/usr/include/openvdb/math/Maps.h is in libopenvdb-dev 2.1.0-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2013 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file Maps.h
#ifndef OPENVDB_MATH_MAPS_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_MAPS_HAS_BEEN_INCLUDED
#include "Math.h"
#include "Mat4.h"
#include "Vec3.h"
#include "BBox.h"
#include "Coord.h"
#include <openvdb/util/Name.h>
#include <openvdb/Types.h>
#include <boost/shared_ptr.hpp>
#include <map>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {
////////////////////////////////////////
/// Forward declarations of the different map types
class MapBase;
class ScaleMap;
class TranslationMap;
class ScaleTranslateMap;
class UniformScaleMap;
class UniformScaleTranslateMap;
class AffineMap;
class UnitaryMap;
class NonlinearFrustumMap;
template<typename T1, typename T2> class CompoundMap;
typedef CompoundMap<UnitaryMap, TranslationMap> UnitaryAndTranslationMap;
typedef CompoundMap<CompoundMap<UnitaryMap, ScaleMap>, UnitaryMap> SpectralDecomposedMap;
typedef SpectralDecomposedMap SymmetricMap;
typedef CompoundMap<SymmetricMap, UnitaryAndTranslationMap> FullyDecomposedMap;
typedef CompoundMap<SymmetricMap, UnitaryMap> PolarDecomposedMap;
////////////////////////////////////////
/// Map traits
template<typename T> struct is_linear { static const bool value = false; };
template<> struct is_linear<AffineMap> { static const bool value = true; };
template<> struct is_linear<ScaleMap> { static const bool value = true; };
template<> struct is_linear<UniformScaleMap> { static const bool value = true; };
template<> struct is_linear<UnitaryMap> { static const bool value = true; };
template<> struct is_linear<TranslationMap> { static const bool value = true; };
template<> struct is_linear<ScaleTranslateMap> { static const bool value = true; };
template<> struct is_linear<UniformScaleTranslateMap> { static const bool value = true; };
template<typename T1, typename T2> struct is_linear<CompoundMap<T1, T2> > {
static const bool value = is_linear<T1>::value && is_linear<T2>::value;
};
template<typename T> struct is_uniform_scale { static const bool value = false; };
template<> struct is_uniform_scale<UniformScaleMap> { static const bool value = true; };
template<typename T> struct is_uniform_scale_translate { static const bool value = false; };
template<> struct is_uniform_scale_translate<TranslationMap> { static const bool value = true; };
template<> struct is_uniform_scale_translate<UniformScaleTranslateMap> {
static const bool value = true;
};
template<typename T> struct is_scale { static const bool value = false; };
template<> struct is_scale<ScaleMap> { static const bool value = true; };
template<typename T> struct is_scale_translate { static const bool value = false; };
template<> struct is_scale_translate<ScaleTranslateMap> { static const bool value = true; };
template<typename T> struct is_uniform_diagonal_jacobian {
static const bool value = is_uniform_scale<T>::value || is_uniform_scale_translate<T>::value;
};
template<typename T> struct is_diagonal_jacobian {
static const bool value = is_scale<T>::value || is_scale_translate<T>::value;
};
////////////////////////////////////////
/// Utility methods
/// @brief Create a SymmetricMap from a symmetric matrix.
/// Decomposes the map into Rotation Diagonal Rotation^T
OPENVDB_API boost::shared_ptr<SymmetricMap> createSymmetricMap(const Mat3d& m);
/// @brief General decomposition of a Matrix into a Unitary (e.g. rotation)
/// following a Symmetric (e.g. stretch & shear)
OPENVDB_API boost::shared_ptr<FullyDecomposedMap> createFullyDecomposedMap(const Mat4d& m);
/// @brief Decomposes a general linear into translation following polar decomposition.
///
/// T U S where:
///
/// T: Translation
/// U: Unitary (rotation or reflection)
/// S: Symmetric
///
/// @note: the Symmetric is automatically decomposed into Q D Q^T, where
/// Q is rotation and D is diagonal.
OPENVDB_API boost::shared_ptr<PolarDecomposedMap> createPolarDecomposedMap(const Mat3d& m);
/// @brief reduces an AffineMap to a ScaleMap or a ScaleTranslateMap when it can
OPENVDB_API boost::shared_ptr<MapBase> simplify(boost::shared_ptr<AffineMap> affine);
/// @brief Returns the left pseudoInverse of the input matrix when the 3x3 part is symmetric
/// otherwise it zeros the 3x3 and reverses the translation.
OPENVDB_API Mat4d approxInverse(const Mat4d& mat);
////////////////////////////////////////
/// @brief Abstract base class for maps
class OPENVDB_API MapBase
{
public:
typedef boost::shared_ptr<MapBase> Ptr;
typedef boost::shared_ptr<const MapBase> ConstPtr;
typedef Ptr (*MapFactory)();
virtual ~MapBase(){}
virtual boost::shared_ptr<AffineMap> getAffineMap() const = 0;
/// Return the name of this map's concrete type (e.g., @c "AffineMap").
virtual Name type() const = 0;
/// Return @c true if this map is of concrete type @c MapT (e.g., AffineMap).
template<typename MapT> bool isType() const { return this->type() == MapT::mapType(); }
/// Return @c true if this map is equal to the given map.
virtual bool isEqual(const MapBase& other) const = 0;
/// Return @c true if this map is linear.
virtual bool isLinear() const = 0;
/// Return @c true if the spacing between the image of latice is uniform in all directions
virtual bool hasUniformScale() const = 0;
virtual Vec3d applyMap(const Vec3d& in) const = 0;
virtual Vec3d applyInverseMap(const Vec3d& in) const = 0;
//@{
/// @brief Apply the Inverse Jacobian Transpose of this map to a vector.
/// For a linear map this is equivalent to applying the transpose of
/// inverse map excluding translation.
virtual Vec3d applyIJT(const Vec3d& in) const = 0;
virtual Vec3d applyIJT(const Vec3d& in, const Vec3d& domainPos) const = 0;
//@}
virtual Mat3d applyIJC(const Mat3d& m) const = 0;
virtual Mat3d applyIJC(const Mat3d& m, const Vec3d& v, const Vec3d& domainPos) const = 0;
virtual double determinant() const = 0;
virtual double determinant(const Vec3d&) const = 0;
//@{
/// @brief Method to return the local size of a voxel.
/// When a location is specified as an argument, it is understood to be
/// be in the domain of the map (i.e. index space)
virtual Vec3d voxelSize() const = 0;
virtual Vec3d voxelSize(const Vec3d&) const = 0;
//@}
virtual void read(std::istream&) = 0;
virtual void write(std::ostream&) const = 0;
virtual std::string str() const = 0;
virtual MapBase::Ptr copy() const = 0;
//@{
/// @brief Methods to update the map
virtual MapBase::Ptr preRotate(double radians, Axis axis = X_AXIS) const = 0;
virtual MapBase::Ptr preTranslate(const Vec3d&) const = 0;
virtual MapBase::Ptr preScale(const Vec3d&) const = 0;
virtual MapBase::Ptr preShear(double shear, Axis axis0, Axis axis1) const = 0;
virtual MapBase::Ptr postRotate(double radians, Axis axis = X_AXIS) const = 0;
virtual MapBase::Ptr postTranslate(const Vec3d&) const = 0;
virtual MapBase::Ptr postScale(const Vec3d&) const = 0;
virtual MapBase::Ptr postShear(double shear, Axis axis0, Axis axis1) const = 0;
//@}
//@{
/// @brief Apply the Jacobian of this map to a vector.
/// For a linear map this is equivalent to applying the map excluding translation.
/// @warning Houdini 12.5 uses an earlier version of OpenVDB, and maps created
/// with that version lack a virtual table entry for this method. Do not call
/// this method from Houdini 12.5.
virtual Vec3d applyJacobian(const Vec3d& in) const = 0;
virtual Vec3d applyJacobian(const Vec3d& in, const Vec3d& domainPos) const = 0;
//@}
//@{
/// @brief Apply the InverseJacobian of this map to a vector.
/// For a linear map this is equivalent to applying the map inverse excluding translation.
/// @warning Houdini 12.5 uses an earlier version of OpenVDB, and maps created
/// with that version lack a virtual table entry for this method. Do not call
/// this method from Houdini 12.5.
virtual Vec3d applyInverseJacobian(const Vec3d& in) const = 0;
virtual Vec3d applyInverseJacobian(const Vec3d& in, const Vec3d& domainPos) const = 0;
//@}
//@{
/// @brief Apply the Jacobian transpose of this map to a vector.
/// For a linear map this is equivalent to applying the transpose of the map
/// excluding translation.
/// @warning Houdini 12.5 uses an earlier version of OpenVDB, and maps created
/// with that version lack a virtual table entry for this method. Do not call
/// this method from Houdini 12.5.
virtual Vec3d applyJT(const Vec3d& in) const = 0;
virtual Vec3d applyJT(const Vec3d& in, const Vec3d& domainPos) const = 0;
//@}
/// @brief Return a new map representing the inverse of this map.
/// @throw NotImplementedError if the map is a NonlinearFrustumMap.
/// @warning Houdini 12.5 uses an earlier version of OpenVDB, and maps created
/// with that version lack a virtual table entry for this method. Do not call
/// this method from Houdini 12.5.
virtual MapBase::Ptr inverseMap() const = 0;
protected:
MapBase() {}
template<typename MapT>
static bool isEqualBase(const MapT& self, const MapBase& other)
{
return other.isType<MapT>() && (self == *static_cast<const MapT*>(&other));
}
};
////////////////////////////////////////
/// @brief Threadsafe singleton object for accessing the map type-name dictionary.
/// Associates a map type-name with a factory function.
class OPENVDB_API MapRegistry
{
public:
typedef std::map<Name, MapBase::MapFactory> MapDictionary;
static MapRegistry* instance();
/// Create a new map of the given (registered) type name.
static MapBase::Ptr createMap(const Name&);
/// Return @c true if the given map type name is registered.
static bool isRegistered(const Name&);
/// Register a map type along with a factory function.
static void registerMap(const Name&, MapBase::MapFactory);
/// Remove a map type from the registry.
static void unregisterMap(const Name&);
/// Clear the map type registry.
static void clear();
private:
MapRegistry() {}
static MapRegistry* staticInstance();
static MapRegistry* mInstance;
MapDictionary mMap;
};
////////////////////////////////////////
/// @brief A general linear transform using homogeneous coordinates to perform
/// rotation, scaling, shear and translation
class OPENVDB_API AffineMap: public MapBase
{
public:
typedef boost::shared_ptr<AffineMap> Ptr;
typedef boost::shared_ptr<const AffineMap> ConstPtr;
AffineMap():
mMatrix(Mat4d::identity()),
mMatrixInv(Mat4d::identity()),
mJacobianInv(Mat3d::identity()),
mDeterminant(1),
mVoxelSize(Vec3d(1,1,1)),
mIsDiagonal(true),
mIsIdentity(true)
// the default constructor for translation is zero
{
}
AffineMap(const Mat3d& m)
{
Mat4d mat4(Mat4d::identity());
mat4.setMat3(m);
mMatrix = mat4;
updateAcceleration();
}
AffineMap(const Mat4d& m): mMatrix(m)
{
if (!isAffine(m)) {
OPENVDB_THROW(ArithmeticError,
"Tried to initialize an affine transform from a non-affine 4x4 matrix");
}
updateAcceleration();
}
AffineMap(const AffineMap& other):
MapBase(other),
mMatrix(other.mMatrix),
mMatrixInv(other.mMatrixInv),
mJacobianInv(other.mJacobianInv),
mDeterminant(other.mDeterminant),
mVoxelSize(other.mVoxelSize),
mIsDiagonal(other.mIsDiagonal),
mIsIdentity(other.mIsIdentity)
{
}
/// @brief constructor that merges the matrixes for two affine maps
AffineMap(const AffineMap& first, const AffineMap& second):
mMatrix(first.mMatrix * second.mMatrix)
{
updateAcceleration();
}
~AffineMap() {}
/// Return a MapBase::Ptr to a new AffineMap
static MapBase::Ptr create() { return MapBase::Ptr(new AffineMap()); }
/// Return a MapBase::Ptr to a deep copy of this map
MapBase::Ptr copy() const { return MapBase::Ptr(new AffineMap(*this)); }
MapBase::Ptr inverseMap() const { return MapBase::Ptr(new AffineMap(mMatrixInv)); }
static bool isRegistered() { return MapRegistry::isRegistered(AffineMap::mapType()); }
static void registerMap()
{
MapRegistry::registerMap(
AffineMap::mapType(),
AffineMap::create);
}
Name type() const { return mapType(); }
static Name mapType() { return Name("AffineMap"); }
/// Return @c true (an AffineMap is always linear).
