/usr/include/openturns/JacobiFactory.hxx is in libopenturns-dev 1.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | // -*- C++ -*-
/**
* @file JacobiFactory.hxx
* @brief Jacobi polynomial factory
*
* Copyright (C) 2005-2013 EDF-EADS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* @author schueller
* @date 2008-05-21 17:44:02 +0200 (Wed, 21 May 2008)
*/
#ifndef OPENTURNS_JACOBIFACTORY_HXX
#define OPENTURNS_JACOBIFACTORY_HXX
#include "OrthogonalUniVariatePolynomialFactory.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class JacobiFactory
*
* Jacobi polynomial factory
*/
class JacobiFactory
: public OrthogonalUniVariatePolynomialFactory
{
CLASSNAME;
public:
/** Default constructor: (1, 1) order Jacobi polynomial associated with the default Beta() = Beta(2, 4, -1, 1) distribution which is equal to the Epanechnikov distribution */
JacobiFactory();
/** Parameter constructor: (alpha, beta) is the order of the Jacobi polynomial, associated with the Beta(beta + 1, alpha + beta + 2, -1, 1) distribution in the ANALYSIS parameter set or to the Beta(alpha, beta, -1, 1) distribution in the PROBABILITY parameter set */
JacobiFactory(const NumericalScalar alpha,
const NumericalScalar beta,
const ParameterSet parameterization = ANALYSIS);
/** Virtual constructor */
JacobiFactory * clone() const;
/** Calculate the coefficients of recurrence a0n, a1n, a2n such that
Pn+1(x) = (a0n * x + a1n) * Pn(x) + a2n * Pn-1(x) */
Coefficients getRecurrenceCoefficients(const UnsignedLong n) const;
/** Alpha accessor */
NumericalScalar getAlpha() const;
/** Beta accessor */
NumericalScalar getBeta() const;
/** String converter */
String __repr__() const;
/** Method save() stores the object through the StorageManager */
virtual void save(Advocate & adv) const;
/** Method load() reloads the object from the StorageManager */
virtual void load(Advocate & adv);
private:
/* First parameter of the Jacobi polynomial */
NumericalScalar alpha_;
/* Second parameter of the Jacobi polynomial */
NumericalScalar beta_;
} ; /* class JacobiFactory */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_JACOBIFACTORY_HXX */
|