/usr/include/openvdb/math/Vec2.h is in libopenvdb-dev 2.1.0-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2013 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
#ifndef OPENVDB_MATH_VEC2_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_VEC2_HAS_BEEN_INCLUDED
#include <cmath>
#include <openvdb/Exceptions.h>
#include "Math.h"
#include "Tuple.h"
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {
template<typename T> class Mat2;
template<typename T>
class Vec2: public Tuple<2, T>
{
public:
typedef T value_type;
typedef T ValueType;
/// Trivial constructor, the vector is NOT initialized
Vec2() {}
/// Constructor with one argument, e.g. Vec2f v(0);
explicit Vec2(T val) { this->mm[0] = this->mm[1] = val; }
/// Constructor with three arguments, e.g. Vec2f v(1,2,3);
Vec2(T x, T y)
{
this->mm[0] = x;
this->mm[1] = y;
}
/// Constructor with array argument, e.g. float a[2]; Vec2f v(a);
template <typename Source>
Vec2(Source *a)
{
this->mm[0] = a[0];
this->mm[1] = a[1];
} // trivial
/// Conversion constructor
template<typename Source>
explicit Vec2(const Tuple<2, Source> &t)
{
this->mm[0] = static_cast<T>(t[0]);
this->mm[1] = static_cast<T>(t[1]);
}
/// Reference to the component, e.g. v.x() = 4.5f;
T& x() {return this->mm[0];}
T& y() {return this->mm[1];}
/// Get the component, e.g. float f = v.y();
T x() const {return this->mm[0];}
T y() const {return this->mm[1];}
/// Alternative indexed reference to the elements
T& operator()(int i) {return this->mm[i];}
/// Alternative indexed constant reference to the elements,
T operator()(int i) const {return this->mm[i];}
T* asPointer() {return this->mm;}
const T* asPointer() const {return this->mm;}
/// "this" vector gets initialized to [x, y, z],
/// calling v.init(); has same effect as calling v = Vec2::zero();
const Vec2<T>& init(T x=0, T y=0)
{
this->mm[0] = x; this->mm[1] = y;
return *this;
}
/// Set "this" vector to zero
const Vec2<T>& setZero()
{
this->mm[0] = 0; this->mm[1] = 0;
return *this;
}
/// Assignment operator
template<typename Source>
const Vec2<T>& operator=(const Vec2<Source> &v)
{
// note: don't static_cast because that suppresses warnings
this->mm[0] = v[0];
this->mm[1] = v[1];
return *this;
}
/// Equality operator, does exact floating point comparisons
bool operator==(const Vec2<T> &v) const
{
return (isExactlyEqual(this->mm[0], v.mm[0]) && isExactlyEqual(this->mm[1], v.mm[1]));
}
/// Inequality operator, does exact floating point comparisons
bool operator!=(const Vec2<T> &v) const { return !(*this==v); }
/// Test if "this" vector is equivalent to vector v with tolerance of eps
bool eq(const Vec2<T> &v, T eps = static_cast<T>(1.0e-7)) const
{
return isApproxEqual(this->mm[0], v.mm[0], eps) &&
isApproxEqual(this->mm[1], v.mm[1], eps);
} // trivial
/// Negation operator, for e.g. v1 = -v2;
Vec2<T> operator-() const {return Vec2<T>(-this->mm[0], -this->mm[1]);}
/// this = v1 + v2
/// "this", v1 and v2 need not be distinct objects, e.g. v.add(v1,v);
template <typename T0, typename T1>
const Vec2<T>& add(const Vec2<T0> &v1, const Vec2<T1> &v2)
{
this->mm[0] = v1[0] + v2[0];
this->mm[1] = v1[1] + v2[1];
return *this;
}
/// this = v1 - v2
/// "this", v1 and v2 need not be distinct objects, e.g. v.sub(v1,v);
template <typename T0, typename T1>
const Vec2<T>& sub(const Vec2<T0> &v1, const Vec2<T1> &v2)
{
this->mm[0] = v1[0] - v2[0];
this->mm[1] = v1[1] - v2[1];
return *this;
}
/// this = scalar*v, v need not be a distinct object from "this",
/// e.g. v.scale(1.5,v1);
template <typename T0, typename T1>
const Vec2<T>& scale(T0 scalar, const Vec2<T1> &v)
{
this->mm[0] = scalar * v[0];
this->mm[1] = scalar * v[1];
return *this;
}
template <typename T0, typename T1>
const Vec2<T> &div(T0 scalar, const Vec2<T1> &v)
{
this->mm[0] = v[0] / scalar;
this->mm[1] = v[1] / scalar;
return *this;
}
/// Dot product
T dot(const Vec2<T> &v) const { return this->mm[0]*v[0] + this->mm[1]*v[1]; } // trivial
/// Length of the vector
T length() const
{
return static_cast<T>(sqrt(double(this->mm[0]*this->mm[0] + this->mm[1]*this->mm[1])));
}
/// Squared length of the vector, much faster than length() as it
/// does not involve square root
T lengthSqr() const { return (this->mm[0]*this->mm[0] + this->mm[1]*this->mm[1]); }
/// this = normalized this
bool normalize(T eps=1.0e-8)
{
T d = length();
if (isApproxEqual(d, T(0), eps)) {
return false;
}
*this *= (T(1) / d);
return true;
}
/// return normalized this, throws if null vector
Vec2<T> unit(T eps=0) const
{
T d;
return unit(eps, d);
}
/// return normalized this and length, throws if null vector
Vec2<T> unit(T eps, T& len) const
{
len = length();
if (isApproxEqual(len, T(0), eps)) {
OPENVDB_THROW(ArithmeticError, "Normalizing null 2-vector");
}
return *this / len;
}
/// Returns v, where \f$v_i *= scalar\f$ for \f$i \in [0, 1]\f$
template <typename S>
const Vec2<T> &operator*=(S scalar)
{
this->mm[0] *= scalar;
this->mm[1] *= scalar;
return *this;
}
/// Returns v0, where \f$v0_i *= v1_i\f$ for \f$i \in [0, 1]\f$
template <typename S>
const Vec2<T> &operator*=(const Vec2<S> &v1)
{
this->mm[0] *= v1[0];
this->mm[1] *= v1[1];
return *this;
}
/// Returns v, where \f$v_i /= scalar\f$ for \f$i \in [0, 1]\f$
template <typename S>
const Vec2<T> &operator/=(S scalar)
{
this->mm[0] /= scalar;
this->mm[1] /= scalar;
return *this;
}
/// Returns v0, where \f$v0_i /= v1_i\f$ for \f$i \in [0, 1]\f$
template <typename S>
const Vec2<T> &operator/=(const Vec2<S> &v1)
{
this->mm[0] /= v1[0];
this->mm[1] /= v1[1];
return *this;
}
/// Returns v, where \f$v_i += scalar\f$ for \f$i \in [0, 1]\f$
template <typename S>
const Vec2<T> &operator+=(S scalar)
{
this->mm[0] += scalar;
this->mm[1] += scalar;
return *this;
}
/// Returns v0, where \f$v0_i += v1_i\f$ for \f$i \in [0, 1]\f$
template <typename S>
const Vec2<T> &operator+=(const Vec2<S> &v1)
{
this->mm[0] += v1[0];
this->mm[1] += v1[1];
return *this;
}
/// Returns v, where \f$v_i += scalar\f$ for \f$i \in [0, 1]\f$
template <typename S>
const Vec2<T> &operator-=(S scalar)
{
this->mm[0] -= scalar;
this->mm[1] -= scalar;
return *this;
}
/// Returns v0, where \f$v0_i -= v1_i\f$ for \f$i \in [0, 1]\f$
template <typename S>
const Vec2<T> &operator-=(const Vec2<S> &v1)
{
this->mm[0] -= v1[0];
this->mm[1] -= v1[1];
return *this;
}
// Number of cols, rows, elements
static unsigned numRows() { return 1; }
static unsigned numColumns() { return 2; }
static unsigned numElements() { return 2; }
/// Returns the scalar component of v in the direction of onto, onto need
/// not be unit. e.g float c = Vec2f::component(v1,v2);
T component(const Vec2<T> &onto, T eps=1.0e-8) const
{
T l = onto.length();
if (isApproxEqual(l, T(0), eps)) return 0;
return dot(onto)*(T(1)/l);
}
/// Return the projection of v onto the vector, onto need not be unit
/// e.g. Vec2f v = Vec2f::projection(v,n);
Vec2<T> projection(const Vec2<T> &onto, T eps=1.0e-8) const
{
T l = onto.lengthSqr();
if (isApproxEqual(l, T(0), eps)) return Vec2::zero();
return onto*(dot(onto)*(T(1)/l));
}
/// Return an arbitrary unit vector perpendicular to v
/// Vector v must be a unit vector
/// e.g. v.normalize(); Vec2f n = Vec2f::getArbPerpendicular(v);
Vec2<T> getArbPerpendicular() const { return Vec2<T>(-this->mm[1], this->mm[0]); }
/// True if a Nan is present in vector
bool isNan() const { return isnan(this->mm[0]) || isnan(this->mm[1]); }
/// True if an Inf is present in vector
bool isInfinite() const { return isinf(this->mm[0]) || isinf(this->mm[1]); }
/// True if all no Nan or Inf values present
bool isFinite() const { return finite(this->mm[0]) && finite(this->mm[1]); }
/// Predefined constants, e.g. Vec2f v = Vec2f::xNegAxis();
static Vec2<T> zero() { return Vec2<T>(0, 0); }
};
/// Returns V, where \f$V_i = v_i * scalar\f$ for \f$i \in [0, 1]\f$
template <typename S, typename T>
inline Vec2<typename promote<S, T>::type> operator*(S scalar, const Vec2<T> &v)
{
return v * scalar;
}
/// Returns V, where \f$V_i = v_i * scalar\f$ for \f$i \in [0, 1]\f$
template <typename S, typename T>
inline Vec2<typename promote<S, T>::type> operator*(const Vec2<T> &v, S scalar)
{
Vec2<typename promote<S, T>::type> result(v);
result *= scalar;
return result;
}
/// Returns V, where \f$V_i = v0_i * v1_i\f$ for \f$i \in [0, 1]\f$
template <typename T0, typename T1>
inline Vec2<typename promote<T0, T1>::type> operator*(const Vec2<T0> &v0, const Vec2<T1> &v1)
{
Vec2<typename promote<T0, T1>::type> result(v0[0] * v1[0], v0[1] * v1[1]);
return result;
}
/// Returns V, where \f$V_i = scalar / v_i\f$ for \f$i \in [0, 1]\f$
template <typename S, typename T>
inline Vec2<typename promote<S, T>::type> operator/(S scalar, const Vec2<T> &v)
{
return Vec2<typename promote<S, T>::type>(scalar/v[0], scalar/v[1]);
}
/// Returns V, where \f$V_i = v_i / scalar\f$ for \f$i \in [0, 1]\f$
template <typename S, typename T>
inline Vec2<typename promote<S, T>::type> operator/(const Vec2<T> &v, S scalar)
{
Vec2<typename promote<S, T>::type> result(v);
result /= scalar;
return result;
}
/// Returns V, where \f$V_i = v0_i / v1_i\f$ for \f$i \in [0, 1]\f$
template <typename T0, typename T1>
inline Vec2<typename promote<T0, T1>::type> operator/(const Vec2<T0> &v0, const Vec2<T1> &v1)
{
Vec2<typename promote<T0, T1>::type> result(v0[0] / v1[0], v0[1] / v1[1]);
return result;
}
/// Returns V, where \f$V_i = v0_i + v1_i\f$ for \f$i \in [0, 1]\f$
template <typename T0, typename T1>
inline Vec2<typename promote<T0, T1>::type> operator+(const Vec2<T0> &v0, const Vec2<T1> &v1)
{
Vec2<typename promote<T0, T1>::type> result(v0);
result += v1;
return result;
}
/// Returns V, where \f$V_i = v_i + scalar\f$ for \f$i \in [0, 1]\f$
template <typename S, typename T>
inline Vec2<typename promote<S, T>::type> operator+(const Vec2<T> &v, S scalar)
{
Vec2<typename promote<S, T>::type> result(v);
result += scalar;
return result;
}
/// Returns V, where \f$V_i = v0_i - v1_i\f$ for \f$i \in [0, 1]\f$
template <typename T0, typename T1>
inline Vec2<typename promote<T0, T1>::type> operator-(const Vec2<T0> &v0, const Vec2<T1> &v1)
{
Vec2<typename promote<T0, T1>::type> result(v0);
result -= v1;
return result;
}
/// Returns V, where \f$V_i = v_i - scalar\f$ for \f$i \in [0, 1]\f$
template <typename S, typename T>
inline Vec2<typename promote<S, T>::type> operator-(const Vec2<T> &v, S scalar)
{
Vec2<typename promote<S, T>::type> result(v);
result -= scalar;
return result;
}
/// Angle between two vectors, the result is between [0, pi],
/// e.g. float a = Vec2f::angle(v1,v2);
template <typename T>
inline T angle(const Vec2<T> &v1, const Vec2<T> &v2)
{
T c = v1.dot(v2);
return acos(c);
}
template <typename T>
inline bool
isApproxEqual(const Vec2<T>& a, const Vec2<T>& b)
{
return a.eq(b);
}
template <typename T>
inline bool
isApproxEqual(const Vec2<T>& a, const Vec2<T>& b, const Vec2<T>& eps)
{
return isApproxEqual(a.x(), b.x(), eps.x()) &&
isApproxEqual(a.y(), b.y(), eps.y());
}
/// Orthonormalize vectors v1 and v2 and store back the resulting basis
/// e.g. Vec2f::orthonormalize(v1,v2);
template <typename T>
inline void orthonormalize(Vec2<T> &v1, Vec2<T> &v2)
{
// If the input vectors are v0, v1, and v2, then the Gram-Schmidt
// orthonormalization produces vectors u0, u1, and u2 as follows,
//
// u0 = v0/|v0|
// u1 = (v1-(u0*v1)u0)/|v1-(u0*v1)u0|
//
// where |A| indicates length of vector A and A*B indicates dot
// product of vectors A and B.
// compute u0
v1.normalize();
// compute u1
T d0 = v1.dot(v2);
v2 -= v1*d0;
v2.normalize();
}
/// \remark We are switching to a more explicit name because the semantics
/// are different from std::min/max. In that case, the function returns a
/// reference to one of the objects based on a comparator. Here, we must
/// fabricate a new object which might not match either of the inputs.
/// Return component-wise minimum of the two vectors.
template <typename T>
inline Vec2<T> minComponent(const Vec2<T> &v1, const Vec2<T> &v2)
{
return Vec2<T>(
std::min(v1.x(), v2.x()),
std::min(v1.y(), v2.y()));
}
/// Return component-wise maximum of the two vectors.
template <typename T>
inline Vec2<T> maxComponent(const Vec2<T> &v1, const Vec2<T> &v2)
{
return Vec2<T>(
std::max(v1.x(), v2.x()),
std::max(v1.y(), v2.y()));
}
typedef Vec2<int32_t> Vec2i;
typedef Vec2<uint32_t> Vec2ui;
typedef Vec2<float> Vec2s;
typedef Vec2<double> Vec2d;
} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_MATH_VEC2_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2013 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|