This file is indexed.

/usr/include/openturns/SpecFunc.hxx is in libopenturns-dev 1.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
//                                               -*- C++ -*-
/**
 *  @file  SpecFunc.hxx
 *  @brief OpenTURNS wrapper to a library of special functions
 *
 *  Copyright (C) 2005-2013 EDF-EADS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  @author schueller
 *  @date   2012-07-16 10:12:54 +0200 (Mon, 16 Jul 2012)
 */
#ifndef OPENTURNS_SPECFUNC_HXX
#define OPENTURNS_SPECFUNC_HXX

#include "OTprivate.hxx"

BEGIN_NAMESPACE_OPENTURNS



class SpecFunc
{

public:

  // 0.39894228040143267 = 1 / sqrt(2.pi)
  static const NumericalScalar ISQRT2PI;
  // 0.57721566490153286 = Euler constant gamma
  static const NumericalScalar EulerConstant;
  // 1.64493406684822643 = pi^2 / 6
  static const NumericalScalar PI2_6;
  // 1.28254983016118640 = pi / sqrt(6)
  static const NumericalScalar PI_SQRT6;
  // 0.45005320754569466 = gamma * sqrt(6) / pi
  static const NumericalScalar EULERSQRT6_PI;
  // 3.28986813369645287 = pi^2 / 3
  static const NumericalScalar PI2_3;
  // 0.55132889542179204 = sqrt(3) / pi
  static const NumericalScalar SQRT3_PI;
  // 1.81379936423421785 = pi / sqrt(3)
  static const NumericalScalar PI_SQRT3;
  // 1.20205690315959429 = Zeta(3)
  static const NumericalScalar ZETA3;
  // Minimum positive real number
  static const NumericalScalar MinNumericalScalar;
  static const NumericalScalar LogMinNumericalScalar;
  // Maximum positive real number
  static const NumericalScalar MaxNumericalScalar;
  static const NumericalScalar LogMaxNumericalScalar;
  // Real number accuracy
  static const NumericalScalar NumericalScalarEpsilon;

  // Modified first kind Bessel function of order 0: BesselI0(x) = \sum_{m=0}\infty\frac{1}{m!^2}\left(\frac{x}{2}\right)^{2m}
private:
  static NumericalScalar SmallCaseBesselI0(const NumericalScalar x);
  static NumericalScalar LargeCaseLogBesselI0(const NumericalScalar x);
public:
  static NumericalScalar BesselI0(const NumericalScalar x);
  static NumericalScalar LogBesselI0(const NumericalScalar x);
  // Modified first kind Bessel function of order 1: BesselI1(x) = \sum_{m=0}\infty\frac{1}{m!(m+1)!}\left(\frac{x}{2}\right)^{2m+1}
private:
  static NumericalScalar SmallCaseBesselI1(const NumericalScalar x);
  static NumericalScalar LargeCaseLogBesselI1(const NumericalScalar x);
public:
  static NumericalScalar BesselI1(const NumericalScalar x);
  static NumericalScalar LogBesselI1(const NumericalScalar x);
  // Beta function: beta(a, b) = \int_0^1 t^{a-1}.(1-t)^{b-1} dt
  static NumericalScalar Beta(const NumericalScalar a,
                              const NumericalScalar b);
  // Incomplete beta function: betaInc(a, b, x) = \int_0^x t^{a-1}.(1-t)^{b-1} dt
  static NumericalScalar BetaInc(const NumericalScalar a,
                                 const NumericalScalar b,
                                 const NumericalScalar x);
  // Incomplete beta function inverse with respect to x
  static NumericalScalar BetaIncInv(const NumericalScalar a,
                                    const NumericalScalar b,
                                    const NumericalScalar x);
  // Incomplete beta ratio function: betaRatioInc(a, b, x) = \int_0^x t^{a-1}.(1-t)^{b-1} dt / beta(a, b)
  static NumericalScalar BetaRatioInc(const NumericalScalar a,
                                      const NumericalScalar b,
                                      const NumericalScalar x);
  // Incomplete beta ratio function inverse with respect to x
  static NumericalScalar BetaRatioIncInv(const NumericalScalar a,
                                         const NumericalScalar b,
                                         const NumericalScalar x);
  // Natural logarithm of the beta function
  static NumericalScalar LnBeta(const NumericalScalar a,
                                const NumericalScalar b);
  static NumericalScalar LogBeta(const NumericalScalar a,
                                 const NumericalScalar b);
  // Dawson function: Dawson(x) = \exp(-x^2) * \int_0^x \exp(t^2) dt
  static NumericalScalar Dawson(const NumericalScalar x);
  // Debye function of order n: DebyeN(x, n) = n / x^n \int_0^x t^n/(\exp(t)-1) dt
  static NumericalScalar Debye(const NumericalScalar x,
                               const UnsignedLong n);
  // Real Faddeeva function: faddeeva(z) = exp(-z^2).erfc(-I*z)
  //      static NumericalComplex Faddeeva(const NumericalScalar x);
  // Complex Faddeeva function: faddeeva(z) = exp(-z^2)\erfc(-I*z)
  static NumericalComplex Faddeeva(const NumericalComplex & z);
  // Gamma function: gamma(a) = \int_0^{\infty} t^{a-1}\exp(-t) dt
  static NumericalScalar Gamma(const NumericalScalar a);
  // Complex gamma function: gamma(a) = \int_0^{\infty} t^{a-1}\exp(-t) dt
  static NumericalComplex Gamma(const NumericalComplex & a);
  // Natural logarithm of the gamma function
  static NumericalScalar LnGamma(const NumericalScalar a);
  static NumericalScalar LogGamma(const NumericalScalar a);
  // Incomplete gamma function: gamma(a, x) = \int_0^x t^{a-1}\exp(-t) dt
  static NumericalScalar GammaInc(const NumericalScalar a,
                                  const NumericalScalar x);
  // Incomplete gamma function inverse with respect to x
  static NumericalScalar GammaIncInv(const NumericalScalar a,
                                     const NumericalScalar x);
  // Digamma function: psi(x) = ((dgamma/dx) / gamma)(x)
  static NumericalScalar DiGamma(const NumericalScalar x);
  static NumericalScalar Psi(const NumericalScalar x);
  // Inverse of the DiGamma function
  static NumericalScalar DiGammaInv(const NumericalScalar a);
  // Trigamma function: TriGamma(x) = ((d^2gamma/dx^2) / gamma)(x)
  static NumericalScalar TriGamma(const NumericalScalar x);
  // Hypergeometric function of type (1,1): hyperGeom_1_1(p1, q1, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) / (q1 + k)] * x^n / n!
  static NumericalScalar HyperGeom_1_1(const NumericalScalar p1,
                                       const NumericalScalar q1,
                                       const NumericalScalar x);
  // Complex hypergeometric function of type (1,1): hyperGeom_1_1(p1, q1, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) / (q1 + k)] * x^n / n!
  static NumericalComplex HyperGeom_1_1(const NumericalScalar p1,
                                        const NumericalScalar q1,
                                        const NumericalComplex & x);
  // Hypergeometric function of type (2,1): hyperGeom_2_1(p1, p2, q1, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) . (p2 + k) / (q1 + k)] * x^n / n!
  static NumericalScalar HyperGeom_2_1(const NumericalScalar p1,
                                       const NumericalScalar p2,
                                       const NumericalScalar q1,
                                       const NumericalScalar x);
  // Hypergeometric function of type (2,2): hyperGeom_2_1(p1, p2, q1, q2, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) . (p2 + k) / (q1 + k) / (q2 + k)] * x^n / n!
  static NumericalScalar HyperGeom_2_2(const NumericalScalar p1,
                                       const NumericalScalar p2,
                                       const NumericalScalar q1,
                                       const NumericalScalar q2,
                                       const NumericalScalar x);
  // Erf function erf(x) = 2 / \sqrt(\pi) . \int_0^x \exp(-t^2) dt
  static NumericalScalar Erf(const NumericalScalar x);
  // Erf function erfc(x) = 1 - erf(x)
  static NumericalScalar ErfC(const NumericalScalar x);
  // Inverse of the erf function
  static NumericalScalar ErfInv(const NumericalScalar x);
  // Real branch of Lambert W function (principal or secndary)
  static NumericalScalar LambertW(const NumericalScalar x,
                                  const Bool principal = true);

  // MarcumQ- function
  //      static NumericalScalar MarcumQFunction(const NumericalScalar a,const NumericalScalar b);

  // Next power of two
  static UnsignedLong NextPowerOfTwo(const UnsignedLong n);

}; /* class SpecFunc */

END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_SPECFUNC_HXX */