/usr/include/openvdb/tools/RayTracer.h is in libopenvdb-dev 2.1.0-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2013 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
///
/// @file RayTracer.h
///
/// @author Ken Museth
///
/// @brief Defines a simple, multithreaded level-set ray tracer,
/// perspective and orthographic cameras (both designed to mimic a Houdini camera),
/// a Film class and some rather naive shaders
///
/// @note These classes are included mainly to illustrate how to ray-trace
/// OpenVDB volumes. They are not intended for production-quality rendering.
///
/// @todo Add a volume renderer
#ifndef OPENVDB_TOOLS_RAYTRACER_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_RAYTRACER_HAS_BEEN_INCLUDED
#include <openvdb/Types.h>
#include <openvdb/math/BBox.h>
#include <openvdb/math/Ray.h>
#include <openvdb/math/Math.h>
#include <openvdb/tools/RayIntersector.h>
#include <boost/scoped_ptr.hpp>
#include <vector>
#ifdef OPENVDB_TOOLS_RAYTRACER_USE_EXR
#include <OpenEXR/ImfPixelType.h>
#include <OpenEXR/ImfChannelList.h>
#include <OpenEXR/ImfOutputFile.h>
#include <OpenEXR/ImfHeader.h>
#include <OpenEXR/ImfFrameBuffer.h>
#endif
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {
// Forward declarations
class BaseCamera;
class BaseShader;
/// @brief Ray-trace a volume.
template<typename GridT>
inline void rayTrace(const GridT&,
const BaseShader&,
BaseCamera&,
size_t pixelSamples = 1,
unsigned int seed = 0,
bool threaded = true);
/// @brief Ray-trace a volume using a given ray intersector.
template<typename GridT, typename IntersectorT>
inline void rayTrace(const GridT&,
const IntersectorT&,
const BaseShader&,
BaseCamera&,
size_t pixelSamples = 1,
unsigned int seed = 0,
bool threaded = true);
//////////////////////////////////////// RAYTRACER ////////////////////////////////////////
/// @brief A (very) simple multithreaded ray tracer specifically for narrow-band level sets.
/// @details Included primarily as a reference implementation.
template<typename GridT, typename IntersectorT = tools::LevelSetRayIntersector<GridT> >
class LevelSetRayTracer
{
public:
typedef GridT GridType;
typedef typename IntersectorT::Vec3Type Vec3Type;
typedef typename IntersectorT::RayType RayType;
/// @brief Constructor based on an instance of the grid to be rendered.
LevelSetRayTracer(const GridT& grid,
const BaseShader& shader,
BaseCamera& camera,
size_t pixelSamples = 1,
unsigned int seed = 0);
/// @brief Constructor based on an instance of the intersector
/// performing the ray-intersections.
LevelSetRayTracer(const IntersectorT& inter,
const BaseShader& shader,
BaseCamera& camera,
size_t pixelSamples = 1,
unsigned int seed = 0);
/// @brief Copy constructor
LevelSetRayTracer(const LevelSetRayTracer& other);
/// @brief Destructor
~LevelSetRayTracer();
/// @brief Set the level set grid to be ray-traced
void setGrid(const GridT& grid);
/// @brief Set the intersector that performs the actual
/// intersection of the rays against the narrow-band level set.
void setIntersector(const IntersectorT& inter);
/// @brief Set the shader derived from the abstract BaseShader class.
///
/// @note The shader is not assumed to be thread-safe so each
/// thread will get it's only deep copy. For instance it could
/// contains a ValueAccessor into another grid with auxiliary
/// shading information. Thus, make sure it is relatively
/// light-weight and efficient to copy (which is the case for ValueAccesors).
void setShader(const BaseShader& shader);
/// @brief Set the camera derived from the abstract BaseCamera class.
void setCamera(BaseCamera& camera);
/// @brief Set the number of pixel samples and the seed for
/// jittered sub-rays. A value larger then one implies
/// anti-aliasing by jittered super-sampling.
/// @throw ValueError if pixelSamples is equal to zero.
void setPixelSamples(size_t pixelSamples, unsigned int seed = 0);
/// @brief Perform the actual (potentially multithreaded) ray-tracing.
void render(bool threaded = true);
OPENVDB_DEPRECATED void trace(bool threaded = true) { this->render(threaded); }
/// @brief Public method required by tbb::parallel_for.
/// @warning Never call it directly.
void operator()(const tbb::blocked_range<size_t>& range) const;
private:
const bool mIsMaster;
double* mRand;
IntersectorT mInter;
boost::scoped_ptr<const BaseShader> mShader;
BaseCamera* mCamera;
size_t mSubPixels;
};// LevelSetRayTracer
//////////////////////////////////////// FILM ////////////////////////////////////////
/// @brief A simple class that allows for concurrent writes to pixels in an image,
/// background initialization of the image, and PPM or EXR file output.
class Film
{
public:
/// @brief Floating-point RGBA components in the range [0, 1].
/// @details This is our preferred representation for color processing.
struct RGBA
{
typedef float ValueT;
RGBA() : r(0), g(0), b(0), a(1) {}
explicit RGBA(ValueT intensity) : r(intensity), g(intensity), b(intensity), a(1) {}
RGBA(ValueT _r, ValueT _g, ValueT _b, ValueT _a=1.0f) : r(_r), g(_g), b(_b), a(_a) {}
RGBA operator* (ValueT scale) const { return RGBA(r*scale, g*scale, b*scale);}
RGBA operator+ (const RGBA& rhs) const { return RGBA(r+rhs.r, g+rhs.g, b+rhs.b);}
RGBA operator* (const RGBA& rhs) const { return RGBA(r*rhs.r, g*rhs.g, b*rhs.b);}
RGBA& operator+=(const RGBA& rhs) { r+=rhs.r; g+=rhs.g; b+=rhs.b, a+=rhs.a; return *this;}
void over(const RGBA& rhs)
{
const float s = rhs.a*(1.0f-a);
r = a*r+s*rhs.r;
g = a*g+s*rhs.g;
b = a*b+s*rhs.b;
a = a + s;
}
ValueT r, g, b, a;
};
Film(size_t width, size_t height)
: mWidth(width), mHeight(height), mSize(width*height), mPixels(new RGBA[mSize])
{
}
Film(size_t width, size_t height, const RGBA& bg)
: mWidth(width), mHeight(height), mSize(width*height), mPixels(new RGBA[mSize])
{
this->fill(bg);
}
~Film() { delete mPixels; }
const RGBA& pixel(size_t w, size_t h) const
{
assert(w < mWidth);
assert(h < mHeight);
return mPixels[w + h*mWidth];
}
RGBA& pixel(size_t w, size_t h)
{
assert(w < mWidth);
assert(h < mHeight);
return mPixels[w + h*mWidth];
}
void fill(const RGBA& rgb=RGBA(0)) { for (size_t i=0; i<mSize; ++i) mPixels[i] = rgb; }
void checkerboard(const RGBA& c1=RGBA(0.3f), const RGBA& c2=RGBA(0.6f), size_t size=32)
{
RGBA *p = mPixels;
for (size_t j = 0; j < mHeight; ++j) {
for (size_t i = 0; i < mWidth; ++i, ++p) {
*p = ((i & size) ^ (j & size)) ? c1 : c2;
}
}
}
void savePPM(const std::string& fileName)
{
std::string name(fileName + ".ppm");
unsigned char* tmp = new unsigned char[3*mSize], *q = tmp;
RGBA* p = mPixels;
size_t n = mSize;
while (n--) {
*q++ = static_cast<unsigned char>(255.0f*(*p ).r);
*q++ = static_cast<unsigned char>(255.0f*(*p ).g);
*q++ = static_cast<unsigned char>(255.0f*(*p++).b);
}
std::ofstream os(name.c_str(), std::ios_base::binary);
if (!os.is_open()) {
std::cerr << "Error opening PPM file \"" << name << "\"" << std::endl;
return;
}
os << "P6\n" << mWidth << " " << mHeight << "\n255\n";
os.write((const char *)&(*tmp), 3*mSize*sizeof(unsigned char));
delete [] tmp;
}
#ifdef OPENVDB_TOOLS_RAYTRACER_USE_EXR
void saveEXR(const std::string& fileName, size_t compression = 2, size_t threads = 8)
{
std::string name(fileName + ".exr");
if (threads>0) Imf::setGlobalThreadCount(threads);
Imf::Header header(mWidth, mHeight);
if (compression==0) header.compression() = Imf::NO_COMPRESSION;
if (compression==1) header.compression() = Imf::RLE_COMPRESSION;
if (compression>=2) header.compression() = Imf::ZIP_COMPRESSION;
header.channels().insert("R", Imf::Channel(Imf::FLOAT));
header.channels().insert("G", Imf::Channel(Imf::FLOAT));
header.channels().insert("B", Imf::Channel(Imf::FLOAT));
header.channels().insert("A", Imf::Channel(Imf::FLOAT));
Imf::FrameBuffer framebuffer;
framebuffer.insert("R", Imf::Slice( Imf::FLOAT, (char *) &(mPixels[0].r),
sizeof (RGBA), sizeof (RGBA) * mWidth));
framebuffer.insert("G", Imf::Slice( Imf::FLOAT, (char *) &(mPixels[0].g),
sizeof (RGBA), sizeof (RGBA) * mWidth));
framebuffer.insert("B", Imf::Slice( Imf::FLOAT, (char *) &(mPixels[0].b),
sizeof (RGBA), sizeof (RGBA) * mWidth));
framebuffer.insert("A", Imf::Slice( Imf::FLOAT, (char *) &(mPixels[0].a),
sizeof (RGBA), sizeof (RGBA) * mWidth));
Imf::OutputFile file(name.c_str(), header);
file.setFrameBuffer(framebuffer);
file.writePixels(mHeight);
}
#endif
size_t width() const { return mWidth; }
size_t height() const { return mHeight; }
size_t numPixels() const { return mSize; }
const RGBA* pixels() const { return mPixels; }
private:
size_t mWidth, mHeight, mSize;
RGBA* mPixels;
};// Film
//////////////////////////////////////// CAMERAS ////////////////////////////////////////
/// Abstract base class for the perspective and orthographic cameras
class BaseCamera
{
public:
BaseCamera(Film& film, const Vec3R& rotation, const Vec3R& translation,
double frameWidth, double nearPlane, double farPlane)
: mFilm(&film)
, mScaleWidth(frameWidth)
, mScaleHeight(frameWidth*film.height()/double(film.width()))
{
assert(nearPlane > 0 && farPlane > nearPlane);
mScreenToWorld.accumPostRotation(math::X_AXIS, rotation[0] * M_PI / 180.0);
mScreenToWorld.accumPostRotation(math::Y_AXIS, rotation[1] * M_PI / 180.0);
mScreenToWorld.accumPostRotation(math::Z_AXIS, rotation[2] * M_PI / 180.0);
mScreenToWorld.accumPostTranslation(translation);
this->initRay(nearPlane, farPlane);
}
virtual ~BaseCamera() {}
Film::RGBA& pixel(size_t i, size_t j) { return mFilm->pixel(i, j); }
size_t width() const { return mFilm->width(); }
size_t height() const { return mFilm->height(); }
/// Rotate the camera so its negative z-axis points at xyz and its
/// y axis is in the plane of the xyz and up vectors. In other
/// words the camera will look at xyz and use up as the
/// horizontal direction.
void lookAt(const Vec3R& xyz, const Vec3R& up = Vec3R(0.0, 1.0, 0.0))
{
const Vec3R orig = mScreenToWorld.applyMap(Vec3R(0.0));
const Vec3R dir = orig - xyz;
try {
Mat4d xform = math::aim<Mat4d>(dir, up);
xform.postTranslate(orig);
mScreenToWorld = math::AffineMap(xform);
this->initRay(mRay.t0(), mRay.t1());
} catch (...) {}
}
Vec3R rasterToScreen(double i, double j, double z) const
{
return Vec3R( (2 * i / mFilm->width() - 1) * mScaleWidth,
(1 - 2 * j / mFilm->height()) * mScaleHeight, z );
}
/// @brief Return a Ray in world space given the pixel indices and
/// optional offsets in the range [0, 1]. An offset of 0.5 corresponds
/// to the center of the pixel.
virtual math::Ray<double> getRay(
size_t i, size_t j, double iOffset = 0.5, double jOffset = 0.5) const = 0;
protected:
void initRay(double t0, double t1)
{
mRay.setTimes(t0, t1);
mRay.setEye(mScreenToWorld.applyMap(Vec3R(0.0)));
mRay.setDir(mScreenToWorld.applyJacobian(Vec3R(0.0, 0.0, -1.0)));
}
Film* mFilm;
double mScaleWidth, mScaleHeight;
math::Ray<double> mRay;
math::AffineMap mScreenToWorld;
};// BaseCamera
class PerspectiveCamera: public BaseCamera
{
public:
/// @brief Constructor
/// @param film film (i.e. image) defining the pixel resolution
/// @param rotation rotation in degrees of the camera in world space
/// (applied in x, y, z order)
/// @param translation translation of the camera in world-space units,
/// applied after rotation
/// @param focalLength focal length of the camera in mm
/// (the default of 50mm corresponds to Houdini's default camera)
/// @param aperture width in mm of the frame, i.e., the visible field
/// (the default 41.2136 mm corresponds to Houdini's default camera)
/// @param nearPlane depth of the near clipping plane in world-space units
/// @param farPlane depth of the far clipping plane in world-space units
///
/// @details If no rotation or translation is provided, the camera is placed
/// at (0,0,0) in world space and points in the direction of the negative z axis.
PerspectiveCamera(Film& film,
const Vec3R& rotation = Vec3R(0.0),
const Vec3R& translation = Vec3R(0.0),
double focalLength = 50.0,
double aperture = 41.2136,
double nearPlane = 1e-3,
double farPlane = std::numeric_limits<double>::max())
: BaseCamera(film, rotation, translation, 0.5*aperture/focalLength, nearPlane, farPlane)
{
}
virtual ~PerspectiveCamera() {}
/// @brief Return a Ray in world space given the pixel indices and
/// optional offsets in the range [0,1]. An offset of 0.5 corresponds
/// to the center of the pixel.
virtual math::Ray<double> getRay(
size_t i, size_t j, double iOffset = 0.5, double jOffset = 0.5) const
{
math::Ray<double> ray(mRay);
Vec3R dir = BaseCamera::rasterToScreen(i + iOffset, j + jOffset, -1.0);
dir = BaseCamera::mScreenToWorld.applyJacobian(dir);
dir.normalize();
ray.scaleTimes(1.0/dir.dot(ray.dir()));
ray.setDir(dir);
return ray;
}
/// @brief Return the horizontal field of view in degrees given a
/// focal lenth in mm and the specified aperture in mm.
static double focalLengthToFieldOfView(double length, double aperture)
{
return 360.0 / M_PI * atan(aperture/(2.0*length));
}
/// @brief Return the focal length in mm given a horizontal field of
/// view in degrees and the specified aperture in mm.
static double fieldOfViewToFocalLength(double fov, double aperture)
{
return aperture/(2.0*(tan(fov * M_PI / 360.0)));
}
};// PerspectiveCamera
class OrthographicCamera: public BaseCamera
{
public:
/// @brief Constructor
/// @param film film (i.e. image) defining the pixel resolution
/// @param rotation rotation in degrees of the camera in world space
/// (applied in x, y, z order)
/// @param translation translation of the camera in world-space units,
/// applied after rotation
/// @param frameWidth width in of the frame in world-space units
/// @param nearPlane depth of the near clipping plane in world-space units
/// @param farPlane depth of the far clipping plane in world-space units
///
/// @details If no rotation or translation is provided, the camera is placed
/// at (0,0,0) in world space and points in the direction of the negative z axis.
OrthographicCamera(Film& film,
const Vec3R& rotation = Vec3R(0.0),
const Vec3R& translation = Vec3R(0.0),
double frameWidth = 1.0,
double nearPlane = 1e-3,
double farPlane = std::numeric_limits<double>::max())
: BaseCamera(film, rotation, translation, 0.5*frameWidth, nearPlane, farPlane)
{
}
virtual ~OrthographicCamera() {}
virtual math::Ray<double> getRay(
size_t i, size_t j, double iOffset = 0.5, double jOffset = 0.5) const
{
math::Ray<double> ray(mRay);
Vec3R eye = BaseCamera::rasterToScreen(i + iOffset, j + jOffset, 0.0);
ray.setEye(BaseCamera::mScreenToWorld.applyMap(eye));
return ray;
}
};// OrthographicCamera
//////////////////////////////////////// SHADERS ////////////////////////////////////////
/// Abstract base class for the shaders
class BaseShader
{
public:
typedef math::Ray<Real> RayT;
BaseShader() {}
virtual ~BaseShader() {}
/// @brief Defines the interface of the virtual function that returns a RGB color.
/// @param xyz World position of the intersection point.
/// @param nml Normal in world space at the intersection point.
/// @param dir Direction of the ray in world space.
virtual Film::RGBA operator()(const Vec3R& xyz, const Vec3R& nml, const Vec3R& dir) const = 0;
/// @brief Deprecated, use the method above instead.
OPENVDB_DEPRECATED Film::RGBA operator()(const Vec3R& xyz, const Vec3R& nml, const RayT& ray) const
{
return (*this)(xyz, nml, ray.dir());
}
virtual BaseShader* copy() const = 0;
};
/// Shader that produces a simple matte
class MatteShader: public BaseShader
{
public:
MatteShader(const Film::RGBA& c = Film::RGBA(1.0f)): mRGBA(c) {}
virtual ~MatteShader() {}
virtual Film::RGBA operator()(const Vec3R&, const Vec3R&, const Vec3R&) const
{
return mRGBA;
}
virtual BaseShader* copy() const { return new MatteShader(*this); }
private:
const Film::RGBA mRGBA;
};
/// Color shader that treats the surface normal (x, y, z) as an RGB color
class NormalShader: public BaseShader
{
public:
NormalShader(const Film::RGBA& c = Film::RGBA(1.0f)) : mRGBA(c*0.5f) {}
virtual ~NormalShader() {}
virtual Film::RGBA operator()(const Vec3R&, const Vec3R& normal, const Vec3R&) const
{
return mRGBA*Film::RGBA(normal[0]+1.0f, normal[1]+1.0f, normal[2]+1.0f);
}
virtual BaseShader* copy() const { return new NormalShader(*this); }
private:
const Film::RGBA mRGBA;
};
/// Color shader that treats position (x, y, z) as an RGB color in a
/// cube defined from an axis-aligned bounding box in world space.
class PositionShader: public BaseShader
{
public:
PositionShader(const math::BBox<Vec3R>& bbox, const Film::RGBA& c = Film::RGBA(1.0f))
: mMin(bbox.min()), mInvDim(1.0/bbox.extents()), mRGBA(c) {}
virtual ~PositionShader() {}
virtual Film::RGBA operator()(const Vec3R& xyz, const Vec3R&, const Vec3R&) const
{
const Vec3R rgb = (xyz - mMin)*mInvDim;
return mRGBA*Film::RGBA(rgb[0], rgb[1], rgb[2]);
}
virtual BaseShader* copy() const { return new PositionShader(*this); }
private:
const Vec3R mMin, mInvDim;
const Film::RGBA mRGBA;
};
/// @brief Simple diffuse Lambertian surface shader
/// @details Diffuse simply means the color is constant (e.g., white), and
/// Lambertian implies that the (radiant) intensity is directly proportional
/// to the cosine of the angle between the surface normal and the direction
/// of the light source.
class DiffuseShader: public BaseShader
{
public:
DiffuseShader(const Film::RGBA& d = Film::RGBA(1.0f)): mRGBA(d) {}
virtual Film::RGBA operator()(const Vec3R&, const Vec3R& normal, const Vec3R& rayDir) const
{
// We assume a single directional light source at the camera,
// so the cosine of the angle between the surface normal and the
// direction of the light source becomes the dot product of the
// surface normal and inverse direction of the ray. We also ignore
// negative dot products, corresponding to strict one-sided shading.
//return mRGBA * math::Max(0.0, normal.dot(-rayDir));
// We take the abs of the dot product corresponding to having
// light sources at +/- rayDir, i.e., two-sided shading.
return mRGBA * math::Abs(normal.dot(rayDir));
}
virtual BaseShader* copy() const { return new DiffuseShader(*this); }
private:
const Film::RGBA mRGBA;
};
//////////////////////////////////////// RAYTRACER ////////////////////////////////////////
template<typename GridT>
inline void rayTrace(const GridT& grid,
const BaseShader& shader,
BaseCamera& camera,
size_t pixelSamples,
unsigned int seed,
bool threaded)
{
LevelSetRayTracer<GridT, tools::LevelSetRayIntersector<GridT> >
tracer(grid, shader, camera, pixelSamples, seed);
tracer.render(threaded);
}
template<typename GridT, typename IntersectorT>
inline void rayTrace(const GridT&,
const IntersectorT& inter,
const BaseShader& shader,
BaseCamera& camera,
size_t pixelSamples,
unsigned int seed,
bool threaded)
{
LevelSetRayTracer<GridT, IntersectorT> tracer(inter, shader, camera, pixelSamples, seed);
tracer.render(threaded);
}
////////////////////////////////////////
template<typename GridT, typename IntersectorT>
inline LevelSetRayTracer<GridT, IntersectorT>::
LevelSetRayTracer(const GridT& grid,
const BaseShader& shader,
BaseCamera& camera,
size_t pixelSamples,
unsigned int seed)
: mIsMaster(true),
mRand(NULL),
mInter(grid),
mShader(shader.copy()),
mCamera(&camera)
{
this->setPixelSamples(pixelSamples, seed);
}
template<typename GridT, typename IntersectorT>
inline LevelSetRayTracer<GridT, IntersectorT>::
LevelSetRayTracer(const IntersectorT& inter,
const BaseShader& shader,
BaseCamera& camera,
size_t pixelSamples,
unsigned int seed)
: mIsMaster(true),
mRand(NULL),
mInter(inter),
mShader(shader.copy()),
mCamera(&camera)
{
this->setPixelSamples(pixelSamples, seed);
}
template<typename GridT, typename IntersectorT>
inline LevelSetRayTracer<GridT, IntersectorT>::
LevelSetRayTracer(const LevelSetRayTracer& other) :
mIsMaster(false),
mRand(other.mRand),
mInter(other.mInter),
mShader(other.mShader->copy()),
mCamera(other.mCamera),
mSubPixels(other.mSubPixels)
{
}
template<typename GridT, typename IntersectorT>
inline LevelSetRayTracer<GridT, IntersectorT>::
~LevelSetRayTracer()
{
if (mIsMaster) delete [] mRand;
}
template<typename GridT, typename IntersectorT>
inline void LevelSetRayTracer<GridT, IntersectorT>::
setGrid(const GridT& grid)
{
assert(mIsMaster);
mInter = IntersectorT(grid);
}
template<typename GridT, typename IntersectorT>
inline void LevelSetRayTracer<GridT, IntersectorT>::
setIntersector(const IntersectorT& inter)
{
assert(mIsMaster);
mInter = inter;
}
template<typename GridT, typename IntersectorT>
inline void LevelSetRayTracer<GridT, IntersectorT>::
setShader(const BaseShader& shader)
{
assert(mIsMaster);
mShader.reset(shader.copy());
}
template<typename GridT, typename IntersectorT>
inline void LevelSetRayTracer<GridT, IntersectorT>::
setCamera(BaseCamera& camera)
{
assert(mIsMaster);
mCamera = &camera;
}
template<typename GridT, typename IntersectorT>
inline void LevelSetRayTracer<GridT, IntersectorT>::
setPixelSamples(size_t pixelSamples, unsigned int seed)
{
assert(mIsMaster);
if (pixelSamples == 0) {
OPENVDB_THROW(ValueError, "pixelSamples must be larger then zero!");
}
mSubPixels = pixelSamples - 1;
delete [] mRand;
if (mSubPixels > 0) {
mRand = new double[16];
math::Rand01<double> rand(seed);//offsets for anti-aliaing by jittered super-sampling
for (size_t i=0; i<16; ++i) mRand[i] = rand();
} else {
mRand = NULL;
}
}
template<typename GridT, typename IntersectorT>
inline void LevelSetRayTracer<GridT, IntersectorT>::
render(bool threaded)
{
tbb::blocked_range<size_t> range(0, mCamera->height());
threaded ? tbb::parallel_for(range, *this) : (*this)(range);
}
template<typename GridT, typename IntersectorT>
inline void LevelSetRayTracer<GridT, IntersectorT>::
operator()(const tbb::blocked_range<size_t>& range) const
{
const BaseShader& shader = *mShader;
Vec3Type xyz, nml;
const float frac = 1.0f / (1.0f + mSubPixels);
for (size_t j=range.begin(), n=0, je = range.end(); j<je; ++j) {
for (size_t i=0, ie = mCamera->width(); i<ie; ++i) {
Film::RGBA& bg = mCamera->pixel(i,j);
RayType ray = mCamera->getRay(i, j);//primary ray
Film::RGBA c = mInter.intersectsWS(ray, xyz, nml) ? shader(xyz, nml, ray.dir()) : bg;
for (size_t k=0; k<mSubPixels; ++k, n +=2 ) {
ray = mCamera->getRay(i, j, mRand[n & 15], mRand[(n+1) & 15]);
c += mInter.intersectsWS(ray, xyz, nml) ? shader(xyz, nml, ray.dir()) : bg;
}//loop over sub-pixels
bg = c*frac;
}//loop over image height
}//loop over image width
}
} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_TOOLS_RAYTRACER_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2013 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|