This file is indexed.

/usr/include/openturns/HermitianMatrix.hxx is in libopenturns-dev 1.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
//                                               -*- C++ -*-
/**
 *  @file  HermitianMatrix.hxx
 *  @brief HermitianMatrix implements the classical mathematical hermitian matrix
 *
 *  Copyright (C) 2005-2013 EDF-EADS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  @author schueller
 *  @date   2012-04-18 17:56:46 +0200 (Wed, 18 Apr 2012)
 */
#ifndef OPENTURNS_HERMITIANMATRIX_HXX
#define OPENTURNS_HERMITIANMATRIX_HXX

#include "SquareComplexMatrix.hxx"
#include "Collection.hxx"


BEGIN_NAMESPACE_OPENTURNS

class SymmetricMatrix;
class IdentityMatrix;
class SquareMatrix;
class Matrix;
class TriangularComplexMatrix;

/**
 * @class HermitianMatrix
 *
 * HermitianMatrix implements the classical mathematical hermitian matrix
 */

class HermitianMatrix :
  public SquareComplexMatrix
{
  CLASSNAME;

#ifndef SWIG
  friend HermitianMatrix operator * (const NumericalComplex s,
                                     const HermitianMatrix & m);
#endif

public:

  typedef Collection<NumericalComplex>                       NumericalComplexCollection;
  typedef Collection<NumericalScalar>                        NumericalScalarCollection;
  typedef TypedInterfaceObject<ComplexMatrixImplementation>::Implementation     Implementation ;

  /** Default constructor */
  HermitianMatrix();

  /** Constructor with size (dim, which is the same for nbRows_ and nbColumns_) */
  HermitianMatrix(const UnsignedLong dimension);

  /** Constructor with implementation */
  HermitianMatrix(const Implementation & i);

  /** String converter */
  String __repr__() const;
  String __str__(const String & offset = "") const;


  /** Get the dimension of the matrix */
  const UnsignedLong getDimension() const;

  /** HermitianMatrix transpose */
  HermitianMatrix transpose () const;

  /** HermitianMatrix conjugate */
  HermitianMatrix conjugate () const;

  /** HermitianMatrix conjugate and transpose */
  HermitianMatrix conjugateTranspose () const;

  /** Get the real part of the matrix */
  SymmetricMatrix real() const;

  /** Get the imaginary part of the matrix */
  SquareMatrix imag() const;

#ifndef SWIG
  /** Operator () gives access to the elements of the matrix (to modify these elements) */
  /** The element of the matrix is designated by its row number i and its column number j */
  NumericalComplex & operator () (const UnsignedLong i,
                                  const UnsignedLong j) ;

  /** Operator () gives access to the elements of the matrix (read only) */
  /** The element of the matrix is designated by its row number i and its column number j */
  const NumericalComplex operator () (const UnsignedLong i,
                                      const UnsignedLong j) const;
#endif

  /** Check if the internal representation is really hermitian */
  void checkHermitian() const;

  /** HermitianMatrix additions */
  HermitianMatrix operator + (const HermitianMatrix & m) const;

  /** ComplexMatrix additions */
  SquareComplexMatrix operator + (const SquareComplexMatrix & m) const;

  /** HermitianMatrix substractions */
  HermitianMatrix operator - (const HermitianMatrix & m) const;

  /** ComplexMatrix substractions */
  SquareComplexMatrix operator - (const SquareComplexMatrix & m) const;

  /** Multiplication with a NumericalComplex */
  HermitianMatrix operator * (const NumericalComplex s) const ;

  /** ComplexMatrix multiplications (must have consistent dimensions) */
  ComplexMatrix operator * (const ComplexMatrix & m) const;

  /** ComplexMatrix multiplications (must have consistent dimensions) */
  SquareComplexMatrix operator * (const SquareComplexMatrix & m) const;

  /** HermitianMatrix multiplications  */
  SquareComplexMatrix operator * (const HermitianMatrix & m) const;

  /** TriangularComplexMatrix multiplications  */
  SquareComplexMatrix operator * (const TriangularComplexMatrix & m) const;

  /** Real SquareMatrix multiplications */
  SquareComplexMatrix operator * (const SquareMatrix & m) const;

  /** Real Matrix multiplications (must have consistent dimensions) */
  ComplexMatrix operator * (const Matrix & m) const;

  /** Real SymmetricMatrix multiplications  */
  SquareComplexMatrix operator * (const SymmetricMatrix & m) const;

  /** Real IdentityMatrix multiplications  */
  HermitianMatrix operator * (const IdentityMatrix & m) const;

  /** Multiplication with a NumericaComplexCollection (must have consistent dimensions) */
  NumericalComplexCollection operator * (const NumericalComplexCollection & p) const;

  /** Multiplication with a NumericaScalarCollection (must have consistent dimensions) */
  NumericalComplexCollection operator * (const NumericalScalarCollection & p) const;

  /** Multiplication with a NumericalPoint (must have consistent dimensions) */
  NumericalComplexCollection operator * (const NumericalPoint & p) const;

  using SquareComplexMatrix::operator *;

  /** HermitianMatrix integer power */
  HermitianMatrix power(const UnsignedLong n) const;

  /** Division by a NumericalComplex*/
  HermitianMatrix operator / (const NumericalComplex s) const;

  /** Compute the Cholesky factor  */
  TriangularComplexMatrix computeCholesky(const Bool keepIntact = true);

private:

  /** Check if one needs to symmetrized the internal representation of the tensor */
  mutable Bool hasBeenHermitianized_;

}

; /* class HermitianMatrix */


inline HermitianMatrix operator * (const NumericalComplex s,
                                   const HermitianMatrix & m)
{
  return m.operator * (s);
}


END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_HERMITIANMATRIX_HXX */