This file is indexed.

/usr/include/openvdb/math/Vec2.h is in libopenvdb-dev 2.1.0-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2013 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////

#ifndef OPENVDB_MATH_VEC2_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_VEC2_HAS_BEEN_INCLUDED

#include <cmath>
#include <openvdb/Exceptions.h>
#include "Math.h"
#include "Tuple.h"


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {

template<typename T> class Mat2;

template<typename T>
class Vec2: public Tuple<2, T>
{
public:
    typedef T value_type;
    typedef T ValueType;

    /// Trivial constructor, the vector is NOT initialized
    Vec2() {}

    /// Constructor with one argument, e.g.   Vec2f v(0);
    explicit Vec2(T val) { this->mm[0] = this->mm[1] = val; }

    /// Constructor with three arguments, e.g.   Vec2f v(1,2,3);
    Vec2(T x, T y)
    {
        this->mm[0] = x;
        this->mm[1] = y;
    }

    /// Constructor with array argument, e.g.   float a[2]; Vec2f v(a);
    template <typename Source>
    Vec2(Source *a)
    {
        this->mm[0] = a[0];
        this->mm[1] = a[1];
    } // trivial

    /// Conversion constructor
    template<typename Source>
    explicit Vec2(const Tuple<2, Source> &t)
    {
        this->mm[0] = static_cast<T>(t[0]);
        this->mm[1] = static_cast<T>(t[1]);
    }

    /// Reference to the component, e.g.   v.x() = 4.5f;
    T& x() {return this->mm[0];}
    T& y() {return this->mm[1];}

    /// Get the component, e.g.   float f = v.y();
    T x() const {return this->mm[0];}
    T y() const {return this->mm[1];}

    /// Alternative indexed reference to the elements
    T& operator()(int i) {return this->mm[i];}

    /// Alternative indexed constant reference to the elements,
    T operator()(int i) const {return this->mm[i];}

    T* asPointer() {return this->mm;}
    const T* asPointer() const {return this->mm;}

    /// "this" vector gets initialized to [x, y, z],
    /// calling v.init(); has same effect as calling v = Vec2::zero();
    const Vec2<T>& init(T x=0, T y=0)
    {
        this->mm[0] = x; this->mm[1] = y;
        return *this;
    }

    /// Set "this" vector to zero
    const Vec2<T>& setZero()
    {
        this->mm[0] = 0; this->mm[1] = 0;
        return *this;
    }

    /// Assignment operator
    template<typename Source>
    const Vec2<T>& operator=(const Vec2<Source> &v)
    {
        // note: don't static_cast because that suppresses warnings
        this->mm[0] = v[0];
        this->mm[1] = v[1];

        return *this;
    }

    /// Equality operator, does exact floating point comparisons
    bool operator==(const Vec2<T> &v) const
    {
        return (isExactlyEqual(this->mm[0], v.mm[0]) && isExactlyEqual(this->mm[1], v.mm[1]));
    }

    /// Inequality operator, does exact floating point comparisons
    bool operator!=(const Vec2<T> &v) const { return !(*this==v); }

    /// Test if "this" vector is equivalent to vector v with tolerance of eps
    bool eq(const Vec2<T> &v, T eps = static_cast<T>(1.0e-7)) const
    {
        return isApproxEqual(this->mm[0], v.mm[0], eps) &&
               isApproxEqual(this->mm[1], v.mm[1], eps);
    } // trivial

    /// Negation operator, for e.g.   v1 = -v2;
    Vec2<T> operator-() const {return Vec2<T>(-this->mm[0], -this->mm[1]);}

