This file is indexed.

/usr/include/openturns/TriangularComplexMatrix.hxx is in libopenturns-dev 1.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
//                                               -*- C++ -*-
/**
 *  @file  TriangularComplexMatrix.hxx
 *  @brief TriangularComplexMatrix implements the classical mathematical triangular matrix with complex values
 *
 *  Copyright (C) 2005-2013 EDF-EADS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  @author schueller
 *  @date   2012-04-18 17:56:46 +0200 (Wed, 18 Apr 2012)
 */
#ifndef OPENTURNS_TRIANGULARCOMPLEXMATRIX_HXX
#define OPENTURNS_TRIANGULARCOMPLEXMATRIX_HXX

#include "SquareComplexMatrix.hxx"
#include "Collection.hxx"

BEGIN_NAMESPACE_OPENTURNS

class SymmetricMatrix;
class IdentityMatrix;
class SquareMatrix;
class Matrix;
class HermitianMatrix;

/**
 * @class TriangularComplexMatrix
 *
 * TriangularComplexMatrix implements the classical mathematical triangular matrix with complex values
 * Default implementation is triangular lower
 */

class TriangularComplexMatrix :
  public SquareComplexMatrix
{
  CLASSNAME;

#ifndef SWIG
  friend TriangularComplexMatrix operator * (const NumericalComplex s,
      const TriangularComplexMatrix & m);
#endif

public:


  /** Default constructor */
  TriangularComplexMatrix();

  /** Constructor with size (dim, which is the same for nbRows_ and nbColumns_) */
  TriangularComplexMatrix(const UnsignedLong dimension,
                          Bool isLower = true);

  /** Constructor with implementation */
  TriangularComplexMatrix(const Implementation & i,
                          const Bool isLower = true);

  /** String converter */
  String __repr__() const;
  String __str__(const String & offset = "") const;

  /** Get the dimension of the matrix */
  const UnsignedLong getDimension() const;

  /** TriangularComplexMatrix transpose */
  TriangularComplexMatrix transpose () const;

  /** TriangularComplexMatrix conjugate */
  TriangularComplexMatrix conjugate () const;

  /** TriangularComplexMatrix conjugate and transpose */
  TriangularComplexMatrix conjugateTranspose () const;

  /** Check if the matrix is lower or upper */
  Bool isTriangularLower() const;

#ifndef SWIG
  /** Operator () gives access to the elements of the matrix (to modify these elements) */
  /** The element of the matrix is designated by its row number i and its column number j */
  NumericalComplex & operator () (const UnsignedLong i,
                                  const UnsignedLong j) ;

  /** Operator () gives access to the elements of the matrix (read only) */
  /** The element of the matrix is designated by its row number i and its column number j */
  const NumericalComplex & operator () (const UnsignedLong i,
                                        const UnsignedLong j) const;
#endif


  /** TriangularComplexMatrix additions : result is a complex matrix */
  SquareComplexMatrix operator + (const TriangularComplexMatrix & m) const;

  /** Addition operator with ComplexMatrix */
  SquareComplexMatrix operator + (const SquareComplexMatrix & m) const;

  /** Substraction operator with TriangularComplexMatrix */
  SquareComplexMatrix operator - (const TriangularComplexMatrix & m) const;

  /** Substraction operator with ComplexMatrix */
  SquareComplexMatrix operator - (const SquareComplexMatrix & m) const;

  /** Multiplication with a NumericalComplex */
  TriangularComplexMatrix operator * (const NumericalComplex s) const ;

  /** ComplexMatrix multiplications */
  ComplexMatrix operator * (const ComplexMatrix & m) const;

  /** SquareComplexMatrix multiplications */
  SquareComplexMatrix operator * (const SquareComplexMatrix & m) const;

  /** TriangularComplexMatrix multiplications  */
  SquareComplexMatrix operator * (const TriangularComplexMatrix & m) const;

  /** HermitianMatrix multiplications  */
  SquareComplexMatrix operator * (const HermitianMatrix & m) const;

  /** Real SquareMatrix multiplications */
  SquareComplexMatrix operator * (const SquareMatrix & m) const;

  /** Real Matrix multiplications (must have consistent dimensions) */
  ComplexMatrix operator * (const Matrix & m) const;

  /** Real SymmetricMatrix multiplications  */
  SquareComplexMatrix operator * (const SymmetricMatrix & m) const;

  /** IdentityMatrix multiplications  */
  TriangularComplexMatrix operator * (const IdentityMatrix & m) const;

  /** Multiplication with a NumericaComplexCollection (must have consistent dimensions) */
  NumericalComplexCollection operator * (const NumericalComplexCollection & p) const;

  /** Multiplication with a NumericaScalarCollection (must have consistent dimensions) */
  NumericalComplexCollection operator * (const NumericalScalarCollection & p) const;

  /** Multiplication with a NumericalPoint (must have consistent dimensions) */
  NumericalComplexCollection operator * (const NumericalPoint & p) const;

  /** Division by a NumericalComplex*/
  TriangularComplexMatrix operator / (const NumericalComplex s) const;

private:

  /** Boolean information : is the matrix triangular lower or upper? */
  mutable Bool isTriangularLower_;

}; /* class TriangularComplexMatrix */


inline TriangularComplexMatrix operator * (const NumericalComplex s,
    const TriangularComplexMatrix & m)
{
  return m.operator * (s);
}


END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_TRIANGULARCOMPLEXMATRIX_HXX */