offset < SIZE);
    val = mBuffer[offset];
    return mValueMask.isOn(offset);
}


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::setValueOff(const Coord& xyz, const ValueType& val)
{
    this->setValueOff(LeafNode::coordToOffset(xyz), val);
}

template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::setValueOff(Index offset, const ValueType& val)
{
    assert(offset < SIZE);
    mBuffer[offset] = val;
    mValueMask.setOff(offset);
}


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::setActiveState(const Coord& xyz, bool on)
{
    mValueMask.set(this->coordToOffset(xyz), on);
}


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::setValueOnly(const Coord& xyz, const ValueType& val)
{
    this->setValueOnly(LeafNode::coordToOffset(xyz), val);
}

template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::setValueOnly(Index offset, const ValueType& val)
{
    assert(offset<SIZE); mBuffer[offset] = val;
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::fill(const CoordBBox& bbox, const ValueType& value, bool active)
{
    for (Int32 x = bbox.min().x(); x <= bbox.max().x(); ++x) {
        const Index offsetX = (x & (DIM-1u)) << 2*Log2Dim;
        for (Int32 y = bbox.min().y(); y <= bbox.max().y(); ++y) {
            const Index offsetXY = offsetX + ((y & (DIM-1u)) << Log2Dim);
            for (Int32 z = bbox.min().z(); z <= bbox.max().z(); ++z) {
                const Index offset = offsetXY + (z & (DIM-1u));
                mBuffer[offset] = value;
                mValueMask.set(offset, active);
            }
        }
    }
}

template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::fill(const ValueType& value)
{
    mBuffer.fill(value);
}

template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::fill(const ValueType& value, bool active)
{
    mBuffer.fill(value);
    mValueMask.set(active);
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
template<typename DenseT>
inline void
LeafNode<T, Log2Dim>::copyToDense(const CoordBBox& bbox, DenseT& dense) const
{
    typedef typename DenseT::ValueType DenseValueType;

    const size_t xStride = dense.xStride(), yStride = dense.yStride(), zStride = dense.zStride();
    const Coord& min = dense.bbox().min();
    DenseValueType* t0 = dense.data() + zStride * (bbox.min()[2] - min[2]); // target array
    const T* s0 = &mBuffer[bbox.min()[2] & (DIM-1u)]; // source array
    for (Int32 x = bbox.min()[0], ex = bbox.max()[0] + 1; x < ex; ++x) {
        DenseValueType* t1 = t0 + xStride * (x - min[0]);
        const T* s1 = s0 + ((x & (DIM-1u)) << 2*Log2Dim);
        for (Int32 y = bbox.min()[1], ey = bbox.max()[1] + 1; y < ey; ++y) {
            DenseValueType* t2 = t1 + yStride * (y - min[1]);
            const T* s2 = s1 + ((y & (DIM-1u)) << Log2Dim);
            for (Int32 z = bbox.min()[2], ez = bbox.max()[2] + 1; z < ez; ++z, t2 += zStride) {
                *t2 = DenseValueType(*s2++);
            }
        }
    }
}


template<typename T, Index Log2Dim>
template<typename DenseT>
inline void
LeafNode<T, Log2Dim>::copyFromDense(const CoordBBox& bbox, const DenseT& dense,
                                    const ValueType& background, const ValueType& tolerance)
{
    typedef typename DenseT::ValueType DenseValueType;

    const size_t xStride = dense.xStride(), yStride = dense.yStride(), zStride = dense.zStride();
    const Coord& min = dense.bbox().min();

    const DenseValueType* s0 = dense.data() + zStride * (bbox.min()[2] - min[2]); // source
    const Int32 n0 = bbox.min()[2] & (DIM-1u);
    for (Int32 x = bbox.min()[0], ex = bbox.max()[0]+1; x < ex; ++x) {
        const DenseValueType* s1 = s0 + xStride * (x - min[0]);
        const Int32 n1 = n0 + ((x & (DIM-1u)) << 2*LOG2DIM);
        for (Int32 y = bbox.min()[1], ey = bbox.max()[1]+1; y < ey; ++y) {
            const DenseValueType* s2 = s1 + yStride * (y - min[1]);
            Int32 n2 = n1 + ((y & (DIM-1u)) << LOG2DIM);
            for (Int32 z = bbox.min()[2], ez = bbox.max()[2]+1; z < ez; ++z, ++n2, s2 += zStride) {
                if (math::isApproxEqual(background, ValueType(*s2), tolerance)) {
                    mValueMask.setOff(n2);
                    mBuffer[n2] = background;
                } else {
                    mValueMask.setOn(n2);
                    mBuffer[n2] = ValueType(*s2);
                }
            }
        }
    }
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::readTopology(std::istream& is, bool /*fromHalf*/)
{
    mValueMask.load(is);
}