    /// this = v1 + v2
    /// "this", v1 and v2 need not be distinct objects, e.g. v.add(v1,v);
    template <typename T0, typename T1>
    const Vec2<T>& add(const Vec2<T0> &v1, const Vec2<T1> &v2)
    {
        this->mm[0] = v1[0] + v2[0];
        this->mm[1] = v1[1] + v2[1];

        return *this;
    }

    /// this = v1 - v2
    /// "this", v1 and v2 need not be distinct objects, e.g. v.sub(v1,v);
    template <typename T0, typename T1>
    const Vec2<T>& sub(const Vec2<T0> &v1, const Vec2<T1> &v2)
    {
        this->mm[0] = v1[0] - v2[0];
        this->mm[1] = v1[1] - v2[1];

        return *this;
    }

    /// this =  scalar*v, v need not be a distinct object from "this",
    /// e.g. v.scale(1.5,v1);
    template <typename T0, typename T1>
    const Vec2<T>& scale(T0 scalar, const Vec2<T1> &v)
    {
        this->mm[0] = scalar * v[0];
        this->mm[1] = scalar * v[1];

        return *this;
    }

    template <typename T0, typename T1>
    const Vec2<T> &div(T0 scalar, const Vec2<T1> &v)
    {
        this->mm[0] = v[0] / scalar;
        this->mm[1] = v[1] / scalar;

        return *this;
    }

    /// Dot product
    T dot(const Vec2<T> &v) const { return this->mm[0]*v[0] + this->mm[1]*v[1]; } // trivial

    /// Length of the vector
    T length() const
    {
        return static_cast<T>(sqrt(double(this->mm[0]*this->mm[0] + this->mm[1]*this->mm[1])));
    }

    /// Squared length of the vector, much faster than length() as it
    /// does not involve square root
    T lengthSqr() const { return (this->mm[0]*this->mm[0] + this->mm[1]*this->mm[1]); }

    /// this = normalized this
    bool normalize(T eps=1.0e-8)
    {
        T d = length();
        if (isApproxEqual(d, T(0), eps)) {
            return false;
        }
        *this *= (T(1) / d);
        return true;
    }

    /// return normalized this, throws if null vector
    Vec2<T> unit(T eps=0) const
    {
        T d;
        return unit(eps, d);
    }

    /// return normalized this and length, throws if null vector
    Vec2<T> unit(T eps, T& len) const
    {
        len = length();
        if (isApproxEqual(len, T(0), eps)) {
            OPENVDB_THROW(ArithmeticError, "Normalizing null 2-vector");
        }
        return *this / len;
    }

    /// Returns v, where \f$v_i *= scalar\f$ for \f$i \in [0, 1]\f$
    template <typename S>
    const Vec2<T> &operator*=(S scalar)
    {
        this->mm[0] *= scalar;
        this->mm[1] *= scalar;
        return *this;
    }

    /// Returns v0, where \f$v0_i *= v1_i\f$ for \f$i \in [0, 1]\f$
    template <typename S>
    const Vec2<T> &operator*=(const Vec2<S> &v1)
    {
        this->mm[0] *= v1[0];
        this->mm[1] *= v1[1];
        return *this;
    }

    /// Returns v, where \f$v_i /= scalar\f$ for \f$i \in [0, 1]\f$
    template <typename S>
    const Vec2<T> &operator/=(S scalar)
    {
        this->mm[0] /= scalar;
        this->mm[1] /= scalar;
        return *this;
    }

    /// Returns v0, where \f$v0_i /= v1_i\f$ for \f$i \in [0, 1]\f$
    template <typename S>
    const Vec2<T> &operator/=(const Vec2<S> &v1)
    {
        this->mm[0] /= v1[0];
        this->mm[1] /= v1[1];
        return *this;
    }

    /// Returns v, where \f$v_i += scalar\f$ for \f$i \in [0, 1]\f$
    template <typename S>
    const Vec2<T> &operator+=(S scalar)
    {
        this->mm[0] += scalar;
        this->mm[1] += scalar;
        return *this;
    }

    /// Returns v0, where \f$v0_i += v1_i\f$ for \f$i \in [0, 1]\f$
    template <typename S>
    const Vec2<T> &operator+=(const Vec2<S> &v1)
    {
        this->mm[0] += v1[0];
        this->mm[1] += v1[1];
        return *this;
    }

    /// Returns v, where \f$v_i += scalar\f$ for \f$i \in [0, 1]\f$
    template <typename S>
    const Vec2<T> &operator-=(S scalar)
    {
        this->mm[0] -= scalar;
        this->mm[1] -= scalar;
        return *this;
    }

    /// Returns v0, where \f$v0_i -= v1_i\f$ for \f$i \in [0, 1]\f$
    template <typename S>
    const Vec2<T> &operator-=(const Vec2<S> &v1)
    {
        this->mm[0] -= v1[0];
        this->mm[1] -= v1[1];
        return *this;
    }

    // Number of cols, rows, elements
    static unsigned numRows() { return 1; }
    static unsigned numColumns() { return 2; }
    static unsigned numElements() { return 2; }

    /// Returns the scalar component of v in the direction of onto, onto need
    /// not be unit. e.g   float c = Vec2f::component(v1,v2);
    T component(const Vec2<T> &onto, T eps=1.0e-8) const
    {
        T l = onto.length();
        if (isApproxEqual(l,  T(0), eps)) return 0;

        return dot(onto)*(T(1)/l);
    }

    /// Return the projection of v onto the vector, onto need not be unit
    /// e.g.   Vec2f v = Vec2f::projection(v,n);
    Vec2<T> projection(const Vec2<T> &onto, T eps=1.0e-8) const
    {
        T l = onto.lengthSqr();
        if (isApproxEqual(l, T(0), eps)) return Vec2::zero();

        return onto*(dot(onto)*(T(1)/l));
    }

    /// Return an arbitrary unit vector perpendicular to v
    /// Vector v must be a unit vector
    /// e.g.   v.normalize(); Vec2f n = Vec2f::getArbPerpendicular(v);
    Vec2<T> getArbPerpendicular() const { return Vec2<T>(-this->mm[1], this->mm[0]); }

    /// True if a Nan is present in vector
    bool isNan() const { return isnan(this->mm[0]) || isnan(this->mm[1]); }

    /// True if an Inf is present in vector
    bool isInfinite() const { return isinf(this->mm[0]) || isinf(this->mm[1]); }

    /// True if all no Nan or Inf values present
    bool isFinite() const { return finite(this->mm[0]) && finite(this->mm[1]); }

    /// Predefined constants, e.g.   Vec2f v = Vec2f::xNegAxis();
    static Vec2<T> zero() { return Vec2<T>(0, 0); }
};


/// Returns V, where \f$V_i = v_i * scalar\f$ for \f$i \in [0, 1]\f$
template <typename S, typename T>
inline Vec2<typename promote<S, T>::type> operator*(S scalar, const Vec2<T> &v)
{
    return v * scalar;
}

/// Returns V, where \f$V_i = v_i * scalar\f$ for \f$i \in [0, 1]\f$
template <typename S, typename T>
inline Vec2<typename promote<S, T>::type> operator*(const Vec2<T> &v, S scalar)
{
    Vec2<typename promote<S, T>::type> result(v);
    result *= scalar;
    return result;
}

/// Returns V, where \f$V_i = v0_i * v1_i\f$ for \f$i \in [0, 1]\f$
template <typename T0, typename T1>
inline Vec2<typename promote<T0, T1>::type> operator*(const Vec2<T0> &v0, const Vec2<T1> &v1)
{
    Vec2<typename promote<T0, T1>::type> result(v0[0] * v1[0], v0[1] * v1[1]);
    return result;
}

/// Returns V, where \f$V_i = scalar / v_i\f$ for \f$i \in [0, 1]\f$
template <typename S, typename T>
inline Vec2<typename promote<S, T>::type> operator/(S scalar, const Vec2<T> &v)
{
    return Vec2<typename promote<S, T>::type>(scalar/v[0], scalar/v[1]);
}

/// Returns V, where \f$V_i = v_i / scalar\f$ for \f$i \in [0, 1]\f$
template <typename S, typename T>
inline Vec2<typename promote<S, T>::type> operator/(const Vec2<T> &v, S scalar)
{
    Vec2<typename promote<S, T>::type> result(v);
    result /= scalar;
    return result;
}

/// Returns V, where \f$V_i = v0_i / v1_i\f$ for \f$i \in [0, 1]\f$
template <typename T0, typename T1>
inline Vec2<typename promote<T0, T1>::type> operator/(const Vec2<T0> &v0, const Vec2<T1> &v1)
{
    Vec2<typename promote<T0, T1>::type> result(v0[0] / v1[0], v0[1] / v1[1]);
    return result;
}

/// Returns V, where \f$V_i = v0_i + v1_i\f$ for \f$i \in [0, 1]\f$
template <typename T0, typename T1>
inline Vec2<typename promote<T0, T1>::type> operator+(const Vec2<T0> &v0, const Vec2<T1> &v1)
{
    Vec2<typename promote<T0, T1>::type> result(v0);
    result += v1;
    return result;
}

/// Returns V, where \f$V_i = v_i + scalar\f$ for \f$i \in [0, 1]\f$
template <typename S, typename T>
inline Vec2<typename promote<S, T>::type> operator+(const Vec2<T> &v, S scalar)
{
    Vec2<typename promote<S, T>::type> result(v);
    result += scalar;
    return result;
}

/// Returns V, where \f$V_i = v0_i - v1_i\f$ for \f$i \in [0, 1]\f$
template <typename T0, typename T1>
inline Vec2<typename promote<T0, T1>::type> operator-(const Vec2<T0> &v0, const Vec2<T1> &v1)
{
    Vec2<typename promote<T0, T1>::type> result(v0);
    result -= v1;
    return result;
}

/// Returns V, where \f$V_i = v_i - scalar\f$ for \f$i \in [0, 1]\f$
template <typename S, typename T>
inline Vec2<typename promote<S, T>::type> operator-(const Vec2<T> &v, S scalar)
{
    Vec2<typename promote<S, T>::type> result(v);
    result -= scalar;
    return result;
}

/// Angle between two vectors, the result is between [0, pi],
/// e.g.   float a = Vec2f::angle(v1,v2);
template <typename T>
inline T angle(const Vec2<T> &v1, const Vec2<T> &v2)
{
    T c = v1.dot(v2);
    return acos(c);
}

template <typename T>
inline bool
isApproxEqual(const Vec2<T>& a, const Vec2<T>& b)
{
    return a.eq(b);
}
template <typename T>
inline bool
isApproxEqual(const Vec2<T>& a, const Vec2<T>& b, const Vec2<T>& eps)
{
    return isApproxEqual(a.x(), b.x(), eps.x()) &&
           isApproxEqual(a.y(), b.y(), eps.y());
}

/// Orthonormalize vectors v1 and v2 and store back the resulting basis
/// e.g.   Vec2f::orthonormalize(v1,v2);
template <typename T>
inline void orthonormalize(Vec2<T> &v1, Vec2<T> &v2)
{
    // If the input vectors are v0, v1, and v2, then the Gram-Schmidt
    // orthonormalization produces vectors u0, u1, and u2 as follows,
    //
    //   u0 = v0/|v0|
    //   u1 = (v1-(u0*v1)u0)/|v1-(u0*v1)u0|
    //
    // where |A| indicates length of vector A and A*B indicates dot
    // product of vectors A and B.

    // compute u0
    v1.normalize();

    // compute u1
    T d0 = v1.dot(v2);
    v2 -= v1*d0;
    v2.normalize();
}


/// \remark We are switching to a more explicit name because the semantics
/// are different from std::min/max. In that case, the function returns a
/// reference to one of the objects based on a comparator. Here, we must
/// fabricate a new object which might not match either of the inputs.

/// Return component-wise minimum of the two vectors.
template <typename T>
inline Vec2<T> minComponent(const Vec2<T> &v1, const Vec2<T> &v2)
{
    return Vec2<T>(
            std::min(v1.x(), v2.x()),
            std::min(v1.y(), v2.y()));
}

/// Return component-wise maximum of the two vectors.
template <typename T>
inline Vec2<T> maxComponent(const Vec2<T> &v1, const Vec2<T> &v2)
{
    return Vec2<T>(
            std::max(v1.x(), v2.x()),
            std::max(v1.y(), v2.y()));
}


typedef Vec2<int32_t>   Vec2i;
typedef Vec2<uint32_t>  Vec2ui;
typedef Vec2<float>     Vec2s;
typedef Vec2<double>    Vec2d;

} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_MATH_VEC2_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2013 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )