/usr/include/openturns/HermitianMatrix.hxx is in libopenturns-dev 1.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | // -*- C++ -*-
/**
* @file HermitianMatrix.hxx
* @brief HermitianMatrix implements the classical mathematical hermitian matrix
*
* Copyright (C) 2005-2013 EDF-EADS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* @author schueller
* @date 2012-04-18 17:56:46 +0200 (Wed, 18 Apr 2012)
*/
#ifndef OPENTURNS_HERMITIANMATRIX_HXX
#define OPENTURNS_HERMITIANMATRIX_HXX
#include "SquareComplexMatrix.hxx"
#include "Collection.hxx"
BEGIN_NAMESPACE_OPENTURNS
class SymmetricMatrix;
class IdentityMatrix;
class SquareMatrix;
class Matrix;
class TriangularComplexMatrix;
/**
* @class HermitianMatrix
*
* HermitianMatrix implements the classical mathematical hermitian matrix
*/
class HermitianMatrix :
public SquareComplexMatrix
{
CLASSNAME;
#ifndef SWIG
friend HermitianMatrix operator * (const NumericalComplex s,
const HermitianMatrix & m);
#endif
public:
typedef Collection<NumericalComplex> NumericalComplexCollection;
typedef Collection<NumericalScalar> NumericalScalarCollection;
typedef TypedInterfaceObject<ComplexMatrixImplementation>::Implementation Implementation ;
/** Default constructor */
HermitianMatrix();
/** Constructor with size (dim, which is the same for nbRows_ and nbColumns_) */
HermitianMatrix(const UnsignedLong dimension);
/** Constructor with implementation */
HermitianMatrix(const Implementation & i);
/** String converter */
String __repr__() const;
String __str__(const String & offset = "") const;
/** Get the dimension of the matrix */
const UnsignedLong getDimension() const;
/** HermitianMatrix transpose */
HermitianMatrix transpose () const;
/** HermitianMatrix conjugate */
HermitianMatrix conjugate () const;
/** HermitianMatrix conjugate and transpose */
HermitianMatrix conjugateTranspose () const;
/** Get the real part of the matrix */
SymmetricMatrix real() const;
/** Get the imaginary part of the matrix */
SquareMatrix imag() const;
#ifndef SWIG
/** Operator () gives access to the elements of the matrix (to modify these elements) */
/** The element of the matrix is designated by its row number i and its column number j */
NumericalComplex & operator () (const UnsignedLong i,
const UnsignedLong j) ;
/** Operator () gives access to the elements of the matrix (read only) */
/** The element of the matrix is designated by its row number i and its column number j */
const NumericalComplex operator () (const UnsignedLong i,
const UnsignedLong j) const;
#endif
/** Check if the internal representation is really hermitian */
void checkHermitian() const;
/** HermitianMatrix additions */
HermitianMatrix operator + (const HermitianMatrix & m) const;
/** ComplexMatrix additions */
SquareComplexMatrix operator + (const SquareComplexMatrix & m) const;
/** HermitianMatrix substractions */
HermitianMatrix operator - (const HermitianMatrix & m) const;
/** ComplexMatrix substractions */
SquareComplexMatrix operator - (const SquareComplexMatrix & m) const;
/** Multiplication with a NumericalComplex */
HermitianMatrix operator * (const NumericalComplex s) const ;
/** ComplexMatrix multiplications (must have consistent dimensions) */
ComplexMatrix operator * (const ComplexMatrix & m) const;
/** ComplexMatrix multiplications (must have consistent dimensions) */
SquareComplexMatrix operator * (const SquareComplexMatrix & m) const;
/** HermitianMatrix multiplications */
SquareComplexMatrix operator * (const HermitianMatrix & m) const;
/** TriangularComplexMatrix multiplications */
SquareComplexMatrix operator * (const TriangularComplexMatrix & m) const;
/** Real SquareMatrix multiplications */
SquareComplexMatrix operator * (const SquareMatrix & m) const;
/** Real Matrix multiplications (must have consistent dimensions) */
ComplexMatrix operator * (const Matrix & m) const;
/** Real SymmetricMatrix multiplications */
SquareComplexMatrix operator * (const SymmetricMatrix & m) const;
/** Real IdentityMatrix multiplications */
HermitianMatrix operator * (const IdentityMatrix & m) const;
/** Multiplication with a NumericaComplexCollection (must have consistent dimensions) */
NumericalComplexCollection operator * (const NumericalComplexCollection & p) const;
/** Multiplication with a NumericaScalarCollection (must have consistent dimensions) */
NumericalComplexCollection operator * (const NumericalScalarCollection & p) const;
/** Multiplication with a NumericalPoint (must have consistent dimensions) */
NumericalComplexCollection operator * (const NumericalPoint & p) const;
using SquareComplexMatrix::operator *;
/** HermitianMatrix integer power */
HermitianMatrix power(const UnsignedLong n) const;
/** Division by a NumericalComplex*/
HermitianMatrix operator / (const NumericalComplex s) const;
/** Compute the Cholesky factor */
TriangularComplexMatrix computeCholesky(const Bool keepIntact = true);
private:
/** Check if one needs to symmetrized the internal representation of the tensor */
mutable Bool hasBeenHermitianized_;
}
; /* class HermitianMatrix */
inline HermitianMatrix operator * (const NumericalComplex s,
const HermitianMatrix & m)
{
return m.operator * (s);
}
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_HERMITIANMATRIX_HXX */
|