bool isLinear() const { return true; }
/// Return @c false ( test if this is unitary with translation )
bool hasUniformScale() const
{
Mat3d mat = mMatrix.getMat3();
const double det = mat.det();
if (isApproxEqual(det, double(0))) {
return false;
} else {
mat *= (1.f / pow(std::abs(det),1./3.));
return isUnitary(mat);
}
}
virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }
bool operator==(const AffineMap& other) const
{
// the Mat.eq() is approximate
if (!mMatrix.eq(other.mMatrix)) { return false; }
if (!mMatrixInv.eq(other.mMatrixInv)) { return false; }
return true;
}
bool operator!=(const AffineMap& other) const { return !(*this == other); }
AffineMap& operator=(const AffineMap& other)
{
mMatrix = other.mMatrix;
mMatrixInv = other.mMatrixInv;
mJacobianInv = other.mJacobianInv;
mDeterminant = other.mDeterminant;
mVoxelSize = other.mVoxelSize;
mIsDiagonal = other.mIsDiagonal;
mIsIdentity = other.mIsIdentity;
return *this;
}
/// Return the image of @c in under the map
Vec3d applyMap(const Vec3d& in) const { return in * mMatrix; }
/// Return the pre-image of @c in under the map
Vec3d applyInverseMap(const Vec3d& in) const {return in * mMatrixInv; }
/// Return the Jacobian of the map applied to @a in.
Vec3d applyJacobian(const Vec3d& in, const Vec3d&) const { return applyJacobian(in); }
/// Return the Jacobian of the map applied to @a in.
Vec3d applyJacobian(const Vec3d& in) const { return mMatrix.transform3x3(in); }
/// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
Vec3d applyInverseJacobian(const Vec3d& in, const Vec3d&) const { return applyInverseJacobian(in); }
/// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
Vec3d applyInverseJacobian(const Vec3d& in) const { return mMatrixInv.transform3x3(in); }
/// Return the Jacobian Transpose of the map applied to @a in.
/// This tranforms range-space gradients to domain-space gradients
Vec3d applyJT(const Vec3d& in, const Vec3d&) const { return applyJT(in); }
/// Return the Jacobian Transpose of the map applied to @a in.
Vec3d applyJT(const Vec3d& in) const {
const double* m = mMatrix.asPointer();
return Vec3d( m[ 0] * in[0] + m[ 1] * in[1] + m[ 2] * in[2],
m[ 4] * in[0] + m[ 5] * in[1] + m[ 6] * in[2],
m[ 8] * in[0] + m[ 9] * in[1] + m[10] * in[2] );
}
/// Return the transpose of the inverse Jacobian of the map applied to @a in.
Vec3d applyIJT(const Vec3d& in, const Vec3d&) const { return applyIJT(in); }
/// Return the transpose of the inverse Jacobian of the map applied to @c in
Vec3d applyIJT(const Vec3d& in) const { return in * mJacobianInv; }
/// Return the Jacobian Curvature: zero for a linear map
Mat3d applyIJC(const Mat3d& m) const {
return mJacobianInv.transpose()* m * mJacobianInv;
}
Mat3d applyIJC(const Mat3d& in, const Vec3d& , const Vec3d& ) const {
return applyIJC(in);
}
/// Return the determinant of the Jacobian, ignores argument
double determinant(const Vec3d& ) const { return determinant(); }
/// Return the determinant of the Jacobian
double determinant() const { return mDeterminant; }
//@{
/// @brief Return the lengths of the images of the segments
/// (0,0,0)-(1,0,0), (0,0,0)-(0,1,0) and (0,0,0)-(0,0,1).
Vec3d voxelSize() const { return mVoxelSize; }
Vec3d voxelSize(const Vec3d&) const { return voxelSize(); }
//@}
/// Return @c true if the underlying matrix is approximately an identity
bool isIdentity() const { return mIsIdentity; }
/// Return @c true if the underylying matrix is diagonal
bool isDiagonal() const { return mIsDiagonal; }
/// Return @c true if the map is equivalent to a ScaleMap
bool isScale() const { return isDiagonal(); }
/// Return @c true if the map is equivalent to a ScaleTranslateMap
bool isScaleTranslate() const { return math::isDiagonal(mMatrix.getMat3()); }
// Methods that modify the existing affine map
//@{
/// @brief Modify the existing affine map by pre-applying the given operation.
void accumPreRotation(Axis axis, double radians)
{
mMatrix.preRotate(axis, radians);
updateAcceleration();
}
void accumPreScale(const Vec3d& v)
{
mMatrix.preScale(v);
updateAcceleration();
}
void accumPreTranslation(const Vec3d& v)
{
mMatrix.preTranslate(v);
updateAcceleration();
}
void accumPreShear(Axis axis0, Axis axis1, double shear)
{
mMatrix.preShear(axis0, axis1, shear);
updateAcceleration();
}
//@}
//@{
/// @brief Modify the existing affine map by post-applying the given operation.
void accumPostRotation(Axis axis, double radians)
{
mMatrix.postRotate(axis, radians);
updateAcceleration();
}
void accumPostScale(const Vec3d& v)
{
mMatrix.postScale(v);
updateAcceleration();
}
void accumPostTranslation(const Vec3d& v)
{
mMatrix.postTranslate(v);
updateAcceleration();
}
void accumPostShear(Axis axis0, Axis axis1, double shear)
{
mMatrix.postShear(axis0, axis1, shear);
updateAcceleration();
}
//@}
/// read serialization
void read(std::istream& is)
{
mMatrix.read(is);
updateAcceleration();
}
/// write serialization
void write(std::ostream& os) const
{
mMatrix.write(os);
}
/// string serialization, useful for debugging
std::string str() const
{
std::ostringstream buffer;
buffer << " - mat4:\n" << mMatrix.str() << std::endl;
buffer << " - voxel dimensions: " << mVoxelSize << std::endl;
return buffer.str();
}
/// on-demand decomposition of the affine map
boost::shared_ptr<FullyDecomposedMap> createDecomposedMap()
{
return createFullyDecomposedMap(mMatrix);
}
/// Return AffineMap::Ptr to a deep copy of the current AffineMap
AffineMap::Ptr getAffineMap() const { return AffineMap::Ptr(new AffineMap(*this)); }
/// Return AffineMap::Ptr to the inverse of this map
AffineMap::Ptr inverse() const { return AffineMap::Ptr(new AffineMap(mMatrixInv)); }
//@{
/// @brief Return a MapBase::Ptr to a new map that is the result
/// of prepending the appropraite operation.
MapBase::Ptr preRotate(double radians, Axis axis = X_AXIS) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPreRotation(axis, radians);
return simplify(affineMap);
}
MapBase::Ptr preTranslate(const Vec3d& t) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPreTranslation(t);
return boost::static_pointer_cast<MapBase, AffineMap>(affineMap);
}
MapBase::Ptr preScale(const Vec3d& s) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPreScale(s);
return boost::static_pointer_cast<MapBase, AffineMap>(affineMap);
}
MapBase::Ptr preShear(double shear, Axis axis0, Axis axis1) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPreShear(axis0, axis1, shear);
return simplify(affineMap);
}
//@}
//@{
/// @brief Return a MapBase::Ptr to a new map that is the result
/// of postfixing the appropraite operation.
MapBase::Ptr postRotate(double radians, Axis axis = X_AXIS) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPostRotation(axis, radians);
return simplify(affineMap);
}
MapBase::Ptr postTranslate(const Vec3d& t) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPostTranslation(t);
return boost::static_pointer_cast<MapBase, AffineMap>(affineMap);
}
MapBase::Ptr postScale(const Vec3d& s) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPostScale(s);
return boost::static_pointer_cast<MapBase, AffineMap>(affineMap);
}
MapBase::Ptr postShear(double shear, Axis axis0, Axis axis1) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPostShear(axis0, axis1, shear);
return simplify(affineMap);
}
//@}
/// Return the matrix representation of this AffineMap
Mat4d getMat4() const { return mMatrix;}
const Mat4d& getConstMat4() const {return mMatrix;}
const Mat3d& getConstJacobianInv() const {return mJacobianInv;}
private:
void updateAcceleration() {
Mat3d mat3 = mMatrix.getMat3();
mDeterminant = mat3.det();
if (std::abs(mDeterminant) < (3.0 * math::Tolerance<double>::value())) {
OPENVDB_THROW(ArithmeticError,
"Tried to initialize an affine transform from a nearly singular matrix");
}
mMatrixInv = mMatrix.inverse();
mJacobianInv = mat3.inverse().transpose();
mIsDiagonal = math::isDiagonal(mMatrix);
mIsIdentity = math::isIdentity(mMatrix);
Vec3d pos = applyMap(Vec3d(0,0,0));
mVoxelSize(0) = (applyMap(Vec3d(1,0,0)) - pos).length();
mVoxelSize(1) = (applyMap(Vec3d(0,1,0)) - pos).length();
mVoxelSize(2) = (applyMap(Vec3d(0,0,1)) - pos).length();
}
// the underlying matrix
Mat4d mMatrix;
// stored for acceleration
Mat4d mMatrixInv;
Mat3d mJacobianInv;
double mDeterminant;
Vec3d mVoxelSize;
bool mIsDiagonal, mIsIdentity;
}; // class AffineMap
////////////////////////////////////////
/// @brief A specialized Affine transform that scales along the principal axis
/// the scaling need not be uniform in the three-directions
class OPENVDB_API ScaleMap: public MapBase
{
public:
typedef boost::shared_ptr<ScaleMap> Ptr;
typedef boost::shared_ptr<const ScaleMap> ConstPtr;
ScaleMap(): MapBase(), mScaleValues(Vec3d(1,1,1)), mVoxelSize(Vec3d(1,1,1)),
mScaleValuesInverse(Vec3d(1,1,1)),
mInvScaleSqr(1,1,1), mInvTwiceScale(0.5,0.5,0.5){}
ScaleMap(const Vec3d& scale):
MapBase(),
mScaleValues(scale),
mVoxelSize(Vec3d(std::abs(scale(0)),std::abs(scale(1)), std::abs(scale(2))))
{
double determinant = scale[0]* scale[1] * scale[2];
if (std::abs(determinant) < 3.0 * math::Tolerance<double>::value()) {
OPENVDB_THROW(ArithmeticError, "Non-zero scale values required");
}
mScaleValuesInverse = 1.0 / mScaleValues;
mInvScaleSqr = mScaleValuesInverse * mScaleValuesInverse;
mInvTwiceScale = mScaleValuesInverse / 2;
}
ScaleMap(const ScaleMap& other):
MapBase(),
mScaleValues(other.mScaleValues),
mVoxelSize(other.mVoxelSize),
mScaleValuesInverse(other.mScaleValuesInverse),
mInvScaleSqr(other.mInvScaleSqr),
mInvTwiceScale(other.mInvTwiceScale)
{
}
~ScaleMap() {}
/// Return a MapBase::Ptr to a new ScaleMap
static MapBase::Ptr create() { return MapBase::Ptr(new ScaleMap()); }
/// Return a MapBase::Ptr to a deep copy of this map
MapBase::Ptr copy() const { return MapBase::Ptr(new ScaleMap(*this)); }
MapBase::Ptr inverseMap() const { return MapBase::Ptr(new ScaleMap(mScaleValuesInverse)); }
static bool isRegistered() { return MapRegistry::isRegistered(ScaleMap::mapType()); }
static void registerMap()
{
MapRegistry::registerMap(
ScaleMap::mapType(),
ScaleMap::create);
}
Name type() const { return mapType(); }
static Name mapType() { return Name("ScaleMap"); }
/// Return @c true (a ScaleMap is always linear).
bool isLinear() const { return true; }
/// Return @c true if the values have the same magitude (eg. -1, 1, -1 would be a rotation).
bool hasUniformScale() const
{
bool value = isApproxEqual(
std::abs(mScaleValues.x()), std::abs(mScaleValues.y()), double(5e-7));
value = value && isApproxEqual(
std::abs(mScaleValues.x()), std::abs(mScaleValues.z()), double(5e-7));
return value;
}
/// Return the image of @c in under the map
Vec3d applyMap(const Vec3d& in) const
{
return Vec3d(
in.x() * mScaleValues.x(),
in.y() * mScaleValues.y(),
in.z() * mScaleValues.z());
}
/// Return the pre-image of @c in under the map
Vec3d applyInverseMap(const Vec3d& in) const
{
return Vec3d(
in.x() * mScaleValuesInverse.x(),
in.y() * mScaleValuesInverse.y(),
in.z() * mScaleValuesInverse.z());
}
/// Return the Jacobian of the map applied to @a in.
Vec3d applyJacobian(const Vec3d& in, const Vec3d&) const { return applyJacobian(in); }
/// Return the Jacobian of the map applied to @a in.
Vec3d applyJacobian(const Vec3d& in) const { return applyMap(in); }
/// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
Vec3d applyInverseJacobian(const Vec3d& in, const Vec3d&) const { return applyInverseJacobian(in); }
/// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
Vec3d applyInverseJacobian(const Vec3d& in) const { return applyInverseMap(in); }
/// Return the Jacobian Transpose of the map applied to @a in.
/// This tranforms range-space gradients to domain-space gradients
Vec3d applyJT(const Vec3d& in, const Vec3d&) const { return applyJT(in); }
/// Return the Jacobian Transpose of the map applied to @a in.
Vec3d applyJT(const Vec3d& in) const { return applyMap(in); }
/// @brief Return the transpose of the inverse Jacobian of the map applied to @a in.
/// @details Ignores second argument
Vec3d applyIJT(const Vec3d& in, const Vec3d&) const { return applyIJT(in);}
/// Return the transpose of the inverse Jacobian of the map applied to @c in
Vec3d applyIJT(const Vec3d& in) const { return applyInverseMap(in); }
/// Return the Jacobian Curvature: zero for a linear map
Mat3d applyIJC(const Mat3d& in) const
{
Mat3d tmp;
for (int i = 0; i < 3; i++) {
tmp.setRow(i, in.row(i) * mScaleValuesInverse(i));
}
for (int i = 0; i < 3; i++) {
tmp.setCol(i, tmp.col(i) * mScaleValuesInverse(i));
}
return tmp;
}
Mat3d applyIJC(const Mat3d& in, const Vec3d&, const Vec3d&) const { return applyIJC(in); }
/// Return the product of the scale values, ignores argument
double determinant(const Vec3d&) const { return determinant(); }
/// Return the product of the scale values
double determinant() const { return mScaleValues.x() * mScaleValues.y() * mScaleValues.z(); }
/// Return the scale values that define the map
const Vec3d& getScale() const {return mScaleValues;}
/// Return the square of the scale. Used to optimize some finite difference calculations
const Vec3d& getInvScaleSqr() const { return mInvScaleSqr; }
/// Return 1/(2 scale). Used to optimize some finite difference calculations
const Vec3d& getInvTwiceScale() const { return mInvTwiceScale; }
/// Return 1/(scale)
const Vec3d& getInvScale() const { return mScaleValuesInverse; }
//@{
/// @brief Returns the lengths of the images
/// of the segments
/// \f$(0,0,0)-(1,0,0)\f$, \f$(0,0,0)-(0,1,0)\f$, \f$(0,0,0)-(0,0,1)\f$
/// this is equivalent to the absolute values of the scale values
Vec3d voxelSize() const { return mVoxelSize; }
Vec3d voxelSize(const Vec3d&) const { return voxelSize(); }
//@}
/// read serialization
void read(std::istream& is)
{
mScaleValues.read(is);
mVoxelSize.read(is);
mScaleValuesInverse.read(is);
mInvScaleSqr.read(is);
mInvTwiceScale.read(is);
}
/// write serialization
void write(std::ostream& os) const
{
mScaleValues.write(os);
mVoxelSize.write(os);
mScaleValuesInverse.write(os);
mInvScaleSqr.write(os);
mInvTwiceScale.write(os);
}
/// string serialization, useful for debuging
std::string str() const
{
std::ostringstream buffer;
buffer << " - scale: " << mScaleValues << std::endl;
buffer << " - voxel dimensions: " << mVoxelSize << std::endl;
return buffer.str();
}
virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }
bool operator==(const ScaleMap& other) const
{
// ::eq() uses a tolerance
if (!mScaleValues.eq(other.mScaleValues)) { return false; }
return true;
}
bool operator!=(const ScaleMap& other) const { return !(*this == other); }
/// Return a AffineMap equivalent to this map
AffineMap::Ptr getAffineMap() const
{
return AffineMap::Ptr(new AffineMap(math::scale<Mat4d>(mScaleValues)));
}
//@{
/// @brief Return a MapBase::Ptr to a new map that is the result
/// of prepending the appropraite operation to the existing map
MapBase::Ptr preRotate(double radians, Axis axis) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPreRotation(axis, radians);
return simplify(affineMap);
}
MapBase::Ptr preTranslate(const Vec3d& tr) const;
MapBase::Ptr preScale(const Vec3d& v) const;
MapBase::Ptr preShear(double shear, Axis axis0, Axis axis1) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPreShear(axis0, axis1, shear);
return simplify(affineMap);
}
//@}
//@{
/// @brief Return a MapBase::Ptr to a new map that is the result
/// of prepending the appropraite operation to the existing map.
MapBase::Ptr postRotate(double radians, Axis axis) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPostRotation(axis, radians);
return simplify(affineMap);
}
MapBase::Ptr postTranslate(const Vec3d& tr) const;
MapBase::Ptr postScale(const Vec3d& v) const;
MapBase::Ptr postShear(double shear, Axis axis0, Axis axis1) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPostShear(axis0, axis1, shear);
return simplify(affineMap);
}
//@}
private:
Vec3d mScaleValues, mVoxelSize, mScaleValuesInverse, mInvScaleSqr, mInvTwiceScale;
}; // class ScaleMap
/// @brief A specialized Affine transform that scales along the principal axis
/// the scaling is uniform in the three-directions
class OPENVDB_API UniformScaleMap: public ScaleMap
{
public:
typedef boost::shared_ptr<UniformScaleMap> Ptr;
typedef boost::shared_ptr<const UniformScaleMap> ConstPtr;
UniformScaleMap(): ScaleMap(Vec3d(1,1,1)) {}
UniformScaleMap(double scale): ScaleMap(Vec3d(scale, scale, scale)) {}
UniformScaleMap(const UniformScaleMap& other): ScaleMap(other) {}
~UniformScaleMap() {}
/// Return a MapBase::Ptr to a new UniformScaleMap
static MapBase::Ptr create() { return MapBase::Ptr(new UniformScaleMap()); }
/// Return a MapBase::Ptr to a deep copy of this map
MapBase::Ptr copy() const { return MapBase::Ptr(new UniformScaleMap(*this)); }
MapBase::Ptr inverseMap() const
{
const Vec3d& invScale = getInvScale();
return MapBase::Ptr(new UniformScaleMap( invScale[0]));
}
static bool isRegistered() { return MapRegistry::isRegistered(UniformScaleMap::mapType()); }
static void registerMap()
{
MapRegistry::registerMap(
UniformScaleMap::mapType(),
UniformScaleMap::create);
}
Name type() const { return mapType(); }
static Name mapType() { return Name("UniformScaleMap"); }
virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }
bool operator==(const UniformScaleMap& other) const { return ScaleMap::operator==(other); }
bool operator!=(const UniformScaleMap& other) const { return !(*this == other); }
/// Return a MapBase::Ptr to a UniformScaleTraslateMap that is the result of
/// pre-translation on this map
MapBase::Ptr preTranslate(const Vec3d& tr) const;
/// Return a MapBase::Ptr to a UniformScaleTraslateMap that is the result of
/// post-translation on this map
MapBase::Ptr postTranslate(const Vec3d& tr) const;
}; // class UniformScaleMap
////////////////////////////////////////
inline MapBase::Ptr
ScaleMap::preScale(const Vec3d& v) const
{
const Vec3d new_scale(v * mScaleValues);
if (isApproxEqual(new_scale[0],new_scale[1]) && isApproxEqual(new_scale[0],new_scale[2])) {
return MapBase::Ptr(new UniformScaleMap(new_scale[0]));
} else {
return MapBase::Ptr(new ScaleMap(new_scale));
}
}
inline MapBase::Ptr
ScaleMap::postScale(const Vec3d& v) const
{ // pre-post Scale are the same for a scale map
return preScale(v);
}
/// @brief A specialized linear transform that performs a translation
class OPENVDB_API TranslationMap: public MapBase
{
public:
typedef boost::shared_ptr<TranslationMap> Ptr;
typedef boost::shared_ptr<const TranslationMap> ConstPtr;
// default constructor is a translation by zero.
TranslationMap(): MapBase(), mTranslation(Vec3d(0,0,0)) {}
TranslationMap(const Vec3d& t): MapBase(), mTranslation(t) {}
TranslationMap(const TranslationMap& other): MapBase(), mTranslation(other.mTranslation) {}
~TranslationMap() {}
/// Return a MapBase::Ptr to a new TranslationMap
static MapBase::Ptr create() { return MapBase::Ptr(new TranslationMap()); }
/// Return a MapBase::Ptr to a deep copy of this map
MapBase::Ptr copy() const { return MapBase::Ptr(new TranslationMap(*this)); }
MapBase::Ptr inverseMap() const { return MapBase::Ptr(new TranslationMap(-mTranslation)); }
static bool isRegistered() { return MapRegistry::isRegistered(TranslationMap::mapType()); }
static void registerMap()
{
MapRegistry::registerMap(
TranslationMap::mapType(),
TranslationMap::create);
}
Name type() const { return mapType(); }
static Name mapType() { return Name("TranslationMap"); }
/// Return @c true (a TranslationMap is always linear).
bool isLinear() const { return true; }
/// Return @c false (by convention true)
bool hasUniformScale() const { return true; }
/// Return the image of @c in under the map
Vec3d applyMap(const Vec3d& in) const { return in + mTranslation; }
/// Return the pre-image of @c in under the map
Vec3d applyInverseMap(const Vec3d& in) const { return in - mTranslation; }
/// Return the Jacobian of the map applied to @a in.
Vec3d applyJacobian(const Vec3d& in, const Vec3d&) const { return applyJacobian(in); }
/// Return the Jacobian of the map applied to @a in.
Vec3d applyJacobian(const Vec3d& in) const { return in; }
/// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
Vec3d applyInverseJacobian(const Vec3d& in, const Vec3d&) const { return applyInverseJacobian(in); }
/// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
Vec3d applyInverseJacobian(const Vec3d& in) const { return in; }
/// Return the Jacobian Transpose of the map applied to @a in.
/// This tranforms range-space gradients to domain-space gradients
Vec3d applyJT(const Vec3d& in, const Vec3d&) const { return applyJT(in); }
/// Return the Jacobian Transpose of the map applied to @a in.
Vec3d applyJT(const Vec3d& in) const { return in; }
/// @brief Return the transpose of the inverse Jacobian (Identity for TranslationMap)
/// of the map applied to @c in, ignores second argument
Vec3d applyIJT(const Vec3d& in, const Vec3d& ) const { return applyIJT(in);}
/// @brief Return the transpose of the inverse Jacobian (Identity for TranslationMap)
/// of the map applied to @c in
Vec3d applyIJT(const Vec3d& in) const {return in;}
/// Return the Jacobian Curvature: zero for a linear map
Mat3d applyIJC(const Mat3d& mat) const {return mat;}
Mat3d applyIJC(const Mat3d& mat, const Vec3d&, const Vec3d&) const { return applyIJC(mat); }
/// Return @c 1
double determinant(const Vec3d& ) const { return determinant(); }
/// Return @c 1
double determinant() const { return 1.0; }
/// Return \f$ (1,1,1) \f$
Vec3d voxelSize() const { return Vec3d(1,1,1);}
/// Return \f$ (1,1,1) \f$
Vec3d voxelSize(const Vec3d&) const { return voxelSize();}
/// Return the translation vector
const Vec3d& getTranslation() const { return mTranslation; }
/// read serialization
void read(std::istream& is) { mTranslation.read(is); }
/// write serialization
void write(std::ostream& os) const { mTranslation.write(os); }
/// string serialization, useful for debuging
std::string str() const
{
std::ostringstream buffer;
buffer << " - translation: " << mTranslation << std::endl;
return buffer.str();
}
virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }
bool operator==(const TranslationMap& other) const
{
// ::eq() uses a tolerance
return mTranslation.eq(other.mTranslation);
}
bool operator!=(const TranslationMap& other) const { return !(*this == other); }
/// Return AffineMap::Ptr to an AffineMap equivalent to *this
AffineMap::Ptr getAffineMap() const
{
Mat4d matrix(Mat4d::identity());
matrix.setTranslation(mTranslation);
AffineMap::Ptr affineMap(new AffineMap(matrix));
return affineMap;
}
//@{
/// @brief Return a MapBase::Ptr to a new map that is the result
/// of prepending the appropriate operation.
MapBase::Ptr preRotate(double radians, Axis axis) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPreRotation(axis, radians);
return simplify(affineMap);
}
MapBase::Ptr preTranslate(const Vec3d& t) const
{
return MapBase::Ptr(new TranslationMap(t + mTranslation));
}
MapBase::Ptr preScale(const Vec3d& v) const;
MapBase::Ptr preShear(double shear, Axis axis0, Axis axis1) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPreShear(axis0, axis1, shear);
return simplify(affineMap);
}
//@}
//@{
/// @brief Return a MapBase::Ptr to a new map that is the result
/// of postfixing the appropriate operation.
MapBase::Ptr postRotate(double radians, Axis axis) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPostRotation(axis, radians);
return simplify(affineMap);
}
MapBase::Ptr postTranslate(const Vec3d& t) const
{ // post and pre are the same for this
return MapBase::Ptr(new TranslationMap(t + mTranslation));
}
MapBase::Ptr postScale(const Vec3d& v) const;
MapBase::Ptr postShear(double shear, Axis axis0, Axis axis1) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPostShear(axis0, axis1, shear);
return simplify(affineMap);
}
//@}
private:
Vec3d mTranslation;
}; // class TranslationMap
////////////////////////////////////////
/// @brief A specialized Affine transform that scales along the principal axis
/// the scaling need not be uniform in the three-directions, and then
/// translates the result.
class OPENVDB_API ScaleTranslateMap: public MapBase
{
public:
typedef boost::shared_ptr<ScaleTranslateMap> Ptr;
typedef boost::shared_ptr<const ScaleTranslateMap> ConstPtr;
ScaleTranslateMap():
MapBase(),
mTranslation(Vec3d(0,0,0)),
mScaleValues(Vec3d(1,1,1)),
mVoxelSize(Vec3d(1,1,1)),
mScaleValuesInverse(Vec3d(1,1,1)),
mInvScaleSqr(1,1,1),
mInvTwiceScale(0.5,0.5,0.5)
{
}
ScaleTranslateMap(const Vec3d& scale, const Vec3d& translate):
MapBase(),
mTranslation(translate),
mScaleValues(scale),
mVoxelSize(std::abs(scale(0)), std::abs(scale(1)), std::abs(scale(2)))
{
const double determinant = scale[0]* scale[1] * scale[2];
if (std::abs(determinant) < 3.0 * math::Tolerance<double>::value()) {
OPENVDB_THROW(ArithmeticError, "Non-zero scale values required");
}
mScaleValuesInverse = 1.0 / mScaleValues;
mInvScaleSqr = mScaleValuesInverse * mScaleValuesInverse;
mInvTwiceScale = mScaleValuesInverse / 2;
}
ScaleTranslateMap(const ScaleMap& scale, const TranslationMap& translate):
MapBase(),
mTranslation(translate.getTranslation()),
mScaleValues(scale.getScale()),
mVoxelSize(std::abs(mScaleValues(0)),
std::abs(mScaleValues(1)),
std::abs(mScaleValues(2))),
mScaleValuesInverse(1.0 / scale.getScale())
{
mInvScaleSqr = mScaleValuesInverse * mScaleValuesInverse;
mInvTwiceScale = mScaleValuesInverse / 2;
}
ScaleTranslateMap(const ScaleTranslateMap& other):
MapBase(),
mTranslation(other.mTranslation),
mScaleValues(other.mScaleValues),
mVoxelSize(other.mVoxelSize),
mScaleValuesInverse(other.mScaleValuesInverse),
mInvScaleSqr(other.mInvScaleSqr),
mInvTwiceScale(other.mInvTwiceScale)
{}
~ScaleTranslateMap() {}
/// Return a MapBase::Ptr to a new ScaleTranslateMap
static MapBase::Ptr create() { return MapBase::Ptr(new ScaleTranslateMap()); }
/// Return a MapBase::Ptr to a deep copy of this map
MapBase::Ptr copy() const { return MapBase::Ptr(new ScaleTranslateMap(*this)); }
MapBase::Ptr inverseMap() const
{
return MapBase::Ptr(new ScaleTranslateMap(
mScaleValuesInverse, -mScaleValuesInverse * mTranslation));
}
static bool isRegistered() { return MapRegistry::isRegistered(ScaleTranslateMap::mapType()); }
static void registerMap()
{
MapRegistry::registerMap(
ScaleTranslateMap::mapType(),
ScaleTranslateMap::create);
}
Name type() const { return mapType(); }
static Name mapType() { return Name("ScaleTranslateMap"); }
/// Return @c true (a ScaleTranslateMap is always linear).
bool isLinear() const { return true; }
/// @brief Return @c true if the scale values have the same magnitude
/// (eg. -1, 1, -1 would be a rotation).
bool hasUniformScale() const
{
bool value = isApproxEqual(
std::abs(mScaleValues.x()), std::abs(mScaleValues.y()), double(5e-7));
value = value && isApproxEqual(
std::abs(mScaleValues.x()), std::abs(mScaleValues.z()), double(5e-7));
return value;
}
/// Return the image of @c under the map
Vec3d applyMap(const Vec3d& in) const
{
return Vec3d(
in.x() * mScaleValues.x() + mTranslation.x(),
in.y() * mScaleValues.y() + mTranslation.y(),
in.z() * mScaleValues.z() + mTranslation.z());
}
/// Return the pre-image of @c under the map
Vec3d applyInverseMap(const Vec3d& in) const
{
return Vec3d(
(in.x() - mTranslation.x() ) * mScaleValuesInverse.x(),
(in.y() - mTranslation.y() ) * mScaleValuesInverse.y(),
(in.z() - mTranslation.z() ) * mScaleValuesInverse.z());
}
/// Return the Jacobian of the map applied to @a in.
Vec3d applyJacobian(const Vec3d& in, const Vec3d&) const { return applyJacobian(in); }
/// Return the Jacobian of the map applied to @a in.
Vec3d applyJacobian(const Vec3d& in) const { return in * mScaleValues; }
/// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
Vec3d applyInverseJacobian(const Vec3d& in, const Vec3d&) const { return applyInverseJacobian(in); }
/// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
Vec3d applyInverseJacobian(const Vec3d& in) const { return in * mScaleValuesInverse; }
/// Return the Jacobian Transpose of the map applied to @a in.
/// This tranforms range-space gradients to domain-space gradients
Vec3d applyJT(const Vec3d& in, const Vec3d&) const { return applyJT(in); }
/// Return the Jacobian Transpose of the map applied to @a in.
Vec3d applyJT(const Vec3d& in) const { return applyJacobian(in); }
/// @brief Return the transpose of the inverse Jacobian of the map applied to @a in
/// @details Ignores second argument
Vec3d applyIJT(const Vec3d& in, const Vec3d& ) const { return applyIJT(in);}
/// Return the transpose of the inverse Jacobian of the map applied to @c in
Vec3d applyIJT(const Vec3d& in) const
{
return Vec3d(
in.x() * mScaleValuesInverse.x(),
in.y() * mScaleValuesInverse.y(),
in.z() * mScaleValuesInverse.z());
}
/// Return the Jacobian Curvature: zero for a linear map
Mat3d applyIJC(const Mat3d& in) const
{
Mat3d tmp;
for (int i=0; i<3; i++){
tmp.setRow(i, in.row(i)*mScaleValuesInverse(i));
}
for (int i=0; i<3; i++){
tmp.setCol(i, tmp.col(i)*mScaleValuesInverse(i));
}
return tmp;
}
Mat3d applyIJC(const Mat3d& in, const Vec3d&, const Vec3d& ) const { return applyIJC(in); }
/// Return the product of the scale values, ignores argument
double determinant(const Vec3d& ) const { return determinant(); }
/// Return the product of the scale values
double determinant() const { return mScaleValues.x()*mScaleValues.y()*mScaleValues.z(); }
/// Return the absolute values of the scale values
Vec3d voxelSize() const { return mVoxelSize;}
/// Return the absolute values of the scale values, ignores
///argument
Vec3d voxelSize(const Vec3d&) const { return voxelSize();}
/// Returns the scale values
const Vec3d& getScale() const { return mScaleValues; }
/// Returns the translation
const Vec3d& getTranslation() const { return mTranslation; }
/// Return the square of the scale. Used to optimize some finite difference calculations
const Vec3d& getInvScaleSqr() const {return mInvScaleSqr;}
/// Return 1/(2 scale). Used to optimize some finite difference calculations
const Vec3d& getInvTwiceScale() const {return mInvTwiceScale;}
/// Return 1/(scale)
const Vec3d& getInvScale() const {return mScaleValuesInverse; }
/// read serialization
void read(std::istream& is)
{
mTranslation.read(is);
mScaleValues.read(is);
mVoxelSize.read(is);
mScaleValuesInverse.read(is);
mInvScaleSqr.read(is);
mInvTwiceScale.read(is);
}
/// write serialization
void write(std::ostream& os) const
{
mTranslation.write(os);
mScaleValues.write(os);
mVoxelSize.write(os);
mScaleValuesInverse.write(os);
mInvScaleSqr.write(os);
mInvTwiceScale.write(os);
}
/// string serialization, useful for debuging
std::string str() const
{
std::ostringstream buffer;
buffer << " - translation: " << mTranslation << std::endl;
buffer << " - scale: " << mScaleValues << std::endl;
buffer << " - voxel dimensions: " << mVoxelSize << std::endl;
return buffer.str();
}
virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }
bool operator==(const ScaleTranslateMap& other) const
{
// ::eq() uses a tolerance
if (!mScaleValues.eq(other.mScaleValues)) { return false; }
if (!mTranslation.eq(other.mTranslation)) { return false; }
return true;
}
bool operator!=(const ScaleTranslateMap& other) const { return !(*this == other); }
/// Return AffineMap::Ptr to an AffineMap equivalent to *this
AffineMap::Ptr getAffineMap() const
{
AffineMap::Ptr affineMap(new AffineMap(math::scale<Mat4d>(mScaleValues)));
affineMap->accumPostTranslation(mTranslation);
return affineMap;
}
//@{
/// @brief Return a MapBase::Ptr to a new map that is the result
/// of prepending the appropraite operation.
MapBase::Ptr preRotate(double radians, Axis axis) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPreRotation(axis, radians);
return simplify(affineMap);
}
MapBase::Ptr preTranslate(const Vec3d& t) const
{
const Vec3d& s = mScaleValues;
const Vec3d scaled_trans( t.x() * s.x(),
t.y() * s.y(),
t.z() * s.z() );
return MapBase::Ptr( new ScaleTranslateMap(mScaleValues, mTranslation + scaled_trans));
}
MapBase::Ptr preScale(const Vec3d& v) const;
MapBase::Ptr preShear(double shear, Axis axis0, Axis axis1) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPreShear(axis0, axis1, shear);
return simplify(affineMap);
}
//@}
//@{
/// @brief Return a MapBase::Ptr to a new map that is the result
/// of postfixing the appropraite operation.
MapBase::Ptr postRotate(double radians, Axis axis) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPostRotation(axis, radians);
return simplify(affineMap);
}
MapBase::Ptr postTranslate(const Vec3d& t) const
{
return MapBase::Ptr( new ScaleTranslateMap(mScaleValues, mTranslation + t));
}
MapBase::Ptr postScale(const Vec3d& v) const;
MapBase::Ptr postShear(double shear, Axis axis0, Axis axis1) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPostShear(axis0, axis1, shear);
return simplify(affineMap);
}
//@}
private:
Vec3d mTranslation, mScaleValues, mVoxelSize, mScaleValuesInverse,
mInvScaleSqr, mInvTwiceScale;
}; // class ScaleTanslateMap
inline MapBase::Ptr
ScaleMap::postTranslate(const Vec3d& t) const
{
return MapBase::Ptr(new ScaleTranslateMap(mScaleValues, t));
}
inline MapBase::Ptr
ScaleMap::preTranslate(const Vec3d& t) const
{
const Vec3d& s = mScaleValues;
const Vec3d scaled_trans( t.x() * s.x(),
t.y() * s.y(),
t.z() * s.z() );
return MapBase::Ptr(new ScaleTranslateMap(mScaleValues, scaled_trans));
}
/// @brief A specialized Affine transform that uniformaly scales along the principal axis
/// and then translates the result.
class OPENVDB_API UniformScaleTranslateMap: public ScaleTranslateMap
{
public:
typedef boost::shared_ptr<UniformScaleTranslateMap> Ptr;
typedef boost::shared_ptr<const UniformScaleTranslateMap> ConstPtr;
UniformScaleTranslateMap():ScaleTranslateMap(Vec3d(1,1,1), Vec3d(0,0,0)) {}
UniformScaleTranslateMap(double scale, const Vec3d& translate):
ScaleTranslateMap(Vec3d(scale,scale,scale), translate) {}
UniformScaleTranslateMap(const UniformScaleMap& scale, const TranslationMap& translate):
ScaleTranslateMap(scale.getScale(), translate.getTranslation()) {}
UniformScaleTranslateMap(const UniformScaleTranslateMap& other):ScaleTranslateMap(other) {}
~UniformScaleTranslateMap() {}
/// Return a MapBase::Ptr to a new UniformScaleTranslateMap
static MapBase::Ptr create() { return MapBase::Ptr(new UniformScaleTranslateMap()); }
/// Return a MapBase::Ptr to a deep copy of this map
MapBase::Ptr copy() const { return MapBase::Ptr(new UniformScaleTranslateMap(*this)); }
MapBase::Ptr inverseMap() const
{
const Vec3d& scaleInv = getInvScale();
const Vec3d& trans = getTranslation();
return MapBase::Ptr(new UniformScaleTranslateMap(scaleInv[0], -scaleInv[0] * trans));
}
static bool isRegistered()
{
return MapRegistry::isRegistered(UniformScaleTranslateMap::mapType());
}
static void registerMap()
{
MapRegistry::registerMap(
UniformScaleTranslateMap::mapType(),
UniformScaleTranslateMap::create);
}
Name type() const { return mapType(); }
static Name mapType() { return Name("UniformScaleTranslateMap"); }
virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }
bool operator==(const UniformScaleTranslateMap& other) const
{
return ScaleTranslateMap::operator==(other);
}
bool operator!=(const UniformScaleTranslateMap& other) const { return !(*this == other); }
/// @brief Return a MapBase::Ptr to a UniformScaleTranslateMap that is
/// the result of prepending translation on this map.
MapBase::Ptr preTranslate(const Vec3d& t) const
{
const double scale = this->getScale().x();
const Vec3d new_trans = this->getTranslation() + scale * t;
return MapBase::Ptr( new UniformScaleTranslateMap(scale, new_trans));
}
/// @brief Return a MapBase::Ptr to a UniformScaleTranslateMap that is
/// the result of postfixing translation on this map.
MapBase::Ptr postTranslate(const Vec3d& t) const
{
const double scale = this->getScale().x();
return MapBase::Ptr( new UniformScaleTranslateMap(scale, this->getTranslation() + t));
}
}; // class UniformScaleTanslateMap
inline MapBase::Ptr
UniformScaleMap::postTranslate(const Vec3d& t) const
{
const double scale = this->getScale().x();
return MapBase::Ptr(new UniformScaleTranslateMap(scale, t));
}
inline MapBase::Ptr
UniformScaleMap::preTranslate(const Vec3d& t) const
{
const double scale = this->getScale().x();
return MapBase::Ptr(new UniformScaleTranslateMap(scale, scale*t));
}
inline MapBase::Ptr
TranslationMap::preScale(const Vec3d& v) const
{
if (isApproxEqual(v[0],v[1]) && isApproxEqual(v[0],v[2])) {
return MapBase::Ptr(new UniformScaleTranslateMap(v[0], mTranslation));
} else {
return MapBase::Ptr(new ScaleTranslateMap(v, mTranslation));
}
}
inline MapBase::Ptr
TranslationMap::postScale(const Vec3d& v) const
{
if (isApproxEqual(v[0],v[1]) && isApproxEqual(v[0],v[2])) {
return MapBase::Ptr(new UniformScaleTranslateMap(v[0], v[0]*mTranslation));
} else {
const Vec3d trans(mTranslation.x()*v.x(),
mTranslation.y()*v.y(),
mTranslation.z()*v.z());
return MapBase::Ptr(new ScaleTranslateMap(v, trans));
}
}
inline MapBase::Ptr
ScaleTranslateMap::preScale(const Vec3d& v) const
{
const Vec3d new_scale( v * mScaleValues );
if (isApproxEqual(new_scale[0],new_scale[1]) && isApproxEqual(new_scale[0],new_scale[2])) {
return MapBase::Ptr( new UniformScaleTranslateMap(new_scale[0], mTranslation));
} else {
return MapBase::Ptr( new ScaleTranslateMap(new_scale, mTranslation));
}
}
inline MapBase::Ptr
ScaleTranslateMap::postScale(const Vec3d& v) const
{
const Vec3d new_scale( v * mScaleValues );
const Vec3d new_trans( mTranslation.x()*v.x(),
mTranslation.y()*v.y(),
mTranslation.z()*v.z() );
if (isApproxEqual(new_scale[0],new_scale[1]) && isApproxEqual(new_scale[0],new_scale[2])) {
return MapBase::Ptr( new UniformScaleTranslateMap(new_scale[0], new_trans));
} else {
return MapBase::Ptr( new ScaleTranslateMap(new_scale, new_trans));
}
}
////////////////////////////////////////
/// @brief A specialized linear transform that performs a unitary maping
/// i.e. rotation and or reflection.
class OPENVDB_API UnitaryMap: public MapBase
{
public:
typedef boost::shared_ptr<UnitaryMap> Ptr;
typedef boost::shared_ptr<const UnitaryMap> ConstPtr;
/// default constructor makes an Idenity.
UnitaryMap(): mAffineMap(Mat4d::identity())
{
}
UnitaryMap(const Vec3d& axis, double radians)
{
Mat3d matrix;
matrix.setToRotation(axis, radians);
mAffineMap = AffineMap(matrix);
}
UnitaryMap(Axis axis, double radians)
{
Mat4d matrix;
matrix.setToRotation(axis, radians);
mAffineMap = AffineMap(matrix);
}
UnitaryMap(const Mat3d& m)
{
// test that the mat3 is a rotation || reflection
if (!isUnitary(m)) {
OPENVDB_THROW(ArithmeticError, "Matrix initializing unitary map was not unitary");
}
Mat4d matrix(Mat4d::identity());
matrix.setMat3(m);
mAffineMap = AffineMap(matrix);
}
UnitaryMap(const Mat4d& m)
{
if (!isInvertible(m)) {
OPENVDB_THROW(ArithmeticError,
"4x4 Matrix initializing unitary map was not unitary: not invertible");
}
if (!isAffine(m)) {
OPENVDB_THROW(ArithmeticError,
"4x4 Matrix initializing unitary map was not unitary: not affine");
}
if (hasTranslation(m)) {
OPENVDB_THROW(ArithmeticError,
"4x4 Matrix initializing unitary map was not unitary: had translation");
}
if (!isUnitary(m.getMat3())) {
OPENVDB_THROW(ArithmeticError,
"4x4 Matrix initializing unitary map was not unitary");
}
mAffineMap = AffineMap(m);
}
UnitaryMap(const UnitaryMap& other):
MapBase(other),
mAffineMap(other.mAffineMap)
{
}
UnitaryMap(const UnitaryMap& first, const UnitaryMap& second):
mAffineMap(*(first.getAffineMap()), *(second.getAffineMap()))
{
}
~UnitaryMap() {}
/// Return a MapBase::Ptr to a new UnitaryMap
static MapBase::Ptr create() { return MapBase::Ptr(new UnitaryMap()); }
/// Returns a MapBase::Ptr to a deep copy of *this
MapBase::Ptr copy() const { return MapBase::Ptr(new UnitaryMap(*this)); }
MapBase::Ptr inverseMap() const
{
return MapBase::Ptr(new UnitaryMap(mAffineMap.getMat4().inverse()));
}
static bool isRegistered() { return MapRegistry::isRegistered(UnitaryMap::mapType()); }
static void registerMap()
{
MapRegistry::registerMap(
UnitaryMap::mapType(),
UnitaryMap::create);
}
/// Return @c UnitaryMap
Name type() const { return mapType(); }
/// Return @c UnitaryMap
static Name mapType() { return Name("UnitaryMap"); }
/// Return @c true (a UnitaryMap is always linear).
bool isLinear() const { return true; }
/// Return @c false (by convention true)
bool hasUniformScale() const { return true; }
virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }
bool operator==(const UnitaryMap& other) const
{
// compare underlying linear map.
if (mAffineMap!=other.mAffineMap) return false;
return true;
}
bool operator!=(const UnitaryMap& other) const { return !(*this == other); }
/// Return the image of @c in under the map
Vec3d applyMap(const Vec3d& in) const { return mAffineMap.applyMap(in); }
/// Return the pre-image of @c in under the map
Vec3d applyInverseMap(const Vec3d& in) const { return mAffineMap.applyInverseMap(in); }
Vec3d applyJacobian(const Vec3d& in, const Vec3d&) const { return applyJacobian(in); }
/// Return the Jacobian of the map applied to @a in.
Vec3d applyJacobian(const Vec3d& in) const { return mAffineMap.applyJacobian(in); }
/// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
Vec3d applyInverseJacobian(const Vec3d& in, const Vec3d&) const { return applyInverseJacobian(in); }
/// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
Vec3d applyInverseJacobian(const Vec3d& in) const { return mAffineMap.applyInverseJacobian(in); }
/// Return the Jacobian Transpose of the map applied to @a in.
/// This tranforms range-space gradients to domain-space gradients
Vec3d applyJT(const Vec3d& in, const Vec3d&) const { return applyJT(in); }
/// Return the Jacobian Transpose of the map applied to @a in.
Vec3d applyJT(const Vec3d& in) const {
// The transpose of the unitary map is its inverse
return applyInverseMap(in);
}
/// @brief Return the transpose of the inverse Jacobian of the map applied to @a in
/// @details Ignores second argument
Vec3d applyIJT(const Vec3d& in, const Vec3d& ) const { return applyIJT(in);}
/// Return the transpose of the inverse Jacobian of the map applied to @c in
Vec3d applyIJT(const Vec3d& in) const { return mAffineMap.applyIJT(in); }
/// Return the Jacobian Curvature: zero for a linear map
Mat3d applyIJC(const Mat3d& in) const { return mAffineMap.applyIJC(in); }
Mat3d applyIJC(const Mat3d& in, const Vec3d&, const Vec3d& ) const { return applyIJC(in); }
/// Return the determinant of the Jacobian, ignores argument
double determinant(const Vec3d& ) const { return determinant(); }
/// Return the determinant of the Jacobian
double determinant() const { return mAffineMap.determinant(); }
/// @brief Returns the lengths of the images
/// of the segments
/// \f$(0,0,0)-(1,0,0)\f$, \f$(0,0,0)-(0,1,0)\f$,
/// \f$(0,0,0)-(0,0,1)\f$
Vec3d voxelSize() const { return mAffineMap.voxelSize();}
Vec3d voxelSize(const Vec3d&) const { return voxelSize();}
/// read serialization
void read(std::istream& is)
{
mAffineMap.read(is);
}
/// write serialization
void write(std::ostream& os) const
{
mAffineMap.write(os);
}
/// string serialization, useful for debuging
std::string str() const
{
std::ostringstream buffer;
buffer << mAffineMap.str();
return buffer.str();
}
/// Return AffineMap::Ptr to an AffineMap equivalent to *this
AffineMap::Ptr getAffineMap() const { return AffineMap::Ptr(new AffineMap(mAffineMap)); }
//@{
/// @brief Return a MapBase::Ptr to a new map that is the result
/// of prepending the appropraite operation.
MapBase::Ptr preRotate(double radians, Axis axis) const
{
UnitaryMap first(axis, radians);
UnitaryMap::Ptr unitaryMap(new UnitaryMap(first, *this));
return boost::static_pointer_cast<MapBase, UnitaryMap>(unitaryMap);
}
MapBase::Ptr preTranslate(const Vec3d& t) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPreTranslation(t);
return simplify(affineMap);
}
MapBase::Ptr preScale(const Vec3d& v) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPreScale(v);
return simplify(affineMap);
}
MapBase::Ptr preShear(double shear, Axis axis0, Axis axis1) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPreShear(axis0, axis1, shear);
return simplify(affineMap);
}
//@}
//@{
/// @brief Return a MapBase::Ptr to a new map that is the result
/// of postfixing the appropraite operation.
MapBase::Ptr postRotate(double radians, Axis axis) const
{
UnitaryMap second(axis, radians);
UnitaryMap::Ptr unitaryMap(new UnitaryMap(*this, second));
return boost::static_pointer_cast<MapBase, UnitaryMap>(unitaryMap);
}
MapBase::Ptr postTranslate(const Vec3d& t) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPostTranslation(t);
return simplify(affineMap);
}
MapBase::Ptr postScale(const Vec3d& v) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPostScale(v);
return simplify(affineMap);
}
MapBase::Ptr postShear(double shear, Axis axis0, Axis axis1) const
{
AffineMap::Ptr affineMap = getAffineMap();
affineMap->accumPostShear(axis0, axis1, shear);
return simplify(affineMap);
}
//@}
private:
AffineMap mAffineMap;
}; // class UnitaryMap
////////////////////////////////////////
/// @brief This map is composed of three steps.
/// Frist it will take a box of size (Lx X Ly X Lz) defined by an member data bounding box
/// and map it into a frustum with near plane (1 X Ly/Lx) and precribed depth
/// Then this frustum is transformed by an internal second map: most often a uniform scale,
/// but other affects can be achieved by accumulating translation, shear and rotation: these
/// are all applied to the second map
class OPENVDB_API NonlinearFrustumMap: public MapBase
{
public:
typedef boost::shared_ptr<NonlinearFrustumMap> Ptr;
typedef boost::shared_ptr<const NonlinearFrustumMap> ConstPtr;
NonlinearFrustumMap():
MapBase(),
mBBox(Vec3d(0), Vec3d(1)),
mTaper(1),
mDepth(1)
{
init();
}
/// @brief Constructor that takes an index-space bounding box
/// to be mapped into a frustum with a given @a depth and @a taper
/// (defined as ratio of nearplane/farplane).
NonlinearFrustumMap(const BBoxd& bb, double taper, double depth):
MapBase(),mBBox(bb), mTaper(taper), mDepth(depth)
{
init();
}
/// @brief Constructor that takes an index-space bounding box
/// to be mapped into a frustum with a given @a depth and @a taper
/// (defined as ratio of nearplane/farplane).
/// @details This frustum is further modifed by the @a secondMap,
/// intended to be a simple translation and rotation and uniform scale
NonlinearFrustumMap(const BBoxd& bb, double taper, double depth,
const MapBase::Ptr& secondMap):
mBBox(bb), mTaper(taper), mDepth(depth)
{
if (!secondMap->isLinear() ) {
OPENVDB_THROW(ArithmeticError,
"The second map in the Frustum transfrom must be linear");
}
mSecondMap = *( secondMap->getAffineMap() );
init();
}
NonlinearFrustumMap(const NonlinearFrustumMap& other):
MapBase(),
mBBox(other.mBBox),
mTaper(other.mTaper),
mDepth(other.mDepth),
mSecondMap(other.mSecondMap),
mHasSimpleAffine(other.mHasSimpleAffine)
{
init();
}
/// @brief Constructor from a camera frustum
///
/// @param position the tip of the frustum (i.e., the camera's position).
/// @param direction a vector pointing from @a position toward the near plane.
/// @param up a non-unit vector describing the direction and extent of
/// the frustum's intersection on the near plane. Together,
/// @a up must be orthogonal to @a direction.
/// @param aspect the aspect ratio of the frustum intersection with near plane
/// defined as width / height
/// @param z_near,depth the distance from @a position along @a direction to the
/// near and far planes of the frustum.
/// @param x_count the number of voxels, aligned with @a left,
/// across the face of the frustum
/// @param z_count the number of voxels, aligned with @a direction,
/// between the near and far planes
NonlinearFrustumMap(const Vec3d& position,
const Vec3d& direction,
const Vec3d& up,
double aspect /* width / height */,
double z_near, double depth,
Coord::ValueType x_count, Coord::ValueType z_count) {
/// @todo check that depth > 0
/// @todo check up.length > 0
/// @todo check that direction dot up = 0
if (!(depth > 0)) {
OPENVDB_THROW(ArithmeticError,
"The frustum depth must be non-zero and positive");
}
if (!(up.length() > 0)) {
OPENVDB_THROW(ArithmeticError,
"The frustum height must be non-zero and positive");
}
if (!(aspect > 0)) {
OPENVDB_THROW(ArithmeticError,
"The frustum aspect ratio must be non-zero and positive");
}
if (!(isApproxEqual(up.dot(direction), 0.))) {
OPENVDB_THROW(ArithmeticError,
"The frustum up orientation must be perpendicular to into-frustum direction");
}
double near_plane_height = 2 * up.length();
double near_plane_width = aspect * near_plane_height;
Coord::ValueType y_count = static_cast<int>(Round(x_count / aspect));
mBBox = BBoxd(Vec3d(0,0,0), Vec3d(x_count, y_count, z_count));
mDepth = depth / near_plane_width; // depth non-dimensionalized on width
double gamma = near_plane_width / z_near;
mTaper = 1./(mDepth*gamma + 1.);
Vec3d direction_unit = direction;
direction_unit.normalize();
Mat4d r1(Mat4d::identity());
r1.setToRotation(/*from*/Vec3d(0,0,1), /*to */direction_unit);
Mat4d r2(Mat4d::identity());
Vec3d temp = r1.inverse().transform(up);
r2.setToRotation(/*from*/Vec3d(0,1,0), /*to*/temp );
Mat4d scale = math::scale<Mat4d>(
Vec3d(near_plane_width, near_plane_width, near_plane_width));
// move the near plane to origin, rotate to align with axis, and scale down
// T_inv * R1_inv * R2_inv * scale_inv
Mat4d mat = scale * r2 * r1;
mat.setTranslation(position + z_near*direction_unit);
mSecondMap = AffineMap(mat);
init();
}
~NonlinearFrustumMap(){}
/// Return a MapBase::Ptr to a new NonlinearFrustumMap
static MapBase::Ptr create() { return MapBase::Ptr(new NonlinearFrustumMap()); }
/// Return a MapBase::Ptr to a deep copy of this map
MapBase::Ptr copy() const { return MapBase::Ptr(new NonlinearFrustumMap(*this)); }
/// @brief Not implemented, since there is currently no map type that can
/// represent the inverse of a frustum
/// @throw NotImplementedError
MapBase::Ptr inverseMap() const
{
OPENVDB_THROW(NotImplementedError,
"inverseMap() is not implemented for NonlinearFrustumMap");
}
static bool isRegistered() { return MapRegistry::isRegistered(NonlinearFrustumMap::mapType()); }
static void registerMap()
{
MapRegistry::registerMap(
NonlinearFrustumMap::mapType(),
NonlinearFrustumMap::create);
}
/// Return @c NonlinearFrustumMap
Name type() const { return mapType(); }
/// Return @c NonlinearFrustumMap
static Name mapType() { return Name("NonlinearFrustumMap"); }
/// Return @c false (a NonlinearFrustumMap is never linear).
bool isLinear() const { return false; }
/// Return @c false (by convention false)
bool hasUniformScale() const { return false; }
/// Return @c true if the map is equivalent to an identity
bool isIdentity() const
{
// The frustum can only be consistent with a linear map if the taper value is 1
if (!isApproxEqual(mTaper, double(1)) ) return false;
// There are various ways an identity can decomposed between the two parts of the
// map. Best to just check that the principle vectors are stationary.
const Vec3d e1(1,0,0);
if (!applyMap(e1).eq(e1)) return false;
const Vec3d e2(0,1,0);
if (!applyMap(e2).eq(e2)) return false;
const Vec3d e3(0,0,1);
if (!applyMap(e3).eq(e3)) return false;
return true;
}
virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }
bool operator==(const NonlinearFrustumMap& other) const
{
if (mBBox!=other.mBBox) return false;
if (!isApproxEqual(mTaper, other.mTaper)) return false;
if (!isApproxEqual(mDepth, other.mDepth)) return false;
// Two linear transforms are equivalent iff they have the same translation
// and have the same affects on orthongal spanning basis check translation
Vec3d e(0,0,0);
if (!mSecondMap.applyMap(e).eq(other.mSecondMap.applyMap(e))) return false;
/// check spanning vectors
e(0) = 1;
if (!mSecondMap.applyMap(e).eq(other.mSecondMap.applyMap(e))) return false;
e(0) = 0;
e(1) = 1;
if (!mSecondMap.applyMap(e).eq(other.mSecondMap.applyMap(e))) return false;
e(1) = 0;
e(2) = 1;
if (!mSecondMap.applyMap(e).eq(other.mSecondMap.applyMap(e))) return false;
return true;
}
bool operator!=(const NonlinearFrustumMap& other) const { return !(*this == other); }
/// Return the image of @c in under the map
Vec3d applyMap(const Vec3d& in) const
{
return mSecondMap.applyMap(applyFrustumMap(in));
}
/// Return the pre-image of @c in under the map
Vec3d applyInverseMap(const Vec3d& in) const
{
return applyFrustumInverseMap(mSecondMap.applyInverseMap(in));
}
/// Return the Jacobian of the linear second map applied to @c in
Vec3d applyJacobian(const Vec3d& in) const { return mSecondMap.applyJacobian(in); }
/// Return the Jacobian defined at @c isloc applied to @c in
Vec3d applyJacobian(const Vec3d& in, const Vec3d& isloc) const
{
// Move the center of the x-face of the bbox
// to the origin in index space.
Vec3d centered(isloc);
centered = centered - mBBox.min();
centered.x() -= mXo;
centered.y() -= mYo;
// scale the z-direction on depth / K count
const double zprime = centered.z()*mDepthOnLz;
const double scale = (mGamma * zprime + 1.) / mLx;
const double scale2 = mGamma * mDepthOnLz / mLx;
const Vec3d tmp(scale * in.x() + scale2 * centered.x()* in.z(),
scale * in.y() + scale2 * centered.y()* in.z(),
mDepthOnLz * in.z());
return mSecondMap.applyJacobian(tmp);
}
/// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
Vec3d applyInverseJacobian(const Vec3d& in) const { return mSecondMap.applyInverseJacobian(in); }
/// Return the Inverse Jacobian defined at @c isloc of the map applied to @a in.
Vec3d applyInverseJacobian(const Vec3d& in, const Vec3d& isloc) const {
// Move the center of the x-face of the bbox
// to the origin in index space.
Vec3d centered(isloc);
centered = centered - mBBox.min();
centered.x() -= mXo;
centered.y() -= mYo;
// scale the z-direction on depth / K count
const double zprime = centered.z()*mDepthOnLz;
const double scale = (mGamma * zprime + 1.) / mLx;
const double scale2 = mGamma * mDepthOnLz / mLx;
Vec3d out = mSecondMap.applyInverseJacobian(in);
out.x() = (out.x() - scale2 * centered.x() * out.z() / mDepthOnLz) / scale;
out.y() = (out.y() - scale2 * centered.y() * out.z() / mDepthOnLz) / scale;
out.z() = out.z() / mDepthOnLz;
return out;
}
/// Return the Jacobian Transpose of the map applied to vector @c in at @c indexloc.
/// This tranforms range-space gradients to domain-space gradients.
///
Vec3d applyJT(const Vec3d& in, const Vec3d& isloc) const {
const Vec3d tmp = mSecondMap.applyJT(in);
// Move the center of the x-face of the bbox
// to the origin in index space.
Vec3d centered(isloc);
centered = centered - mBBox.min();
centered.x() -= mXo;
centered.y() -= mYo;
// scale the z-direction on depth / K count
const double zprime = centered.z()*mDepthOnLz;
const double scale = (mGamma * zprime + 1.) / mLx;
const double scale2 = mGamma * mDepthOnLz / mLx;
return Vec3d(scale * tmp.x(),
scale * tmp.y(),
scale2 * centered.x()* tmp.x() +
scale2 * centered.y()* tmp.y() +
mDepthOnLz * tmp.z());
}
/// Return the Jacobian Transpose of the second map applied to @c in.
Vec3d applyJT(const Vec3d& in) const {
return mSecondMap.applyJT(in);
}
/// Return the transpose of the inverse Jacobian of the linear second map applied to @c in
Vec3d applyIJT(const Vec3d& in) const { return mSecondMap.applyIJT(in); }
// the Jacobian of the nonlinear part of the transform is a sparse matrix
// Jacobian^(-T) =
//
// (Lx)( 1/s 0 0 )
// ( 0 1/s 0 )
// ( -(x-xo)g/(sLx) -(y-yo)g/(sLx) Lz/(Depth Lx) )
/// Return the transpose of the inverse Jacobain (at @c locW applied to @c in.
/// @c ijk is the location in the pre-image space (e.g. index space)
Vec3d applyIJT(const Vec3d& d1_is, const Vec3d& ijk) const
{
const Vec3d loc = applyFrustumMap(ijk);
const double s = mGamma * loc.z() + 1.;
// verify that we aren't at the singularity
if (isApproxEqual(s, 0.)) {
OPENVDB_THROW(ArithmeticError, "Tried to evaluate the frustum transform"
" at the singular focal point (e.g. camera)");
}
const double sinv = 1.0/s; // 1/(z*gamma + 1)
const double pt0 = mLx * sinv; // Lx / (z*gamma +1)
const double pt1 = mGamma * pt0; // gamma * Lx / ( z*gamma +1)
const double pt2 = pt1 * sinv; // gamma * Lx / ( z*gamma +1)**2
const Mat3d& jacinv = mSecondMap.getConstJacobianInv();
// compute \frac{\partial E_i}{\partial x_j}
Mat3d gradE(Mat3d::zero());
for (int j = 0; j < 3; ++j ) {
gradE(0,j) = pt0 * jacinv(0,j) - pt2 * loc.x()*jacinv(2,j);
gradE(1,j) = pt0 * jacinv(1,j) - pt2 * loc.y()*jacinv(2,j);
gradE(2,j) = (1./mDepthOnLz) * jacinv(2,j);
}
Vec3d result;
for (int i = 0; i < 3; ++i) {
result(0) = d1_is(0) * gradE(0,i) + d1_is(1) * gradE(1,i) + d1_is(2) * gradE(2,i);
}
return result;
}
/// Return the Jacobian Curvature for the linear second map
Mat3d applyIJC(const Mat3d& in) const { return mSecondMap.applyIJC(in); }
/// Return the Jacobian Curvature: all the second derivatives in range space
/// @param d2_is second derivative matrix computed in index space
/// @param d1_is gradient computed in index space
/// @param ijk the index space location where the result is computed
Mat3d applyIJC(const Mat3d& d2_is, const Vec3d& d1_is, const Vec3d& ijk) const
{
const Vec3d loc = applyFrustumMap(ijk);
const double s = mGamma * loc.z() + 1.;
// verify that we aren't at the singularity
if (isApproxEqual(s, 0.)) {
OPENVDB_THROW(ArithmeticError, "Tried to evaluate the frustum transform"
" at the singular focal point (e.g. camera)");
}
// precompute
const double sinv = 1.0/s; // 1/(z*gamma + 1)
const double pt0 = mLx * sinv; // Lx / (z*gamma +1)
const double pt1 = mGamma * pt0; // gamma * Lx / ( z*gamma +1)
const double pt2 = pt1 * sinv; // gamma * Lx / ( z*gamma +1)**2
const double pt3 = pt2 * sinv; // gamma * Lx / ( z*gamma +1)**3
const Mat3d& jacinv = mSecondMap.getConstJacobianInv();
// compute \frac{\partial^2 E_i}{\partial x_j \partial x_k}
Mat3d matE0(Mat3d::zero());
Mat3d matE1(Mat3d::zero()); // matE2 = 0
for(int j = 0; j < 3; j++) {
for (int k = 0; k < 3; k++) {
const double pt4 = 2. * jacinv(2,j) * jacinv(2,k) * pt3;
matE0(j,k) = -(jacinv(0,j) * jacinv(2,k) + jacinv(2,j) * jacinv(0,k)) * pt2 +
pt4 * loc.x();
matE1(j,k) = -(jacinv(1,j) * jacinv(2,k) + jacinv(2,j) * jacinv(1,k)) * pt2 +
pt4 * loc.y();
}
}
// compute \frac{\partial E_i}{\partial x_j}
Mat3d gradE(Mat3d::zero());
for (int j = 0; j < 3; ++j ) {
gradE(0,j) = pt0 * jacinv(0,j) - pt2 * loc.x()*jacinv(2,j);
gradE(1,j) = pt0 * jacinv(1,j) - pt2 * loc.y()*jacinv(2,j);
gradE(2,j) = (1./mDepthOnLz) * jacinv(2,j);
}
Mat3d result(Mat3d::zero());
// compute \fac{\partial E_j}{\partial x_m} \fac{\partial E_i}{\partial x_n}
// \frac{\partial^2 input}{\partial E_i \partial E_j}
for (int m = 0; m < 3; ++m ) {
for ( int n = 0; n < 3; ++n) {
for (int i = 0; i < 3; ++i ) {
for (int j = 0; j < 3; ++j) {
result(m, n) += gradE(j, m) * gradE(i, n) * d2_is(i, j);
}
}
}
}
for (int m = 0; m < 3; ++m ) {
for ( int n = 0; n < 3; ++n) {
result(m, n) +=
matE0(m, n) * d1_is(0) + matE1(m, n) * d1_is(1);// + matE2(m, n) * d1_is(2);
}
}
return result;
}
/// Return the determinant of the Jacobian of linear second map
double determinant() const {return mSecondMap.determinant();} // no implementation
/// Return the determinate of the Jacobian evaluated at @c loc
/// @c loc is a location in the pre-image space (e.g., index space)
double determinant(const Vec3d& loc) const
{
double s = mGamma * loc.z() + 1.0;
double frustum_determinant = s * s * mDepthOnLzLxLx;
return mSecondMap.determinant() * frustum_determinant;
}
/// Return the size of a voxel at the center of the near plane
Vec3d voxelSize() const
{
const Vec3d loc( 0.5*(mBBox.min().x() + mBBox.max().x()),
0.5*(mBBox.min().y() + mBBox.max().y()),
mBBox.min().z());
return voxelSize(loc);
}
/// @brief Returns the lengths of the images of the three segments
/// from @a loc to @a loc + (1,0,0), from @a loc to @a loc + (0,1,0)
/// and from @a loc to @a loc + (0,0,1)
/// @param loc a location in the pre-image space (e.g., index space)
Vec3d voxelSize(const Vec3d& loc) const
{
Vec3d out, pos = applyMap(loc);
out(0) = (applyMap(loc + Vec3d(1,0,0)) - pos).length();
out(1) = (applyMap(loc + Vec3d(0,1,0)) - pos).length();
out(2) = (applyMap(loc + Vec3d(0,0,1)) - pos).length();
return out;
}
AffineMap::Ptr getAffineMap() const { return mSecondMap.getAffineMap(); }
/// set the taper value, the ratio of nearplane width / far plane width
void setTaper(double t) { mTaper = t; init();}
/// Return the taper value.
double getTaper() const { return mTaper; }
/// set the frustum depth: distance between near and far plane = frustm depth * frustm x-width
void setDepth(double d) { mDepth = d; init();}
/// Return the unscaled frustm depth
double getDepth() const { return mDepth; }
// gamma a non-dimensional number: nearplane x-width / camera to near plane distance
double getGamma() const { return mGamma; }
/// Return the bounding box that defines the frustum in pre-image space
const BBoxd& getBBox() const { return mBBox; }
/// Return MapBase::Ptr& to the second map
const AffineMap& secondMap() const { return mSecondMap; }
/// Return @c true if the the bounding box in index space that defines the region that
/// is maped into the frustum is non-zero, otherwise @c false
bool isValid() const { return !mBBox.empty();}
/// Return @c true if the second map is a uniform scale, Rotation and translation
bool hasSimpleAffine() const { return mHasSimpleAffine; }
/// read serialization
void read(std::istream& is)
{
// for backward compatibility with earlier version
if (io::getFormatVersion(is) < OPENVDB_FILE_VERSION_FLOAT_FRUSTUM_BBOX ) {
CoordBBox bb;
bb.read(is);
mBBox = BBoxd(bb.min().asVec3d(), bb.max().asVec3d());
} else {
mBBox.read(is);
}
is.read(reinterpret_cast<char*>(&mTaper), sizeof(double));
is.read(reinterpret_cast<char*>(&mDepth), sizeof(double));
// Read the second maps type.
Name type = readString(is);
// Check if the map has been registered.
if(!MapRegistry::isRegistered(type)) {
OPENVDB_THROW(KeyError, "Map " << type << " is not registered");
}
// Create the second map of the type and then read it in.
MapBase::Ptr proxy = math::MapRegistry::createMap(type);
proxy->read(is);
mSecondMap = *(proxy->getAffineMap());
init();
}
/// write serialization
void write(std::ostream& os) const
{
mBBox.write(os);
os.write(reinterpret_cast<const char*>(&mTaper), sizeof(double));
os.write(reinterpret_cast<const char*>(&mDepth), sizeof(double));
writeString(os, mSecondMap.type());
mSecondMap.write(os);
}
/// string serialization, useful for debuging
std::string str() const
{
std::ostringstream buffer;
buffer << " - taper: " << mTaper << std::endl;
buffer << " - depth: " << mDepth << std::endl;
buffer << " SecondMap: "<< mSecondMap.type() << std::endl;
buffer << mSecondMap.str() << std::endl;
return buffer.str();
}
//@{
/// @brief Return a MapBase::Ptr to a new map that is the result
/// of prepending the appropriate operation to the linear part of this map
MapBase::Ptr preRotate(double radians, Axis axis = X_AXIS) const
{
return MapBase::Ptr(
new NonlinearFrustumMap(mBBox, mTaper, mDepth, mSecondMap.preRotate(radians, axis)));
}
MapBase::Ptr preTranslate(const Vec3d& t) const
{
return MapBase::Ptr(
new NonlinearFrustumMap(mBBox, mTaper, mDepth, mSecondMap.preTranslate(t)));
}
MapBase::Ptr preScale(const Vec3d& s) const
{
return MapBase::Ptr(
new NonlinearFrustumMap(mBBox, mTaper, mDepth, mSecondMap.preScale(s)));
}
MapBase::Ptr preShear(double shear, Axis axis0, Axis axis1) const
{
return MapBase::Ptr(new NonlinearFrustumMap(
mBBox, mTaper, mDepth, mSecondMap.preShear(shear, axis0, axis1)));
}
//@}
//@{
/// @brief Return a MapBase::Ptr to a new map that is the result
/// of postfixing the appropiate operation to the linear part of this map.
MapBase::Ptr postRotate(double radians, Axis axis = X_AXIS) const
{
return MapBase::Ptr(
new NonlinearFrustumMap(mBBox, mTaper, mDepth, mSecondMap.postRotate(radians, axis)));
}
MapBase::Ptr postTranslate(const Vec3d& t) const
{
return MapBase::Ptr(
new NonlinearFrustumMap(mBBox, mTaper, mDepth, mSecondMap.postTranslate(t)));
}
MapBase::Ptr postScale(const Vec3d& s) const
{
return MapBase::Ptr(
new NonlinearFrustumMap(mBBox, mTaper, mDepth, mSecondMap.postScale(s)));
}
MapBase::Ptr postShear(double shear, Axis axis0, Axis axis1) const
{
return MapBase::Ptr(new NonlinearFrustumMap(
mBBox, mTaper, mDepth, mSecondMap.postShear(shear, axis0, axis1)));
}
//@}
private:
void init()
{
// set up as a frustum
mLx = mBBox.extents().x();
mLy = mBBox.extents().y();
mLz = mBBox.extents().z();
if (isApproxEqual(mLx,0.) || isApproxEqual(mLy,0.) || isApproxEqual(mLz,0.) ) {
OPENVDB_THROW(ArithmeticError, "The index space bounding box"
" must have at least two index points in each direction.");
}
mXo = 0.5* mLx;
mYo = 0.5* mLy;
// mDepth is non-dimensionalized on near
mGamma = (1./mTaper - 1) / mDepth;
mDepthOnLz = mDepth/mLz;
mDepthOnLzLxLx = mDepthOnLz/(mLx * mLx);
/// test for shear and non-uniform scale
mHasSimpleAffine = true;
Vec3d tmp = mSecondMap.voxelSize();
/// false if there is non-uniform scale
if (!isApproxEqual(tmp(0), tmp(1))) { mHasSimpleAffine = false; return; }
if (!isApproxEqual(tmp(0), tmp(2))) { mHasSimpleAffine = false; return; }
Vec3d trans = mSecondMap.applyMap(Vec3d(0,0,0));
/// look for shear
Vec3d tmp1 = mSecondMap.applyMap(Vec3d(1,0,0)) - trans;
Vec3d tmp2 = mSecondMap.applyMap(Vec3d(0,1,0)) - trans;
Vec3d tmp3 = mSecondMap.applyMap(Vec3d(0,0,1)) - trans;
/// false if there is shear
if (!isApproxEqual(tmp1.dot(tmp2), 0., 1.e-7)) { mHasSimpleAffine = false; return; }
if (!isApproxEqual(tmp2.dot(tmp3), 0., 1.e-7)) { mHasSimpleAffine = false; return; }
if (!isApproxEqual(tmp3.dot(tmp1), 0., 1.e-7)) { mHasSimpleAffine = false; return; }
}
Vec3d applyFrustumMap(const Vec3d& in) const
{
// Move the center of the x-face of the bbox
// to the origin in index space.
Vec3d out(in);
out = out - mBBox.min();
out.x() -= mXo;
out.y() -= mYo;
// scale the z-direction on depth / K count
out.z() *= mDepthOnLz;
double scale = (mGamma * out.z() + 1.)/ mLx;
// scale the x-y on the length I count and apply tapper
out.x() *= scale ;
out.y() *= scale ;
return out;
}
Vec3d applyFrustumInverseMap(const Vec3d& in) const
{
// invert taper and resize: scale = 1/( (z+1)/2 (mt-1) + 1)
Vec3d out(in);
double invScale = mLx / (mGamma * out.z() + 1.);
out.x() *= invScale;
out.y() *= invScale;
out.x() += mXo;
out.y() += mYo;
out.z() /= mDepthOnLz;
// move back
out = out + mBBox.min();
return out;
}
// bounding box in index space used in Frustum transforms.
BBoxd mBBox;
// taper value used in constructing Frustums.
double mTaper;
double mDepth;
// defines the second map
AffineMap mSecondMap;
// these are derived from the above.
double mLx, mLy, mLz;
double mXo, mYo, mGamma, mDepthOnLz, mDepthOnLzLxLx;
// true: if the mSecondMap is linear and has no shear, and has no non-uniform scale
bool mHasSimpleAffine;
}; // class NonlinearFrustumMap
////////////////////////////////////////
/// @brief Creates the composition of two maps, each of which could be a composition.
/// In the case that each component of the composition classified as linear an
/// acceleration AffineMap is stored.
template<typename FirstMapType, typename SecondMapType>
class CompoundMap
{
public:
typedef CompoundMap<FirstMapType, SecondMapType> MyType;
typedef boost::shared_ptr<MyType> Ptr;
typedef boost::shared_ptr<const MyType> ConstPtr;
CompoundMap() { updateAffineMatrix(); }
CompoundMap(const FirstMapType& f, const SecondMapType& s): mFirstMap(f), mSecondMap(s)
{
updateAffineMatrix();
}
CompoundMap(const MyType& other):
mFirstMap(other.mFirstMap),
mSecondMap(other.mSecondMap),
mAffineMap(other.mAffineMap)
{}
Name type() const { return mapType(); }
static Name mapType()
{
return (FirstMapType::mapType() + Name(":") + SecondMapType::mapType());
}
bool operator==(const MyType& other) const
{
if (mFirstMap != other.mFirstMap) return false;
if (mSecondMap != other.mSecondMap) return false;
if (mAffineMap != other.mAffineMap) return false;
return true;
}
bool operator!=(const MyType& other) const { return !(*this == other); }
MyType& operator=(const MyType& other)
{
mFirstMap = other.mFirstMap;
mSecondMap = other.mSecondMap;
mAffineMap = other.mAffineMap;
return *this;
}
bool isIdentity() const
{
if (is_linear<MyType>::value) {
return mAffineMap.isIdentity();
} else {
return mFirstMap.isIdentity()&&mSecondMap.isIdentity();
}
}
bool isDiagonal() const {
if (is_linear<MyType>::value) {
return mAffineMap.isDiagonal();
} else {
return mFirstMap.isDiagonal()&&mSecondMap.isDiagonal();
}
}
AffineMap::Ptr getAffineMap() const
{
if (is_linear<MyType>::value) {
AffineMap::Ptr affine(new AffineMap(mAffineMap));
return affine;
} else {
OPENVDB_THROW(ArithmeticError,
"Constant affine matrix representation not possible for this nonlinear map");
}
}
// direct decompotion
const FirstMapType& firstMap() const { return mFirstMap; }
const SecondMapType& secondMap() const {return mSecondMap; }
void setFirstMap(const FirstMapType& first) { mFirstMap = first; updateAffineMatrix(); }
void setSecondMap(const SecondMapType& second) { mSecondMap = second; updateAffineMatrix(); }
void read(std::istream& is)
{
mAffineMap.read(is);
mFirstMap.read(is);
mSecondMap.read(is);
}
void write(std::ostream& os) const
{
mAffineMap.write(os);
mFirstMap.write(os);
mSecondMap.write(os);
}
private:
void updateAffineMatrix()
{
if (is_linear<MyType>::value) {
// both maps need to be linear, these methods are only defined for linear maps
AffineMap::Ptr first = mFirstMap.getAffineMap();
AffineMap::Ptr second= mSecondMap.getAffineMap();
mAffineMap = AffineMap(*first, *second);
}
}
FirstMapType mFirstMap;
SecondMapType mSecondMap;
// used for acceleration
AffineMap mAffineMap;
}; // class CompoundMap
} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_MATH_MAPS_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2013 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|