/usr/include/openturns/Lapack.hxx is in libopenturns-dev 1.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | // -*- C++ -*-
/**
* @file Lapack.hxx
* @brief This file includes all of the Lapack functions used in the platform
*
* Copyright (C) 2005-2013 EDF-EADS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* @author schueller
* @date 2012-02-17 19:35:43 +0100 (Fri, 17 Feb 2012)
*/
#ifndef OPENTURNS_LAPACK_HXX
#define OPENTURNS_LAPACK_HXX
#include "OTconfig.hxx"
#ifdef HAVE_FORTRANCINTERFACE
# include "FortranCInterface.h"
#endif /* HAVE_FORTRANCINTERFACE */
BEGIN_C_DECLS
/** Function daxpy is to be used to compute the sum or the difference of two matrices
y := alpha*x + y */
#define DAXPY_F77 F77_FUNC(daxpy,DAXPY)
void DAXPY_F77(int *n, double *alpha, double *x, int *incx, double *y, int *incy);
/** Function dscal is to be used to compute the product of a matrix by a numerical scalar
x := alpha*x */
#define DSCAL_F77 F77_FUNC(dscal,DSCAL)
void DSCAL_F77(int *n, double *alpha, double *x, int *incx);
/** Function dgemv is to be used to compute the product of a matrix with a vector (numerical point)
y := alpha*A(trans)*x + beta*y */
#define DGEMV_F77 F77_FUNC(dgemv,DGEMV)
void DGEMV_F77(char *trans, int *m, int *n, double *alpha, double *a, int *lda, double *x, int *incx, double *beta, double *y, int *incy, int *ltrans);
/** Function dsymv is to be used to compute the product of a matrix with a vector (numerical point); optimization for symmetric matrices
y := alpha*A(trans)*x + beta*y */
#define DSYMV_F77 F77_FUNC(dsymv,DSYMV)
void DSYMV_F77(char *uplo, int *n, double *alpha, double *a, int *lda, double *x, int *incx, double *beta, double *y, int *incy, int *luplo);
/** Function dspmv is to be used to compute the product of a matrix with a vector (numerical point); optimization for positive definite matrices
y := alpha*A*x + beta*y */
#define DSPMV_F77 F77_FUNC(dspmv,DSPMV)
void DSPMV_F77(char *uplo, int *n, double *alpha, double *a, double *x, int *incx, double *beta, double *y, int *incy, int *luplo);
/** Function dgemm is to be used to compute the product of two matrices
c := alpha*a(trans)*b(trans) + beta*c */
#define DGEMM_F77 F77_FUNC(dgemm,DGEMM)
void DGEMM_F77(char *transa, char *transb, int *m, int *n, int *k, double *alpha, double *a, int *lda, double *b, int *ldb, double *beta, double *c, int *ldc, int *ltransa, int *ltransb);
/** Function dsymm is to be used to compute the product of two matrices; optimization for symmetric matrices
c := alpha*a*b + beta*c if side is l or alpha*b*a + beta*c if side is r */
#define DSYMM_F77 F77_FUNC(dsymm,DSYMM)
void DSYMM_F77(char *side, char *uplo, int *m, int *n, double *alpha, double *a, int *lda, double *b, int *ldb, double *beta, double *c, int *ldc, int *lside, int *luplo);
/** Function dgeev is used to compute the eigenvalues of a square matrix */
#define DGEEV_F77 F77_FUNC(dgeev,DGEEV)
void DGEEV_F77(char *jobvl, char *jobvr, int *n, double *a, int *lda, double *wr, double *wi,
double *vl, int *ldvl, double *vr, int *ldvr, double *work, int *lwork, int *info, int *ljobvl, int *ljobvr);
/** Function dsyev is used to compute the eigenvalues of a symmetric matrix */
#define DSYEV_F77 F77_FUNC(dsyev,DSYEV)
void DSYEV_F77(char *jobz, char *uplo, int *n, double *a, int *lda, double *w, double *work, int *lwork, int *info, int *ljobz, int *luplo);
/** Function dgelsy is used to solve the linear system corresponding to a matrix */
#define DGELSY_F77 F77_FUNC(dgelsy,DGELSY)
void DGELSY_F77(int *m, int *n, int *nrhs, double *a, int *lda, double *b, int *ldb, int *jpvt, double *rcond, int *rank, double *work, int *lwork, int *info);
/** Function dgesv is used to solve the linear system corresponding to a square matrix */
#define DGESV_F77 F77_FUNC(dgesv,DGESV)
void DGESV_F77(int *n, int *nrhs, double *a, int *lda, int *ipiv, double *b, int *ldb, int *info);
/** Function dsysv is used to solve the linear system corresponding to a symmetric matrix */
#define DSYSV_F77 F77_FUNC(dsysv,DSYSV)
void DSYSV_F77(char *uplo, int *n, int *nrhs, double *a, int *lda, int *ipiv, double *b, int *ldb, double *work, int *lwork, int *info, int *luplo);
/** Function dpotrf is used to check if a matrix is positive definite */
#define DPOTRF_F77 F77_FUNC(dpotrf,DPOTRF)
void DPOTRF_F77(char *uplo, int *n, double *a, int *lda, int *info, int *luplo);
/** Function dgetrf is used to make the LU factorisation of a matrix */
#define DGETRF_F77 F77_FUNC(dgetrf,DGETRF)
void DGETRF_F77(int *m, int *n, double *a, int *lda, int *ipiv, int *info);
/** Function dsytrf is used to make the LU factorisation of a symmetric matrix */
#define DSYTRF_F77 F77_FUNC(dsytrf,DSYTRF)
void DSYTRF_F77(char *uplo, int *n, double *a, int *lda, int *ipiv, double *work, int *lwork, int *info, int *luplo);
/** Function dger is used to make the Kronecker product of two vectors */
#define DGER_F77 F77_FUNC(dger,DGER)
void DGER_F77(int *m, int *n, double *alpha, double *x, int *incx, double *y, int *incy, double *a, int *lda);
/** Function dstev computes the eigenvalues and eigenvectors of a symmetric tridiagonal matrix */
#define DSTEV_F77 F77_FUNC(dstev,DSTEV)
void DSTEV_F77(char *jobz, int *n, double *d, double *e, double *z, int *ldz, double *work, int *info, int *ljobz);
/** Function dsyr performs a rank one update on a square matrix A -> A + alpha * x . x' */
#define DSYR_F77 F77_FUNC(dsyr,DSYR)
void DSYR_F77(char *uplo, int *n, double *alpha, double *x, int *incx, double *a, int *lda, int *luplo);
/** Function dtrsm solves a triangular linear system A.X = alpha B, where A can be transposed or not */
#define DTRSM_F77 F77_FUNC(dtrsm,DTRSM)
void DTRSM_F77(char *side, char *uplo, char *transa, char *diag, int *m, int *n, double *alpha, double *A, int *lda, double *B, int *ldb, int *lside, int *luplo, int *ltransa, int *ldiag);
/** Function dgesdd computes singular values by using a divide and conquer strategy.
The number of singular values is the min of the column dimension and the row dimension. */
#define DGESDD_F77 F77_FUNC(dgesdd,DGESDD)
void DGESDD_F77(char *jobz, int *m, int *n, double *A, int *lda, double *S, double *U, int *ldu, double *VT, int *ldvt, double *work, int *lwork, int *iwork, int *info, int *ljobz);
/** Function dtrmv is to be used to compute the product of a triangular
(upper or lower) matrix with a vector (numerical point) */
#define DTRMV_F77 F77_FUNC(dtrmv,DTRMV)
void DTRMV_F77(char *uplo, char *trans, char *diag, int *n, double *A, int *lda, double *X, int *incx, int *luplo, int *ltrans, int *ldiag);
/** BLAS routines for complex values */
/** Function zaxpy is to be used to compute the sum or the difference of two complex matrices
y := alpha*x + y */
#define ZAXPY_F77 F77_FUNC(zaxpy,ZAXPY)
void ZAXPY_F77(int *n, std::complex<double> *alpha, std::complex<double> *x, int *incx, std::complex<double> *y, int *incy);
/** Function zscal is to be used to compute the product of a complex matrix by a numerical complex
x := alpha*x */
#define ZSCAL_F77 F77_FUNC(zscal,ZSCAL)
void ZSCAL_F77(int *n, std::complex<double> *alpha, std::complex<double> *x, int *incx);
/** Function zgemm is to be used to compute the product of two complex matrices
c := alpha*a(trans)*b(trans) + beta*c */
#define ZGEMM_F77 F77_FUNC(zgemm,ZGEMM)
void ZGEMM_F77(char *transa, char *transb, int *m, int *n, int *k, std::complex<double> *alpha, std::complex<double> *a, int *lda,
std::complex<double> *b, int *ldb, std::complex<double> *beta, std::complex<double> *c, int *ldc, int *ltransa, int *ltransb);
/** Function zsymm is to be used to compute the product of two complex matrices
* optimization for symmetric matrices
c := alpha*a*b + beta*c if side is l or alpha*b*a + beta*c if side is r */
#define ZSYMM_F77 F77_FUNC(zsymm,ZSYMM)
void ZSYMM_F77(char *side, char *uplo, int *m, int *n, std::complex<double> *alpha, std::complex<double> *a, int *lda,
std::complex<double> *b, int *ldb, std::complex<double> *beta, std::complex<double> *c, int *ldc, int *lside, int *luplo);
/** Function zhemm is to be used to compute the product of two complex matrices
* optimization for hermitian matrices
c := alpha*a*b + beta*c if side is l or alpha*b*a + beta*c if side is r */
#define ZHEMM_F77 F77_FUNC(zhemm,ZHEMM)
void ZHEMM_F77(char *side, char *uplo, int *m, int *n, std::complex<double> *alpha, std::complex<double> *a, int *lda,
std::complex<double> *b, int *ldb, std::complex<double> *beta, std::complex<double> *c, int *ldc, int *lside, int *luplo);
/** Function zpotrf is used to computes the Cholesky factorization of a complex hermitian positive definite matrix */
#define ZPOTRF_F77 F77_FUNC(zpotrf,ZPOTRF)
void ZPOTRF_F77(char *uplo, int *n, std::complex<double> *a, int *lda, int *info, int *luplo);
/** Function zgemv is to be used to compute the product of a complex matrix with a complex vector
y := alpha*A(trans)*x + beta*y */
#define ZGEMV_F77 F77_FUNC(zgemv,ZGEMV)
void ZGEMV_F77(char *trans, int *m, int *n, std::complex<double> *alpha, std::complex<double> *a, int *lda, std::complex<double> *x, int *incx,
std::complex<double> *beta, std::complex<double> *y, int *incy, int *ltrans);
/** Function zhemv is to be used to compute the product of a complex matrix with a vector ; optimization for hermitian matrices
y := alpha*A(trans)*x + beta*y */
#define ZHEMV_F77 F77_FUNC(zhemv,ZHEMV)
void ZHEMV_F77(char *uplo, int *n, std::complex<double> *alpha, std::complex<double> *a, int *lda, std::complex<double> *x, int *incx,
std::complex<double> *beta, std::complex<double> *y, int *incy, int *luplo);
/** Function zcopy is to be used to copy a vector x to a vector y */
#define ZCOPY_F77 F77_FUNC(zcopy,ZCOPY)
void ZCOPY_F77(int *n, std::complex<double> *x, int *incx, std::complex<double> *y, int *incy);
/** Function ztrmv is to be used to compute the product of a triangular (upper or lower) matrix with a vector */
#define ZTRMV_F77 F77_FUNC(ztrmv,ZTRMV)
void ZTRMV_F77(char *uplo, char *trans, char *diag, int *n, std::complex<double> *A, int *lda, std::complex<double> *X, int *incx, int *luplo, int *ltrans, int *ldiag);
/** Function ztrmm is to be used to compute the product of a triangular (upper or lower) matrix with another matrix */
#define ZTRMM_F77 F77_FUNC(ztrmm,ZTRMM)
void ZTRMM_F77(char *side, char *uplo, char *trans, char *diag, int *m, int *n, std::complex<double> *alpha , std::complex<double> *A, int *lda, std::complex<double> *B, int *ldb,
int *lside , int *luplo, int *ltrans, int *ldiag);
/** Function dtrmv is to be used to compute the product of a triangular (upper or lower) matrix with a vector */
void DTRMV_F77(char *uplo, char *trans, char *diag, int *n, double *A, int *lda, double *X, int *incx, int *luplo, int *ltrans, int *ldiag);
/** Function dposv is to be used to solve a linear system with a symmetric definite positive matrix */
#define DPOSV_F77 F77_FUNC(dposv,DPOSV)
void DPOSV_F77(char *uplo, int *n, int *nrhs, double *A, int *lda, double *B, int *ldb, int *info, int *luplo);
END_C_DECLS
#endif /* OPENTURNS_LAPACK_HXX */
|