This file is indexed.

/usr/include/openturns/Lapack.hxx is in libopenturns-dev 1.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
//                                               -*- C++ -*-
/**
 *  @file  Lapack.hxx
 *  @brief This file includes all of the Lapack functions used in the platform
 *
 *  Copyright (C) 2005-2013 EDF-EADS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  @author schueller
 *  @date   2012-02-17 19:35:43 +0100 (Fri, 17 Feb 2012)
 */
#ifndef OPENTURNS_LAPACK_HXX
#define OPENTURNS_LAPACK_HXX

#include "OTconfig.hxx"
#ifdef HAVE_FORTRANCINTERFACE
#  include "FortranCInterface.h"
#endif /* HAVE_FORTRANCINTERFACE */

BEGIN_C_DECLS

/** Function daxpy is to be used to compute the sum or the difference of two matrices
    y := alpha*x + y */
#define DAXPY_F77 F77_FUNC(daxpy,DAXPY)
void DAXPY_F77(int *n, double *alpha, double *x, int *incx, double *y, int *incy);

/** Function dscal is to be used to compute the product of a matrix by a numerical scalar
    x := alpha*x */
#define DSCAL_F77 F77_FUNC(dscal,DSCAL)
void DSCAL_F77(int *n, double *alpha, double *x, int *incx);

/** Function dgemv is to be used to compute the product of a matrix with a vector (numerical point)
    y := alpha*A(trans)*x + beta*y */
#define DGEMV_F77 F77_FUNC(dgemv,DGEMV)
void DGEMV_F77(char *trans, int *m, int *n, double *alpha, double *a, int *lda, double *x, int *incx, double *beta, double *y, int *incy, int *ltrans);

/** Function dsymv is to be used to compute the product of a matrix with a vector (numerical point);  optimization for symmetric matrices
    y := alpha*A(trans)*x + beta*y */
#define DSYMV_F77 F77_FUNC(dsymv,DSYMV)
void DSYMV_F77(char *uplo, int *n, double *alpha, double *a, int *lda, double *x, int *incx, double *beta, double *y, int *incy, int *luplo);

/** Function dspmv is to be used to compute the product of a matrix with a vector (numerical point);  optimization for positive definite matrices
    y := alpha*A*x + beta*y */
#define DSPMV_F77 F77_FUNC(dspmv,DSPMV)
void DSPMV_F77(char *uplo, int *n, double *alpha, double *a, double *x, int *incx, double *beta, double *y, int *incy, int *luplo);

/** Function dgemm is to be used to compute the product of two matrices
    c := alpha*a(trans)*b(trans) + beta*c */
#define DGEMM_F77 F77_FUNC(dgemm,DGEMM)
void DGEMM_F77(char *transa, char *transb, int *m, int *n, int *k, double *alpha, double *a, int *lda, double *b, int *ldb, double *beta, double *c, int *ldc, int *ltransa, int *ltransb);

/** Function dsymm is to be used to compute the product of two matrices;  optimization for symmetric matrices
    c := alpha*a*b + beta*c if side is l or alpha*b*a + beta*c if side is r */
#define DSYMM_F77 F77_FUNC(dsymm,DSYMM)
void DSYMM_F77(char *side, char *uplo, int *m, int *n, double *alpha, double *a, int *lda, double *b, int *ldb, double *beta, double *c, int *ldc, int *lside, int *luplo);

/** Function dgeev is used to compute the eigenvalues of a square matrix */
#define DGEEV_F77 F77_FUNC(dgeev,DGEEV)
void DGEEV_F77(char *jobvl, char *jobvr, int *n, double *a, int *lda, double *wr, double *wi,
               double *vl, int *ldvl, double *vr, int *ldvr, double *work, int *lwork, int *info, int *ljobvl, int *ljobvr);

/** Function dsyev is used to compute the eigenvalues of a symmetric matrix */
#define DSYEV_F77 F77_FUNC(dsyev,DSYEV)
void DSYEV_F77(char *jobz, char *uplo, int *n, double *a, int *lda, double *w, double *work, int *lwork, int *info, int *ljobz, int *luplo);

/** Function dgelsy is used to solve the linear system corresponding to a matrix */
#define DGELSY_F77 F77_FUNC(dgelsy,DGELSY)
void DGELSY_F77(int *m, int *n, int *nrhs, double *a, int *lda, double *b, int *ldb, int *jpvt, double *rcond, int *rank, double *work, int *lwork, int *info);

/** Function dgesv is used to solve the linear system corresponding to a square matrix */
#define DGESV_F77 F77_FUNC(dgesv,DGESV)
void DGESV_F77(int *n, int *nrhs, double *a, int *lda, int *ipiv, double *b, int *ldb, int *info);

/** Function dsysv is used to solve the linear system corresponding to a symmetric matrix */
#define DSYSV_F77 F77_FUNC(dsysv,DSYSV)
void DSYSV_F77(char *uplo, int *n, int *nrhs, double *a, int *lda, int *ipiv, double *b, int *ldb, double *work, int *lwork, int *info, int *luplo);

/** Function dpotrf is used to check if a matrix is positive definite */
#define DPOTRF_F77 F77_FUNC(dpotrf,DPOTRF)
void DPOTRF_F77(char *uplo, int *n, double *a, int *lda, int *info, int *luplo);

/** Function dgetrf is used to make the LU factorisation of a matrix */
#define DGETRF_F77 F77_FUNC(dgetrf,DGETRF)
void DGETRF_F77(int *m, int *n, double *a, int *lda, int *ipiv, int *info);

/** Function dsytrf is used to make the LU factorisation of a symmetric matrix */
#define DSYTRF_F77 F77_FUNC(dsytrf,DSYTRF)
void DSYTRF_F77(char *uplo, int *n, double *a, int *lda, int *ipiv, double *work, int *lwork, int *info, int *luplo);

/** Function dger is used to make the Kronecker product of two vectors */
#define DGER_F77 F77_FUNC(dger,DGER)
void DGER_F77(int *m, int *n, double *alpha, double *x, int *incx, double *y, int *incy, double *a, int *lda);

/** Function dstev computes the eigenvalues and eigenvectors of a symmetric tridiagonal matrix */
#define DSTEV_F77 F77_FUNC(dstev,DSTEV)
void DSTEV_F77(char *jobz, int *n, double *d, double *e, double *z, int *ldz, double *work, int *info, int *ljobz);

/** Function dsyr performs a rank one update on a square matrix A -> A + alpha * x . x' */
#define DSYR_F77 F77_FUNC(dsyr,DSYR)
void DSYR_F77(char *uplo, int *n, double *alpha, double *x, int *incx, double *a, int *lda, int *luplo);

/** Function dtrsm solves a triangular linear system A.X = alpha B, where A can be transposed or not */
#define DTRSM_F77 F77_FUNC(dtrsm,DTRSM)
void DTRSM_F77(char *side, char *uplo, char *transa, char *diag, int *m, int *n, double *alpha, double *A, int *lda, double *B, int *ldb, int *lside, int *luplo, int *ltransa, int *ldiag);

/** Function dgesdd computes singular values by using a divide and conquer strategy.
    The number of singular values is the min of the column dimension and the row dimension. */
#define DGESDD_F77 F77_FUNC(dgesdd,DGESDD)
void DGESDD_F77(char *jobz, int *m, int *n, double *A, int *lda, double *S, double *U, int *ldu, double *VT, int *ldvt, double *work, int *lwork, int *iwork, int *info, int *ljobz);

/** Function dtrmv is to be used to compute the product of a triangular
    (upper or lower) matrix with a vector (numerical point) */
#define DTRMV_F77 F77_FUNC(dtrmv,DTRMV)
void DTRMV_F77(char *uplo, char *trans, char *diag, int *n, double *A, int *lda, double *X, int *incx, int *luplo, int *ltrans, int *ldiag);

/** BLAS routines for complex values */

/** Function zaxpy is to be used to compute the sum or the difference of two complex matrices
    y := alpha*x + y */
#define ZAXPY_F77 F77_FUNC(zaxpy,ZAXPY)
void ZAXPY_F77(int *n, std::complex<double> *alpha, std::complex<double> *x, int *incx, std::complex<double> *y, int *incy);

/** Function zscal is to be used to compute the product of a complex matrix by a numerical complex
    x := alpha*x */
#define ZSCAL_F77 F77_FUNC(zscal,ZSCAL)
void ZSCAL_F77(int *n, std::complex<double> *alpha, std::complex<double> *x, int *incx);

/** Function zgemm is to be used to compute the product of two complex matrices
    c := alpha*a(trans)*b(trans) + beta*c */
#define ZGEMM_F77 F77_FUNC(zgemm,ZGEMM)
void ZGEMM_F77(char *transa, char *transb, int *m, int *n, int *k, std::complex<double> *alpha, std::complex<double> *a, int *lda,
               std::complex<double> *b, int *ldb, std::complex<double> *beta, std::complex<double> *c, int *ldc, int *ltransa, int *ltransb);

/** Function zsymm is to be used to compute the product of two complex matrices
 *  optimization for symmetric matrices
 c := alpha*a*b + beta*c if side is l or alpha*b*a + beta*c if side is r */
#define ZSYMM_F77 F77_FUNC(zsymm,ZSYMM)
void ZSYMM_F77(char *side, char *uplo, int *m, int *n, std::complex<double> *alpha, std::complex<double> *a, int *lda,
               std::complex<double> *b, int *ldb, std::complex<double> *beta, std::complex<double> *c, int *ldc, int *lside, int *luplo);

/** Function zhemm is to be used to compute the product of two complex matrices
 *  optimization for hermitian matrices
 c := alpha*a*b + beta*c if side is l or alpha*b*a + beta*c if side is r */
#define ZHEMM_F77 F77_FUNC(zhemm,ZHEMM)
void ZHEMM_F77(char *side, char *uplo, int *m, int *n, std::complex<double> *alpha, std::complex<double> *a, int *lda,
               std::complex<double> *b, int *ldb, std::complex<double> *beta, std::complex<double> *c, int *ldc, int *lside, int *luplo);

/** Function zpotrf is used to computes the Cholesky factorization of a complex hermitian positive definite matrix  */
#define ZPOTRF_F77 F77_FUNC(zpotrf,ZPOTRF)
void ZPOTRF_F77(char *uplo, int *n, std::complex<double> *a, int *lda, int *info, int *luplo);

/** Function zgemv is to be used to compute the product of a complex matrix with a complex vector
    y := alpha*A(trans)*x + beta*y */
#define ZGEMV_F77 F77_FUNC(zgemv,ZGEMV)
void ZGEMV_F77(char *trans, int *m, int *n, std::complex<double> *alpha, std::complex<double> *a, int *lda, std::complex<double> *x, int *incx,
               std::complex<double> *beta, std::complex<double> *y, int *incy, int *ltrans);

/** Function zhemv is to be used to compute the product of a complex matrix with a vector ;  optimization for hermitian matrices
    y := alpha*A(trans)*x + beta*y */
#define ZHEMV_F77 F77_FUNC(zhemv,ZHEMV)
void ZHEMV_F77(char *uplo, int *n, std::complex<double> *alpha, std::complex<double> *a, int *lda, std::complex<double> *x, int *incx,
               std::complex<double> *beta, std::complex<double> *y, int *incy, int *luplo);

/** Function zcopy is to be used to copy a vector x to a vector y */
#define ZCOPY_F77 F77_FUNC(zcopy,ZCOPY)
void ZCOPY_F77(int *n, std::complex<double> *x, int *incx, std::complex<double> *y, int *incy);

/** Function ztrmv is to be used to compute the product of a triangular (upper or lower) matrix with a vector  */
#define ZTRMV_F77 F77_FUNC(ztrmv,ZTRMV)
void ZTRMV_F77(char *uplo, char *trans, char *diag, int *n, std::complex<double> *A, int *lda, std::complex<double> *X, int *incx, int *luplo, int *ltrans, int *ldiag);

/** Function ztrmm is to be used to compute the product of a triangular (upper or lower) matrix with another matrix  */
#define ZTRMM_F77 F77_FUNC(ztrmm,ZTRMM)
void ZTRMM_F77(char *side, char *uplo, char *trans, char *diag, int *m, int *n, std::complex<double> *alpha , std::complex<double> *A, int *lda, std::complex<double> *B, int *ldb,
               int *lside , int *luplo, int *ltrans, int *ldiag);

/** Function dtrmv is to be used to compute the product of a triangular (upper or lower) matrix with a vector  */
void DTRMV_F77(char *uplo, char *trans, char *diag, int *n, double *A, int *lda, double *X, int *incx, int *luplo, int *ltrans, int *ldiag);

/** Function dposv is to be used to solve a linear system with a symmetric definite positive matrix */
#define DPOSV_F77 F77_FUNC(dposv,DPOSV)
void DPOSV_F77(char *uplo, int *n, int *nrhs, double *A, int *lda, double *B, int *ldb, int *info, int *luplo);

END_C_DECLS

#endif /* OPENTURNS_LAPACK_HXX */