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::writeTopology(std::ostream& os, bool /*toHalf*/) const
{
    mValueMask.save(os);
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline void
LeafNode<T,Log2Dim>::readBuffers(std::istream& is, bool fromHalf)
{
    // Read in the value mask.
    mValueMask.load(is);

    int8_t numBuffers = 1;
    if (io::getFormatVersion(is) < OPENVDB_FILE_VERSION_NODE_MASK_COMPRESSION) {
        // Read in the origin.
        is.read(reinterpret_cast<char*>(&mOrigin), sizeof(Coord::ValueType) * 3);

        // Read in the number of buffers, which should now always be one.
        is.read(reinterpret_cast<char*>(&numBuffers), sizeof(int8_t));
    }

    io::readCompressedValues(is, mBuffer.mData, SIZE, mValueMask, fromHalf);

    if (numBuffers > 1) {
        // Read in and discard auxiliary buffers that were created with earlier
        // versions of the library.  (Auxiliary buffers are not mask compressed.)
        const bool zipped = io::getDataCompression(is) & io::COMPRESS_ZIP;
        Buffer temp;
        for (int i = 1; i < numBuffers; ++i) {
            if (fromHalf) {
                io::HalfReader<io::RealToHalf<T>::isReal, T>::read(is, temp.mData, SIZE, zipped);
            } else {
                io::readData<T>(is, temp.mData, SIZE, zipped);
            }
        }
    }
}


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::writeBuffers(std::ostream& os, bool toHalf) const
{
    // Write out the value mask.
    mValueMask.save(os);

    io::writeCompressedValues(os, mBuffer.mData, SIZE,
        mValueMask, /*childMask=*/NodeMaskType(), toHalf);
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline bool
LeafNode<T, Log2Dim>::operator==(const LeafNode& other) const
{
    return mOrigin == other.mOrigin &&
           mValueMask == other.mValueMask &&
           mBuffer == other.mBuffer;
}


template<typename T, Index Log2Dim>
inline Index64
LeafNode<T, Log2Dim>::memUsage() const
{
    return mBuffer.memUsage() + sizeof(mOrigin) + mValueMask.memUsage();
}


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::evalActiveVoxelBoundingBox(CoordBBox& bbox) const
{
    CoordBBox this_bbox = this->getNodeBoundingBox();
    if (bbox.isInside(this_bbox)) return;//this LeafNode is already enclosed in the bbox
    if (ValueOnCIter iter = this->cbeginValueOn()) {//any active values?
        this_bbox.reset();
        for(; iter; ++iter) this_bbox.expand(this->offsetToLocalCoord(iter.pos()));
        this_bbox.translate(this->origin());
        bbox.expand(this_bbox);
    }
}

template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::evalActiveBoundingBox(CoordBBox& bbox, bool visitVoxels) const
{
    CoordBBox this_bbox = this->getNodeBoundingBox();
    if (bbox.isInside(this_bbox)) return;//this LeafNode is already enclosed in the bbox
    if (ValueOnCIter iter = this->cbeginValueOn()) {//any active values?
        if (visitVoxels) {//use voxel granularity?
            this_bbox.reset();
            for(; iter; ++iter) this_bbox.expand(this->offsetToLocalCoord(iter.pos()));
            this_bbox.translate(this->origin());
        }
        bbox.expand(this_bbox);
    }
}


template<typename T, Index Log2Dim>
template<typename OtherType, Index OtherLog2Dim>
inline bool
LeafNode<T, Log2Dim>::hasSameTopology(const LeafNode<OtherType, OtherLog2Dim>* other) const
{
    assert(other);
    return (Log2Dim == OtherLog2Dim && mValueMask == other->getValueMask());
}


template<typename T, Index Log2Dim>
inline bool
LeafNode<T, Log2Dim>::isConstant(ValueType& constValue,
                                 bool& state, const ValueType& tolerance) const
{
    state = mValueMask.isOn();

    if (!(state || mValueMask.isOff())) return false;

    bool allEqual = true;
    const T value = mBuffer[0];
    for (Index i = 1; allEqual && i < SIZE; ++i) {
        /// @todo Alternatively, allEqual = !((maxVal - minVal) > (2 * tolerance))
        allEqual = math::isApproxEqual(mBuffer[i], value, tolerance);
    }
    if (allEqual) constValue = value; ///< @todo return average/median value?
    return allEqual;
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::addTile(Index level, const Coord& xyz, const ValueType& val, bool active)
{
    assert(level == 0);
    this->addTile(this->coordToOffset(xyz), val, active);
}

template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::addTile(Index offset, const ValueType& val, bool active)
{
    assert(offset < SIZE);
    setValueOnly(offset, val);
    setActiveState(offset, active);
}

template<typename T, Index Log2Dim>
template<typename AccessorT>
inline void
LeafNode<T, Log2Dim>::addTileAndCache(Index level, const Coord& xyz,
    const ValueType& val, bool active, AccessorT&)
{
    this->addTile(level, xyz, val, active);
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::signedFloodFill(const ValueType& background)
{
    this->signedFloodFill(background, math::negative(background));
}

template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::signedFloodFill(const ValueType& outsideValue,
                                      const ValueType& insideValue)
{
    const Index first = mValueMask.findFirstOn();
    if (first < SIZE) {
        bool xInside = math::isNegative(mBuffer[first]), yInside = xInside, zInside = xInside;
        for (Index x = 0; x != (1 << Log2Dim); ++x) {
            const Index x00 = x << (2 * Log2Dim);
            if (mValueMask.isOn(x00)) {
                xInside = math::isNegative(mBuffer[x00]); // element(x, 0, 0)
            }
            yInside = xInside;
            for (Index y = 0; y != (1 << Log2Dim); ++y) {
                const Index xy0 = x00 + (y << Log2Dim);
                if (mValueMask.isOn(xy0)) {
                    yInside = math::isNegative(mBuffer[xy0]); // element(x, y, 0)
                }
                zInside = yInside;
                for (Index z = 0; z != (1 << Log2Dim); ++z) {
                    const Index xyz = xy0 + z; // element(x, y, z)
                    if (mValueMask.isOn(xyz)) {
                        zInside = math::isNegative(mBuffer[xyz]);
                    } else {
                        mBuffer[xyz] = zInside ? insideValue : outsideValue;
                    }
                }
            }
        }
    } else {// if no active voxels exist simply use the sign of the first value
        mBuffer.fill(math::isNegative(mBuffer[0]) ? insideValue : outsideValue);
    }
}


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::resetBackground(const ValueType& oldBackground,
                                      const ValueType& newBackground)
{
    typename NodeMaskType::OffIterator iter;
    // For all inactive values...
    for (iter = this->mValueMask.beginOff(); iter; ++iter) {
        ValueType &inactiveValue = mBuffer[iter.pos()];
        if (math::isApproxEqual(inactiveValue, oldBackground)) {
            inactiveValue = newBackground;
        } else if (math::isApproxEqual(inactiveValue, math::negative(oldBackground))) {
            inactiveValue = math::negative(newBackground);
        }
    }
}


template<typename T, Index Log2Dim>
template<MergePolicy Policy>
inline void
LeafNode<T, Log2Dim>::merge(const LeafNode& other)
{
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
    if (Policy == MERGE_NODES) return;
    typename NodeMaskType::OnIterator iter = other.mValueMask.beginOn();
    for (; iter; ++iter) {
        const Index n = iter.pos();
        if (mValueMask.isOff(n)) {
            mBuffer[n] = other.mBuffer[n];
            mValueMask.setOn(n);
        }
    }
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}

template<typename T, Index Log2Dim>
template<MergePolicy Policy>
inline void
LeafNode<T, Log2Dim>::merge(const LeafNode& other,
    const ValueType& /*bg*/, const ValueType& /*otherBG*/)
{
    this->template merge<Policy>(other);
}

template<typename T, Index Log2Dim>
template<MergePolicy Policy>
inline void
LeafNode<T, Log2Dim>::merge(const ValueType& tileValue, bool tileActive)
{
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
    if (Policy != MERGE_ACTIVE_STATES_AND_NODES) return;
    if (!tileActive) return;
    // Replace all inactive values with the active tile value.
    for (typename NodeMaskType::OffIterator iter = mValueMask.beginOff(); iter; ++iter) {
        const Index n = iter.pos();
        mBuffer[n] = tileValue;
        mValueMask.setOn(n);
    }
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}


template<typename T, Index Log2Dim>
template<typename OtherType>
inline void
LeafNode<T, Log2Dim>::topologyUnion(const LeafNode<OtherType, Log2Dim>& other)
{
    mValueMask |= other.getValueMask();
}

template<typename T, Index Log2Dim>
template<typename OtherType>
inline void
LeafNode<T, Log2Dim>::topologyIntersection(const LeafNode<OtherType, Log2Dim>& other,
                                           const ValueType&)
{
    mValueMask &= other.getValueMask();
}

template<typename T, Index Log2Dim>
template<typename OtherType>
inline void
LeafNode<T, Log2Dim>::topologyDifference(const LeafNode<OtherType, Log2Dim>& other,
                                         const ValueType&)
{
    mValueMask &= !other.getValueMask();
}

template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::negate()
{
    for (Index i = 0; i < SIZE; ++i) {
        mBuffer[i] = -mBuffer[i];
    }
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
template<typename CombineOp>
inline void
LeafNode<T, Log2Dim>::combine(const LeafNode& other, CombineOp& op)
{
    CombineArgs<T> args;
    for (Index i = 0; i < SIZE; ++i) {
        op(args.setARef(mBuffer[i])
            .setAIsActive(mValueMask.isOn(i))
            .setBRef(other.mBuffer[i])
            .setBIsActive(other.mValueMask.isOn(i))
            .setResultRef(mBuffer[i]));
        mValueMask.set(i, args.resultIsActive());
    }
}


template<typename T, Index Log2Dim>
template<typename CombineOp>
inline void
LeafNode<T, Log2Dim>::combine(const ValueType& value, bool valueIsActive, CombineOp& op)
{
    CombineArgs<T> args;
    args.setBRef(value).setBIsActive(valueIsActive);
    for (Index i = 0; i < SIZE; ++i) {
        op(args.setARef(mBuffer[i])
            .setAIsActive(mValueMask.isOn(i))
            .setResultRef(mBuffer[i]));
        mValueMask.set(i, args.resultIsActive());
    }
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
template<typename CombineOp>
inline void
LeafNode<T, Log2Dim>::combine2(const LeafNode& other, const ValueType& value,
    bool valueIsActive, CombineOp& op)
{
    CombineArgs<T> args;
    args.setBRef(value).setBIsActive(valueIsActive);
    for (Index i = 0; i < SIZE; ++i) {
        op(args.setARef(other.mBuffer[i])
            .setAIsActive(other.mValueMask.isOn(i))
            .setResultRef(mBuffer[i]));
        mValueMask.set(i, args.resultIsActive());
    }
}


template<typename T, Index Log2Dim>
template<typename CombineOp>
inline void
LeafNode<T, Log2Dim>::combine2(const ValueType& value, const LeafNode& other,
    bool valueIsActive, CombineOp& op)
{
    CombineArgs<T> args;
    args.setARef(value).setAIsActive(valueIsActive);
    for (Index i = 0; i < SIZE; ++i) {
        op(args.setBRef(other.mBuffer[i])
            .setBIsActive(other.mValueMask.isOn(i))
            .setResultRef(mBuffer[i]));
        mValueMask.set(i, args.resultIsActive());
    }
}


template<typename T, Index Log2Dim>
template<typename CombineOp>
inline void
LeafNode<T, Log2Dim>::combine2(const LeafNode& b0, const LeafNode& b1, CombineOp& op)
{
    CombineArgs<T> args;
    for (Index i = 0; i < SIZE; ++i) {
        mValueMask.set(i, b0.mValueMask.isOn(i) || b1.mValueMask.isOn(i));
        op(args.setARef(b0.mBuffer[i])
            .setAIsActive(b0.mValueMask.isOn(i))
            .setBRef(b1.mBuffer[i])
            .setBIsActive(b1.mValueMask.isOn(i))
            .setResultRef(mBuffer[i]));
        mValueMask.set(i, args.resultIsActive());
    }
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
template<typename BBoxOp>
inline void
LeafNode<T, Log2Dim>::visitActiveBBox(BBoxOp& op) const
{
    if (op.template descent<LEVEL>()) {
        for (ValueOnCIter i=this->cbeginValueOn(); i; ++i) {
#ifdef _MSC_VER
            op.operator()<LEVEL>(CoordBBox::createCube(i.getCoord(), 1));
#else
            op.template operator()<LEVEL>(CoordBBox::createCube(i.getCoord(), 1));
#endif
        }
    } else {
#ifdef _MSC_VER
        op.operator()<LEVEL>(this->getNodeBoundingBox());
#else
        op.template operator()<LEVEL>(this->getNodeBoundingBox());
#endif
    }
}


template<typename T, Index Log2Dim>
template<typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit(VisitorOp& op)
{
    doVisit<LeafNode, VisitorOp, ChildAllIter>(*this, op);
}


template<typename T, Index Log2Dim>
template<typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit(VisitorOp& op) const
{
    doVisit<const LeafNode, VisitorOp, ChildAllCIter>(*this, op);
}


template<typename T, Index Log2Dim>
template<typename NodeT, typename VisitorOp, typename ChildAllIterT>
inline void
LeafNode<T, Log2Dim>::doVisit(NodeT& self, VisitorOp& op)
{
    for (ChildAllIterT iter = self.beginChildAll(); iter; ++iter) {
        op(iter);
    }
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
template<typename OtherLeafNodeType, typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit2Node(OtherLeafNodeType& other, VisitorOp& op)
{
    doVisit2Node<LeafNode, OtherLeafNodeType, VisitorOp, ChildAllIter,
        typename OtherLeafNodeType::ChildAllIter>(*this, other, op);
}


template<typename T, Index Log2Dim>
template<typename OtherLeafNodeType, typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit2Node(OtherLeafNodeType& other, VisitorOp& op) const
{
    doVisit2Node<const LeafNode, OtherLeafNodeType, VisitorOp, ChildAllCIter,
        typename OtherLeafNodeType::ChildAllCIter>(*this, other, op);
}


template<typename T, Index Log2Dim>
template<
    typename NodeT,
    typename OtherNodeT,
    typename VisitorOp,
    typename ChildAllIterT,
    typename OtherChildAllIterT>
inline void
LeafNode<T, Log2Dim>::doVisit2Node(NodeT& self, OtherNodeT& other, VisitorOp& op)
{
    // Allow the two nodes to have different ValueTypes, but not different dimensions.
    BOOST_STATIC_ASSERT(OtherNodeT::SIZE == NodeT::SIZE);
    BOOST_STATIC_ASSERT(OtherNodeT::LEVEL == NodeT::LEVEL);

    ChildAllIterT iter = self.beginChildAll();
    OtherChildAllIterT otherIter = other.beginChildAll();

    for ( ; iter && otherIter; ++iter, ++otherIter) {
        op(iter, otherIter);
    }
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
template<typename IterT, typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit2(IterT& otherIter, VisitorOp& op, bool otherIsLHS)
{
    doVisit2<LeafNode, VisitorOp, ChildAllIter, IterT>(
        *this, otherIter, op, otherIsLHS);
}


template<typename T, Index Log2Dim>
template<typename IterT, typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit2(IterT& otherIter, VisitorOp& op, bool otherIsLHS) const
{
    doVisit2<const LeafNode, VisitorOp, ChildAllCIter, IterT>(
        *this, otherIter, op, otherIsLHS);
}


template<typename T, Index Log2Dim>
template<
    typename NodeT,
    typename VisitorOp,
    typename ChildAllIterT,
    typename OtherChildAllIterT>
inline void
LeafNode<T, Log2Dim>::doVisit2(NodeT& self, OtherChildAllIterT& otherIter,
    VisitorOp& op, bool otherIsLHS)
{
    if (!otherIter) return;

    if (otherIsLHS) {
        for (ChildAllIterT iter = self.beginChildAll(); iter; ++iter) {
            op(otherIter, iter);
        }
    } else {
        for (ChildAllIterT iter = self.beginChildAll(); iter; ++iter) {
            op(iter, otherIter);
        }
    }
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline std::ostream&
operator<<(std::ostream& os, const typename LeafNode<T, Log2Dim>::Buffer& buf)
{
    for (Index32 i = 0, N = buf.size(); i < N; ++i) os << buf.mData[i] << ", ";
    return os;
}

} // namespace tree
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb


////////////////////////////////////////


// Specialization for LeafNodes of type bool
#include "LeafNodeBool.h"

#endif // OPENVDB_TREE_LEAFNODE_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2013 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )