This file is indexed.

/usr/include/openvdb/tools/GridTransformer.h is in libopenvdb-dev 2.1.0-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2013 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file GridTransformer.h

#ifndef OPENVDB_TOOLS_GRIDTRANSFORMER_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_GRIDTRANSFORMER_HAS_BEEN_INCLUDED

#include <cmath>
#include <boost/bind.hpp>
#include <boost/function.hpp>
#include <boost/shared_ptr.hpp>
#include <tbb/blocked_range.h>
#include <tbb/parallel_reduce.h>
#include <openvdb/Grid.h>
#include <openvdb/Types.h>
#include <openvdb/math/Math.h> // for isApproxEqual()
#include <openvdb/util/NullInterrupter.h>
#include "Interpolation.h"
#include "LevelSetRebuild.h" // for doLevelSetRebuild()

namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {

/// @brief Resample an input grid into an output grid of the same type such that,
/// after resampling, the input and output grids coincide (apart from sampling
/// artifacts), but the output grid's transform is unchanged.
/// @details Specifically, this function resamples the input grid into the output
/// grid's index space, using a sampling kernel like PointSampler, BoxSampler,
/// or QuadraticSampler.
/// @param inGrid       the grid to be resampled
/// @param outGrid      the grid into which to write the resampled voxel data
/// @param interrupter  an object adhering to the util::NullInterrupter interface
/// @par Example:
/// @code
/// // Create an input grid with the default identity transform
/// // and populate it with a level-set sphere.
/// FloatGrid::ConstPtr src = tools::makeSphere(...);
/// // Create an output grid and give it a uniform-scale transform.
/// FloatGrid::Ptr dest = FloatGrid::create();
/// const float voxelSize = 0.5;
/// dest->setTransform(math::Transform::createLinearTransform(voxelSize));
/// // Resample the input grid into the output grid, reproducing
/// // the level-set sphere at a smaller voxel size.
/// MyInterrupter interrupter = ...;
/// tools::resampleToMatch<tools::QuadraticSampler>(*src, *dest, interrupter);
/// @endcode
template<typename Sampler, typename Interrupter, typename GridType>
inline void
resampleToMatch(const GridType& inGrid, GridType& outGrid, Interrupter& interrupter);

/// @brief Resample an input grid into an output grid of the same type such that,
/// after resampling, the input and output grids coincide (apart from sampling
/// artifacts), but the output grid's transform is unchanged.
/// @details Specifically, this function resamples the input grid into the output
/// grid's index space, using a sampling kernel like PointSampler, BoxSampler,
/// or QuadraticSampler.
/// @param inGrid       the grid to be resampled
/// @param outGrid      the grid into which to write the resampled voxel data
/// @par Example:
/// @code
/// // Create an input grid with the default identity transform
/// // and populate it with a level-set sphere.
/// FloatGrid::ConstPtr src = tools::makeSphere(...);
/// // Create an output grid and give it a uniform-scale transform.
/// FloatGrid::Ptr dest = FloatGrid::create();
/// const float voxelSize = 0.5;
/// dest->setTransform(math::Transform::createLinearTransform(voxelSize));
/// // Resample the input grid into the output grid, reproducing
/// // the level-set sphere at a smaller voxel size.
/// tools::resampleToMatch<tools::QuadraticSampler>(*src, *dest);
/// @endcode
template<typename Sampler, typename GridType>
inline void
resampleToMatch(const GridType& inGrid, GridType& outGrid);


////////////////////////////////////////


namespace internal {

/// @brief A TileSampler wraps a grid sampler of another type (BoxSampler,
/// QuadraticSampler, etc.), and for samples that fall within a given tile
/// of the grid, it returns a cached tile value instead of accessing the grid.
template<typename Sampler, typename TreeT>
class TileSampler: public Sampler
{
public:
    typedef typename TreeT::ValueType ValueT;

    /// @param b        the index-space bounding box of a particular grid tile
    /// @param tileVal  the tile's value
    /// @param on       the tile's active state
    TileSampler(const CoordBBox& b, const ValueT& tileVal, bool on):
        mBBox(b.min().asVec3d(), b.max().asVec3d()), mVal(tileVal), mActive(on), mEmpty(false)
    {
        mBBox.expand(-this->radius()); // shrink the bounding box by the sample radius
        mEmpty = mBBox.empty();
    }

    bool sample(const TreeT& inTree, const Vec3R& inCoord, ValueT& result) const
    {
        if (!mEmpty && mBBox.isInside(inCoord)) { result = mVal; return mActive; }
        return Sampler::sample(inTree, inCoord, result);
    }

protected:
    BBoxd mBBox;
    ValueT mVal;
    bool mActive, mEmpty;
};


/// @brief For point sampling, tree traversal is less expensive than testing
/// bounding box membership.
template<typename TreeT>
struct TileSampler<PointSampler, TreeT>: public PointSampler {
    TileSampler(const CoordBBox&, const typename TreeT::ValueType&, bool) {}
};

/// @brief For point sampling, tree traversal is less expensive than testing
/// bounding box membership.
template<typename TreeT>
struct TileSampler<StaggeredPointSampler, TreeT>: public StaggeredPointSampler {
    TileSampler(const CoordBBox&, const typename TreeT::ValueType&, bool) {}
};

} // namespace internal


////////////////////////////////////////


/// A GridResampler applies a geometric transformation to an
/// input grid using one of several sampling schemes, and stores
/// the result in an output grid.
///
/// Usage:
/// @code
/// GridResampler resampler();
/// resampler.transformGrid<BoxSampler>(xform, inGrid, outGrid);
/// @endcode
/// where @c xform is a functor that implements the following methods:
/// @code
/// bool isAffine() const
/// openvdb::Vec3d transform(const openvdb::Vec3d&) const
/// openvdb::Vec3d invTransform(const openvdb::Vec3d&) const
/// @endcode
/// @note When the transform is affine and can be expressed as a 4 x 4 matrix,
/// a GridTransformer is much more efficient than a GridResampler.
class GridResampler
{
public:
    typedef boost::shared_ptr<GridResampler> Ptr;
    typedef boost::function<bool (void)> InterruptFunc;

    GridResampler(): mThreaded(true), mTransformTiles(true) {}
    virtual ~GridResampler() {}

    /// Enable or disable threading.  (Threading is enabled by default.)
    void setThreaded(bool b) { mThreaded = b; }
    /// Return @c true if threading is enabled.
    bool threaded() const { return mThreaded; }
    /// Enable or disable processing of tiles.  (Enabled by default, except for level set grids.)
    void setTransformTiles(bool b) { mTransformTiles = b; }
    /// Return @c true if tile processing is enabled.
    bool transformTiles() const { return mTransformTiles; }

    /// @brief Allow processing to be aborted by providing an interrupter object.
    /// The interrupter will be queried periodically during processing.
    /// @see util/NullInterrupter.h for interrupter interface requirements.
    template<typename InterrupterType> void setInterrupter(InterrupterType&);

    template<typename Sampler, typename GridT, typename Transformer>
    void transformGrid(const Transformer&,
        const GridT& inGrid, GridT& outGrid) const;

protected:
    template<typename Sampler, typename GridT, typename Transformer>
    void applyTransform(const Transformer&, const GridT& inGrid, GridT& outGrid) const;

    bool interrupt() const { return mInterrupt && mInterrupt(); }

private:
    template<typename Sampler, typename InTreeT, typename OutTreeT, typename Transformer>
    static void transformBBox(const Transformer&, const CoordBBox& inBBox,
        const InTreeT& inTree, OutTreeT& outTree, const InterruptFunc&,
        const Sampler& = Sampler());

    template<typename Sampler, typename TreeT, typename Transformer>
    class RangeProcessor;

    bool mThreaded, mTransformTiles;
    InterruptFunc mInterrupt;
};


////////////////////////////////////////


/// @brief A GridTransformer applies a geometric transformation to an
/// input grid using one of several sampling schemes, and stores
/// the result in an output grid.
///
/// @note GridTransformer is optimized for affine transformations.
///
/// Usage:
/// @code
/// Mat4R xform = ...;
/// GridTransformer transformer(xform);
/// transformer.transformGrid<BoxSampler>(inGrid, outGrid);
/// @endcode
/// or
/// @code
/// Vec3R pivot = ..., scale = ..., rotate = ..., translate = ...;
/// GridTransformer transformer(pivot, scale, rotate, translate);
/// transformer.transformGrid<QuadraticSampler>(inGrid, outGrid);
/// @endcode
class GridTransformer: public GridResampler
{
public:
    typedef boost::shared_ptr<GridTransformer> Ptr;

    GridTransformer(const Mat4R& xform);
    GridTransformer(
        const Vec3R& pivot,
        const Vec3R& scale,
        const Vec3R& rotate,
        const Vec3R& translate,
        const std::string& xformOrder = "tsr",
        const std::string& rotationOrder = "zyx");
    virtual ~GridTransformer() {}

    const Mat4R& getTransform() const { return mTransform; }

    template<class Sampler, class GridT>
    void transformGrid(const GridT& inGrid, GridT& outGrid) const;

private:
    struct MatrixTransform;

    inline void init(const Vec3R& pivot, const Vec3R& scale,
        const Vec3R& rotate, const Vec3R& translate,
        const std::string& xformOrder, const std::string& rotOrder);

    Vec3R mPivot;
    Vec3i mMipLevels;
    Mat4R mTransform, mPreScaleTransform, mPostScaleTransform;
};


////////////////////////////////////////


namespace local_util {

/// @brief Decompose an affine transform into scale, rotation and translation components.
/// @return @c false if the given matrix is not affine or cannot otherwise be decomposed.
/// @todo This is not safe for matrices with shear.
template<typename T>
inline bool
decompose(const math::Mat4<T>& m, math::Vec3<T>& scale,
    math::Vec3<T>& rotate, math::Vec3<T>& translate)
{
    if (!math::isAffine(m)) return false;

    // this is the translation in world space
    translate = m.getTranslation();
    // Extract translation.
    math::Mat3<T> temp = m.getMat3();

    scale.init(
        (math::Vec3<T>(1, 0, 0) * temp).length(),
        (math::Vec3<T>(0, 1, 0) * temp).length(),
        (math::Vec3<T>(0, 0, 1) * temp).length());
    // Extract scale.
    temp *= math::scale<math::Mat3<T> >(scale).inverse();

    rotate = math::eulerAngles(temp, math::XYZ_ROTATION);

    if (!rotate.eq(math::Vec3<T>::zero()) && !scale.eq(math::Vec3<T>(scale[0]))) {
        // No unique decomposition if scale is nonuniform and rotation is nonzero.
        return false;
    }
    return true;
}

} // namespace local_util


////////////////////////////////////////


/// This class implements the Transformer functor interface (specifically,
/// the isAffine(), transform() and invTransform() methods) for a transform
/// that is expressed as a 4 x 4 matrix.
struct GridTransformer::MatrixTransform
{
    MatrixTransform(): mat(Mat4R::identity()), invMat(Mat4R::identity()) {}
    MatrixTransform(const Mat4R& xform): mat(xform), invMat(xform.inverse()) {}

    bool isAffine() const { return math::isAffine(mat); }

    Vec3R transform(const Vec3R& pos) const { return mat.transformH(pos); }

    Vec3R invTransform(const Vec3R& pos) const { return invMat.transformH(pos); }

    Mat4R mat, invMat;
};


////////////////////////////////////////


/// @brief This class implements the Transformer functor interface (specifically,
/// the isAffine(), transform() and invTransform() methods) for a transform
/// that maps an A grid into a B grid's index space such that, after resampling,
/// A's index space and transform match B's index space and transform.
class ABTransform
{
public:
    /// @param aXform  the A grid's transform
    /// @param bXform  the B grid's transform
    ABTransform(const math::Transform& aXform, const math::Transform& bXform):
        mAXform(aXform),
        mBXform(bXform),
        mIsAffine(mAXform.isLinear() && mBXform.isLinear()),
        mIsIdentity(mIsAffine && mAXform == mBXform)
        {}

    bool isAffine() const { return mIsAffine; }

    bool isIdentity() const { return mIsIdentity; }

    openvdb::Vec3R transform(const openvdb::Vec3R& pos) const
    {
        return mBXform.worldToIndex(mAXform.indexToWorld(pos));
    }

    openvdb::Vec3R invTransform(const openvdb::Vec3R& pos) const
    {
        return mAXform.worldToIndex(mBXform.indexToWorld(pos));
    }

    const math::Transform& getA() const { return mAXform; }
    const math::Transform& getB() const { return mBXform; }

private:
    const math::Transform &mAXform, &mBXform;
    const bool mIsAffine;
    const bool mIsIdentity;
};


/// The normal entry points for resampling are the resampleToMatch() functions,
/// which correctly handle level set grids under scaling and shearing.
/// doResampleToMatch() is mainly for internal use but is typically faster
/// for level sets, and correct provided that no scaling or shearing is needed.
///
/// @warning Do not use this function to scale or shear a level set grid.
template<typename Sampler, typename Interrupter, typename GridType>
inline void
doResampleToMatch(const GridType& inGrid, GridType& outGrid, Interrupter& interrupter)
{
    ABTransform xform(inGrid.transform(), outGrid.transform());

    if (Sampler::consistent() && xform.isIdentity()) {
        // If the transforms of the input and output are identical, the
        // output tree is simply a deep copy of the input tree.
        outGrid.setTree(inGrid.tree().copy());
    } else if (xform.isAffine()) {
        // If the input and output transforms are both affine, create an
        // input to output transform (in:index-to-world * out:world-to-index)
        // and use the fast GridTransformer API.
        Mat4R mat = xform.getA().baseMap()->getAffineMap()->getMat4() *
            ( xform.getB().baseMap()->getAffineMap()->getMat4().inverse() );

        GridTransformer transformer(mat);
        transformer.setInterrupter(interrupter);

        // Transform the input grid and store the result in the output grid.
        transformer.transformGrid<Sampler>(inGrid, outGrid);
    } else {
        // If either the input or the output transform is non-affine,
        // use the slower GridResampler API.
        GridResampler resampler;
        resampler.setInterrupter(interrupter);

        resampler.transformGrid<Sampler>(xform, inGrid, outGrid);
    }
}


template<typename Sampler, typename Interrupter, typename GridType>
inline void
resampleToMatch(const GridType& inGrid, GridType& outGrid, Interrupter& interrupter)
{
    if (inGrid.getGridClass() == GRID_LEVEL_SET) {
        // If the input grid is a level set, resample it using the level set rebuild tool.

        if (inGrid.constTransform() == outGrid.constTransform()) {
            // If the transforms of the input and output grids are identical,
            // the output tree is simply a deep copy of the input tree.
            outGrid.setTree(inGrid.tree().copy());
            return;
        }

        // If the output grid is a level set, resample the input grid to have the output grid's
        // background value.  Otherwise, preserve the input grid's background value.
        typedef typename GridType::ValueType ValueT;
        const ValueT halfWidth = ((outGrid.getGridClass() == openvdb::GRID_LEVEL_SET)
            ? ValueT(outGrid.background() * (1.0 / outGrid.voxelSize()[0]))
            : ValueT(inGrid.background() * (1.0 / inGrid.voxelSize()[0])));

        typename GridType::Ptr tempGrid;
        try {
            tempGrid = doLevelSetRebuild(inGrid, /*iso=*/zeroVal<ValueT>(),
                /*exWidth=*/halfWidth, /*inWidth=*/halfWidth,
                &outGrid.constTransform(), &interrupter);
        } catch (TypeError&) {
            // The input grid is classified as a level set, but it has a value type
            // that is not supported by the level set rebuild tool.  Fall back to
            // using the generic resampler.
            tempGrid.reset();
        }
        if (tempGrid) {
            outGrid.setTree(tempGrid->treePtr());
            return;
        }
    }

    // If the input grid is not a level set, use the generic resampler.
    doResampleToMatch<Sampler>(inGrid, outGrid, interrupter);
}


template<typename Sampler, typename GridType>
inline void
resampleToMatch(const GridType& inGrid, GridType& outGrid)
{
    util::NullInterrupter interrupter;
    resampleToMatch<Sampler>(inGrid, outGrid, interrupter);
}


////////////////////////////////////////


inline
GridTransformer::GridTransformer(const Mat4R& xform):
    mPivot(0, 0, 0),
    mMipLevels(0, 0, 0),
    mTransform(xform),
    mPreScaleTransform(Mat4R::identity()),
    mPostScaleTransform(Mat4R::identity())
{
    Vec3R scale, rotate, translate;
    if (local_util::decompose(mTransform, scale, rotate, translate)) {
        // If the transform can be decomposed into affine components,
        // use them to set up a mipmapping-like scheme for downsampling.
        init(mPivot, scale, rotate, translate, "srt", "zyx");
    }
}


inline
GridTransformer::GridTransformer(
    const Vec3R& pivot, const Vec3R& scale,
    const Vec3R& rotate, const Vec3R& translate,
    const std::string& xformOrder, const std::string& rotOrder):
    mPivot(0, 0, 0),
    mMipLevels(0, 0, 0),
    mPreScaleTransform(Mat4R::identity()),
    mPostScaleTransform(Mat4R::identity())
{
    init(pivot, scale, rotate, translate, xformOrder, rotOrder);
}


////////////////////////////////////////


inline void
GridTransformer::init(
    const Vec3R& pivot, const Vec3R& scale,
    const Vec3R& rotate, const Vec3R& translate,
    const std::string& xformOrder, const std::string& rotOrder)
{
    if (xformOrder.size() != 3) {
        OPENVDB_THROW(ValueError, "invalid transform order (" + xformOrder + ")");
    }
    if (rotOrder.size() != 3) {
        OPENVDB_THROW(ValueError, "invalid rotation order (" + rotOrder + ")");
    }

    mPivot = pivot;

    // Scaling is handled via a mipmapping-like scheme of successive
    // halvings of the tree resolution, until the remaining scale
    // factor is greater than or equal to 1/2.
    Vec3R scaleRemainder = scale;
    for (int i = 0; i < 3; ++i) {
        double s = std::fabs(scale(i));
        if (s < 0.5) {
            mMipLevels(i) = int(std::floor(-std::log(s)/std::log(2.0)));
            scaleRemainder(i) = scale(i) * (1 << mMipLevels(i));
        }
    }

    // Build pre-scale and post-scale transform matrices based on
    // the user-specified order of operations.
    // Note that we iterate over the transform order string in reverse order
    // (e.g., "t", "r", "s", given "srt").  This is because math::Mat matrices
    // postmultiply row vectors rather than premultiplying column vectors.
    mTransform = mPreScaleTransform = mPostScaleTransform = Mat4R::identity();
    Mat4R* remainder = &mPostScaleTransform;
    int rpos, spos, tpos;
    rpos = spos = tpos = 3;
    for (int ix = 2; ix >= 0; --ix) { // reverse iteration
        switch (xformOrder[ix]) {

        case 'r':
            rpos = ix;
            mTransform.preTranslate(pivot);
            remainder->preTranslate(pivot);

            int xpos, ypos, zpos;
            xpos = ypos = zpos = 3;
            for (int ir = 2; ir >= 0; --ir) {
                switch (rotOrder[ir]) {
                case 'x':
                    xpos = ir;
                    mTransform.preRotate(math::X_AXIS, rotate.x());
                    remainder->preRotate(math::X_AXIS, rotate.x());
                    break;
                case 'y':
                    ypos = ir;
                    mTransform.preRotate(math::Y_AXIS, rotate.y());
                    remainder->preRotate(math::Y_AXIS, rotate.y());
                    break;
                case 'z':
                    zpos = ir;
                    mTransform.preRotate(math::Z_AXIS, rotate.z());
                    remainder->preRotate(math::Z_AXIS, rotate.z());
                    break;
                }
            }
            // Reject rotation order strings that don't contain exactly one
            // instance of "x", "y" and "z".
            if (xpos > 2 || ypos > 2 || zpos > 2) {
                OPENVDB_THROW(ValueError, "invalid rotation order (" + rotOrder + ")");
            }

            mTransform.preTranslate(-pivot);
            remainder->preTranslate(-pivot);
            break;

        case 's':
            spos = ix;
            mTransform.preTranslate(pivot);
            mTransform.preScale(scale);
            mTransform.preTranslate(-pivot);

            remainder->preTranslate(pivot);
            remainder->preScale(scaleRemainder);
            remainder->preTranslate(-pivot);
            remainder = &mPreScaleTransform;
            break;

        case 't':
            tpos = ix;
            mTransform.preTranslate(translate);
            remainder->preTranslate(translate);
            break;
        }
    }
    // Reject transform order strings that don't contain exactly one
    // instance of "t", "r" and "s".
    if (tpos > 2 || rpos > 2 || spos > 2) {
        OPENVDB_THROW(ValueError, "invalid transform order (" + xformOrder + ")");
    }
}


////////////////////////////////////////


template<typename InterrupterType>
void
GridResampler::setInterrupter(InterrupterType& interrupter)
{
    mInterrupt = boost::bind(&InterrupterType::wasInterrupted,
        /*this=*/&interrupter, /*percent=*/-1);
}


template<typename Sampler, typename GridT, typename Transformer>
void
GridResampler::transformGrid(const Transformer& xform,
    const GridT& inGrid, GridT& outGrid) const
{
    outGrid.setBackground(inGrid.background());
    applyTransform<Sampler>(xform, inGrid, outGrid);
}


template<class Sampler, class GridT>
void
GridTransformer::transformGrid(const GridT& inGrid, GridT& outGrid) const
{
    outGrid.setBackground(inGrid.background());

    if (!Sampler::mipmap() || mMipLevels == Vec3i::zero()) {
        // Skip the mipmapping step.
        const MatrixTransform xform(mTransform);
        applyTransform<Sampler>(xform, inGrid, outGrid);

    } else {
        bool firstPass = true;
        const typename GridT::ValueType background = inGrid.background();
        typename GridT::Ptr tempGrid = GridT::create(background);

        if (!mPreScaleTransform.eq(Mat4R::identity())) {
            firstPass = false;
            // Apply the pre-scale transform to the input grid
            // and store the result in a temporary grid.
            const MatrixTransform xform(mPreScaleTransform);
            applyTransform<Sampler>(xform, inGrid, *tempGrid);
        }

        // While the scale factor along one or more axes is less than 1/2,
        // scale the grid by half along those axes.
        Vec3i count = mMipLevels; // # of halvings remaining per axis
        while (count != Vec3i::zero()) {
            MatrixTransform xform;
            xform.mat.setTranslation(mPivot);
            xform.mat.preScale(Vec3R(
                count.x() ? .5 : 1, count.y() ? .5 : 1, count.z() ? .5 : 1));
            xform.mat.preTranslate(-mPivot);
            xform.invMat = xform.mat.inverse();

            if (firstPass) {
                firstPass = false;
                // Scale the input grid and store the result in a temporary grid.
                applyTransform<Sampler>(xform, inGrid, *tempGrid);
            } else {
                // Scale the temporary grid and store the result in a transient grid,
                // then swap the two and discard the transient grid.
                typename GridT::Ptr destGrid = GridT::create(background);
                applyTransform<Sampler>(xform, *tempGrid, *destGrid);
                tempGrid.swap(destGrid);
            }
            // (3, 2, 1) -> (2, 1, 0) -> (1, 0, 0) -> (0, 0, 0), etc.
            count = math::maxComponent(count - 1, Vec3i::zero());
        }

        // Apply the post-scale transform and store the result in the output grid.
        if (!mPostScaleTransform.eq(Mat4R::identity())) {
            const MatrixTransform xform(mPostScaleTransform);
            applyTransform<Sampler>(xform, *tempGrid, outGrid);
        } else {
            outGrid.setTree(tempGrid->treePtr());
        }
    }
}


////////////////////////////////////////


template<class Sampler, class TreeT, typename Transformer>
class GridResampler::RangeProcessor
{
public:
    typedef typename TreeT::LeafCIter LeafIterT;
    typedef typename TreeT::ValueAllCIter TileIterT;
    typedef typename tree::IteratorRange<LeafIterT> LeafRange;
    typedef typename tree::IteratorRange<TileIterT> TileRange;
    typedef typename tree::ValueAccessor<const TreeT> InTreeAccessor;
    typedef typename tree::ValueAccessor<TreeT> OutTreeAccessor;

    RangeProcessor(const Transformer& xform, const CoordBBox& b, const TreeT& inT, TreeT& outT):
        mIsRoot(true), mXform(xform), mBBox(b),
        mInTree(inT), mOutTree(&outT), mInAcc(mInTree), mOutAcc(*mOutTree)
    {}

    RangeProcessor(const Transformer& xform, const CoordBBox& b, const TreeT& inTree):
        mIsRoot(false), mXform(xform), mBBox(b),
        mInTree(inTree), mOutTree(new TreeT(inTree.background())),
        mInAcc(mInTree), mOutAcc(*mOutTree)
    {}

    ~RangeProcessor() { if (!mIsRoot) delete mOutTree; }

    /// Splitting constructor: don't copy the original processor's output tree
    RangeProcessor(RangeProcessor& other, tbb::split):
        mIsRoot(false),
        mXform(other.mXform),
        mBBox(other.mBBox),
        mInTree(other.mInTree),
        mOutTree(new TreeT(mInTree.background())),
        mInAcc(mInTree),
        mOutAcc(*mOutTree),
        mInterrupt(other.mInterrupt)
    {}

    void setInterrupt(const InterruptFunc& f) { mInterrupt = f; }

    /// Transform each leaf node in the given range.
    void operator()(LeafRange& r)
    {
        for ( ; r; ++r) {
            if (interrupt()) break;
            LeafIterT i = r.iterator();
            CoordBBox bbox(i->origin(), i->origin() + Coord(i->dim()));
            if (!mBBox.empty()) {
                // Intersect the leaf node's bounding box with mBBox.
                bbox = CoordBBox(
                    Coord::maxComponent(bbox.min(), mBBox.min()),
                    Coord::minComponent(bbox.max(), mBBox.max()));
            }
            if (!bbox.empty()) {
                transformBBox<Sampler>(mXform, bbox, mInAcc, mOutAcc, mInterrupt);
            }
        }
    }

    /// Transform each non-background tile in the given range.
    void operator()(TileRange& r)
    {
        for ( ; r; ++r) {
            if (interrupt()) break;

            TileIterT i = r.iterator();
            // Skip voxels and background tiles.
            if (!i.isTileValue()) continue;
            if (!i.isValueOn() && math::isApproxEqual(*i, mOutTree->background())) continue;

            CoordBBox bbox;
            i.getBoundingBox(bbox);
            if (!mBBox.empty()) {
                // Intersect the tile's bounding box with mBBox.
                bbox = CoordBBox(
                    Coord::maxComponent(bbox.min(), mBBox.min()),
                    Coord::minComponent(bbox.max(), mBBox.max()));
            }
            if (!bbox.empty()) {
                /// @todo This samples the tile voxel-by-voxel, which is much too slow.
                /// Instead, compute the largest axis-aligned bounding box that is
                /// contained in the transformed tile (adjusted for the sampler radius)
                /// and fill it with the tile value.  Then transform the remaining voxels.
                internal::TileSampler<Sampler, InTreeAccessor>
                    sampler(bbox, i.getValue(), i.isValueOn());
                transformBBox(mXform, bbox, mInAcc, mOutAcc, mInterrupt, sampler);
            }
        }
    }

    /// Merge another processor's output tree into this processor's tree.
    void join(RangeProcessor& other)
    {
        if (!interrupt()) mOutTree->merge(*other.mOutTree);
    }

private:
    bool interrupt() const { return mInterrupt && mInterrupt(); }

    const bool mIsRoot; // true if mOutTree is the top-level tree
    Transformer mXform;
    CoordBBox mBBox;
    const TreeT& mInTree;
    TreeT* mOutTree;
    InTreeAccessor mInAcc;
    OutTreeAccessor mOutAcc;
    InterruptFunc mInterrupt;
};


////////////////////////////////////////


template<class Sampler, class GridT, typename Transformer>
void
GridResampler::applyTransform(const Transformer& xform,
    const GridT& inGrid, GridT& outGrid) const
{
    typedef typename GridT::TreeType TreeT;
    const TreeT& inTree = inGrid.tree();
    TreeT& outTree = outGrid.tree();

    typedef RangeProcessor<Sampler, TreeT, Transformer> RangeProc;

    const GridClass gridClass = inGrid.getGridClass();

    if (gridClass != GRID_LEVEL_SET && mTransformTiles) {
        // Independently transform the tiles of the input grid.
        // Note: Tiles in level sets can only be background tiles, and they
        // are handled more efficiently with a signed flood fill (see below).

        RangeProc proc(xform, CoordBBox(), inTree, outTree);
        proc.setInterrupt(mInterrupt);

        typename RangeProc::TileIterT tileIter = inTree.cbeginValueAll();
        tileIter.setMaxDepth(tileIter.getLeafDepth() - 1); // skip leaf nodes
        typename RangeProc::TileRange tileRange(tileIter);

        if (mThreaded) {
            tbb::parallel_reduce(tileRange, proc);
        } else {
            proc(tileRange);
        }
    }

    CoordBBox clipBBox;
    if (gridClass == GRID_LEVEL_SET) {
        // Inactive voxels in level sets can only be background voxels, and they
        // are handled more efficiently with a signed flood fill (see below).
        clipBBox = inGrid.evalActiveVoxelBoundingBox();
    }

    // Independently transform the leaf nodes of the input grid.

    RangeProc proc(xform, clipBBox, inTree, outTree);
    proc.setInterrupt(mInterrupt);

    typename RangeProc::LeafRange leafRange(inTree.cbeginLeaf());

    if (mThreaded) {
        tbb::parallel_reduce(leafRange, proc);
    } else {
        proc(leafRange);
    }

    // If the grid is a level set, mark inactive voxels as inside or outside.
    if (gridClass == GRID_LEVEL_SET) {
        outTree.pruneInactive();
        outTree.signedFloodFill();
    }
}


////////////////////////////////////////


//static
template<class Sampler, class InTreeT, class OutTreeT, class Transformer>
void
GridResampler::transformBBox(
    const Transformer& xform,
    const CoordBBox& bbox,
    const InTreeT& inTree,
    OutTreeT& outTree,
    const InterruptFunc& interrupt,
    const Sampler& sampler)
{
    typedef typename OutTreeT::ValueType ValueT;
    typedef math::Vec4<Real> Vec4R;

    // Transform the corners of the input tree's bounding box
    // and compute the enclosing bounding box in the output tree.
    Vec3R
        inRMin(bbox.min().x(), bbox.min().y(), bbox.min().z()),
        inRMax(bbox.max().x(), bbox.max().y(), bbox.max().z()),
        outRMin = math::minComponent(xform.transform(inRMin), xform.transform(inRMax)),
        outRMax = math::maxComponent(xform.transform(inRMin), xform.transform(inRMax));
    for (int i = 0; i < 8; ++i) {
        Vec3R corner(
            i & 1 ? inRMax.x() : inRMin.x(),
            i & 2 ? inRMax.y() : inRMin.y(),
            i & 4 ? inRMax.z() : inRMin.z());
        outRMin = math::minComponent(outRMin, xform.transform(corner));
        outRMax = math::maxComponent(outRMax, xform.transform(corner));
    }
    Vec3i
        outMin = local_util::floorVec3(outRMin) - Sampler::radius(),
        outMax = local_util::ceilVec3(outRMax) + Sampler::radius();

    if (!xform.isAffine()) {
        // If the transform is not affine, back-project each output voxel
        // into the input tree.
        Vec3R xyz, inXYZ;
        Coord outXYZ;
        int &x = outXYZ.x(), &y = outXYZ.y(), &z = outXYZ.z();
        for (x = outMin.x(); x <= outMax.x(); ++x) {
            if (interrupt && interrupt()) break;
            xyz.x() = x;
            for (y = outMin.y(); y <= outMax.y(); ++y) {
                if (interrupt && interrupt()) break;
                xyz.y() = y;
                for (z = outMin.z(); z <= outMax.z(); ++z) {
                    xyz.z() = z;
                    inXYZ = xform.invTransform(xyz);
                    ValueT result;
                    if (sampler.sample(inTree, inXYZ, result)) {
                        outTree.setValueOn(outXYZ, result);
                    } else {
                        // Note: Don't overwrite existing active values with inactive values.
                        if (!outTree.isValueOn(outXYZ)) {
                            outTree.setValueOff(outXYZ, result);
                        }
                    }
                }
            }
        }
    } else { // affine
        // Compute step sizes in the input tree that correspond to
        // unit steps in x, y and z in the output tree.
        const Vec3R
            translation = xform.invTransform(Vec3R(0, 0, 0)),
            deltaX = xform.invTransform(Vec3R(1, 0, 0)) - translation,
            deltaY = xform.invTransform(Vec3R(0, 1, 0)) - translation,
            deltaZ = xform.invTransform(Vec3R(0, 0, 1)) - translation;

#if defined(__ICC)
        /// @todo The following line is a workaround for bad code generation
        /// in opt-icc11.1_64 (but not debug or gcc) builds.  It should be
        /// removed once the problem has been addressed at its source.
        const Vec3R dummy = deltaX;
#endif

        // Step by whole voxels through the output tree, sampling the
        // corresponding fractional voxels of the input tree.
        Vec3R inStartX = xform.invTransform(Vec3R(outMin));
        Coord outXYZ;
        int &x = outXYZ.x(), &y = outXYZ.y(), &z = outXYZ.z();
        for (x = outMin.x(); x <= outMax.x(); ++x, inStartX += deltaX) {
            if (interrupt && interrupt()) break;
            Vec3R inStartY = inStartX;
            for (y = outMin.y(); y <= outMax.y(); ++y, inStartY += deltaY) {
                if (interrupt && interrupt()) break;
                Vec3R inXYZ = inStartY;
                for (z = outMin.z(); z <= outMax.z(); ++z, inXYZ += deltaZ) {
                    ValueT result;
                    if (sampler.sample(inTree, inXYZ, result)) {
                        outTree.setValueOn(outXYZ, result);
                    } else {
                        // Note: Don't overwrite existing active values with inactive values.
                        if (!outTree.isValueOn(outXYZ)) {
                            outTree.setValueOff(outXYZ, result);
                        }
                    }
                }
            }
        }
    }
} // GridResampler::transformBBox()

} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TOOLS_GRIDTRANSFORMER_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2013 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )