This file is indexed.

/usr/include/openturns/DistributionImplementation.hxx is in libopenturns-dev 1.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
//                                               -*- C++ -*-
/**
 *  @file  DistributionImplementation.hxx
 *  @brief Abstract top-level class for all distributions
 *
 *  Copyright (C) 2005-2013 EDF-EADS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  @author schueller
 *  @date   2012-07-16 15:59:45 +0200 (Mon, 16 Jul 2012)
 */
#ifndef OPENTURNS_DISTRIBUTIONIMPLEMENTATION_HXX
#define OPENTURNS_DISTRIBUTIONIMPLEMENTATION_HXX

#include "PersistentObject.hxx"
#include "NumericalPoint.hxx"
#include "NumericalPointWithDescription.hxx"
#include "NumericalSample.hxx"
#include "Indices.hxx"
#include "Interval.hxx"
#include "CorrelationMatrix.hxx"
#include "SquareMatrix.hxx"
#include "Graph.hxx"
#include "Description.hxx"
#include "NumericalMathFunction.hxx"
#include "PersistentCollection.hxx"
#include "UniVariatePolynomial.hxx"
#include "ResourceMap.hxx"

BEGIN_NAMESPACE_OPENTURNS



/**
 * @class DistributionImplementation
 *
 * The class describes the probabilistic concept of distribution.
 * Instances of this class can produce samples following the
 * distribution, can compute PDF or CDF, etc.
 * They are the actual key component of RandomVectors.
 */
class DistributionImplementation
  : public PersistentObject
{
  CLASSNAME;
public:

  typedef Pointer<DistributionImplementation>       Implementation;
  typedef NumericalMathFunction                     IsoProbabilisticTransformation;
  typedef IsoProbabilisticTransformation            InverseIsoProbabilisticTransformation;
  typedef Collection<NumericalPoint>                NumericalPointCollection;
  typedef Collection<NumericalPointWithDescription> NumericalPointWithDescriptionCollection;

  /** Default constructor */
  DistributionImplementation(const String & name = DefaultName);

  /** Comparison operator */
  Bool operator ==(const DistributionImplementation & other) const;

  /** String converter */
  virtual String __repr__() const;
  String __str__(const String & offset = "") const;

  /** Weight accessor */
  void setWeight(NumericalScalar w);
  NumericalScalar getWeight() const;

  /** Dimension accessor */
  UnsignedLong getDimension() const;

  /* Here is the interface that all derived class must implement */

  /** Virtual constructor */
  virtual DistributionImplementation * clone() const;

  /** Get one realization of the distributionImplementation */
  virtual NumericalPoint getRealization() const;

  /** Get a numerical sample whose elements follow the distributionImplementation */
  virtual NumericalSample getSample(const UnsignedLong size) const;

  /** Get the DDF of the distributionImplementation */
  virtual NumericalScalar computeDDF(const NumericalScalar scalar) const;
  virtual NumericalPoint  computeDDF(const NumericalPoint & point) const;
  virtual NumericalSample computeDDF(const NumericalSample & sample) const;

  /** Get the PDF of the distributionImplementation */
  virtual NumericalScalar computePDF(const NumericalScalar scalar) const;
  virtual NumericalScalar computePDF(const NumericalPoint & point) const;
  virtual NumericalSample computePDF(const NumericalSample & sample) const;
protected:
  virtual NumericalSample computePDFSequential(const NumericalSample & sample) const;
  virtual NumericalSample computePDFParallel(const NumericalSample & sample) const;
public:

  virtual NumericalScalar computeLogPDF(const NumericalScalar scalar) const;
  virtual NumericalScalar computeLogPDF(const NumericalPoint & point) const;
  virtual NumericalSample computeLogPDF(const NumericalSample & sample) const;
protected:
  virtual NumericalSample computeLogPDFSequential(const NumericalSample & sample) const;
  virtual NumericalSample computeLogPDFParallel(const NumericalSample & sample) const;
public:

  /** Compute the PDF of 1D distributions over a regular grid */
  virtual NumericalSample computePDF(const NumericalScalar xMin,
                                     const NumericalScalar xMax,
                                     const UnsignedLong pointNumber,
                                     NumericalSample & grid,
                                     const NumericalScalar precision = ResourceMap::GetAsNumericalScalar("DistributionImplementation-DefaultPDFEpsilon")) const;

  /** Compute the PDF of nD distributions over a regular grid */
  virtual NumericalSample computePDF(const NumericalPoint & xMin,
                                     const NumericalPoint & xMax,
                                     const Indices & pointNumber,
                                     NumericalSample & grid,
                                     const NumericalScalar precision = ResourceMap::GetAsNumericalScalar("DistributionImplementation-DefaultPDFEpsilon")) const;

  /** Get the CDF of the distributionImplementation */
  virtual NumericalScalar computeCDF(const NumericalScalar scalar,
                                     const Bool tail) const;
  virtual NumericalScalar computeCDF(const NumericalScalar scalar) const;
  virtual NumericalScalar computeComplementaryCDF(const NumericalScalar scalar) const;

  virtual NumericalScalar computeCDF(const NumericalPoint & point,
                                     const Bool tail) const;
  virtual NumericalScalar computeCDF(const NumericalPoint & point) const;
  virtual NumericalScalar computeComplementaryCDF(const NumericalPoint & point) const;

  virtual NumericalSample computeCDF(const NumericalSample & sample,
                                     const Bool tail) const;
  virtual NumericalSample computeCDF(const NumericalSample & sample) const;
protected:
  virtual NumericalSample computeCDFSequential(const NumericalSample & sample) const;
  virtual NumericalSample computeCDFParallel(const NumericalSample & sample) const;
public:
  virtual NumericalSample computeComplementaryCDF(const NumericalSample & sample) const;
protected:
  virtual NumericalSample computeComplementaryCDFSequential(const NumericalSample & sample) const;
  virtual NumericalSample computeComplementaryCDFParallel(const NumericalSample & sample) const;
public:

  /** Compute the CDF of 1D distributions over a regular grid */
  virtual NumericalSample computeCDF(const NumericalScalar xMin,
                                     const NumericalScalar xMax,
                                     const UnsignedLong pointNumber,
                                     NumericalSample & grid,
                                     const NumericalScalar precision = ResourceMap::GetAsNumericalScalar("DistributionImplementation-DefaultCDFEpsilon")) const;

  /** Compute the CDF of nD distributions over a regular grid */
  virtual NumericalSample computeCDF(const NumericalPoint & xMin,
                                     const NumericalPoint & xMax,
                                     const Indices & pointNumber,
                                     NumericalSample & grid,
                                     const NumericalScalar precision = ResourceMap::GetAsNumericalScalar("DistributionImplementation-DefaultCDFEpsilon")) const;

  virtual NumericalSample computeComplementaryCDF(const NumericalScalar xMin,
      const NumericalScalar xMax,
      const UnsignedLong pointNumber,
      NumericalSample & grid,
      const NumericalScalar precision = ResourceMap::GetAsNumericalScalar("DistributionImplementation-DefaultCDFEpsilon")) const;

  /** Get the probability content of an interval */
  virtual NumericalScalar computeProbability(const Interval & interval) const;

  /** Get the characteristic function of the distribution, i.e. phi(u) = E(exp(I*u*X)) */
  virtual NumericalComplex computeCharacteristicFunction(const NumericalScalar x) const;
  virtual NumericalComplex computeCharacteristicFunction(const NumericalPoint & x) const;
  virtual NumericalComplex computeLogCharacteristicFunction(const NumericalScalar x) const;
  virtual NumericalComplex computeLogCharacteristicFunction(const NumericalPoint & x) const;

  /** Compute the generating function, i.e. psi(z) = E(z^X) */
  virtual NumericalScalar computeGeneratingFunction(const NumericalScalar z) const;
  virtual NumericalScalar computeLogGeneratingFunction(const NumericalScalar z) const;

  virtual NumericalComplex computeGeneratingFunction(const NumericalComplex & z) const;
  virtual NumericalComplex computeLogGeneratingFunction(const NumericalComplex & z) const;

  /** Get the PDF gradient of the distribution */
  virtual NumericalPoint computePDFGradient(const NumericalPoint & point) const;

  /** Get the CDF gradient of the distribution */
  virtual NumericalPoint computeCDFGradient(const NumericalPoint & point) const;

  /** Get the quantile of the distributionImplementation */
  virtual NumericalPoint computeQuantile(const NumericalScalar prob,
                                         const Bool tail = false) const;

  /** Get the quantile over a provided grid */
  virtual NumericalSample computeQuantile(const NumericalPoint & prob,
                                          const Bool tail = false) const;

  /** Compute the quantile over a regular grid */
  virtual NumericalSample computeQuantile(const NumericalScalar qMin,
                                          const NumericalScalar qMax,
                                          const UnsignedLong pointNumber,
                                          const NumericalScalar precision = ResourceMap::GetAsNumericalScalar("DistributionImplementation-DefaultQuantileEpsilon"),
                                          const Bool tail = false) const;

  /** Get the mathematical and numerical range of the distribution.
      Its mathematical range is the smallest closed interval outside
      of which the PDF is zero, and the numerical range is the interval
      outside of which the PDF is rounded to zero in double precision */
  virtual Interval getRange() const;

protected:
  virtual void setRange(const Interval & range);

public:
  /** Get the roughness, i.e. the L2-norm of the PDF */
  virtual NumericalScalar getRoughness() const;

  /** Get the mean of the distribution */
  virtual NumericalPoint getMean() const;

  /** Get the standard deviation of the distribution */
  virtual NumericalPoint getStandardDeviation() const;

  /** Get the skewness of the distribution */
  virtual NumericalPoint getSkewness() const;

  /** Get the kurtosis of the distribution */
  virtual NumericalPoint getKurtosis() const;

  /** Get the raw moments of the standardized distribution */
  virtual NumericalPoint getStandardMoment(const UnsignedLong n) const;

  /** Get the raw moments of the distribution */
  virtual NumericalPoint getMoment(const UnsignedLong n) const;

  /** Get the centered moments of the distribution */
  virtual NumericalPoint getCenteredMoment(const UnsignedLong n) const;

  /** Get the covariance of the distribution */
  virtual CovarianceMatrix getCovariance() const;

  /** Correlation matrix accessor */
  CorrelationMatrix getCorrelation() const;

  /** Cholesky factor of the covariance matrix accessor */
  SquareMatrix getCholesky() const;

  /** Inverse of the Cholesky factor of the covariance matrix accessor */
  SquareMatrix getInverseCholesky() const;

  /** Check if the distribution is elliptical */
  virtual Bool isElliptical() const;

  /** Check if the distribution is constinuous */
  virtual Bool isContinuous() const;

  /** Check if the distribution is discrete */
  virtual Bool isDiscrete() const;

  /** Tell if the distribution is integer valued */
  virtual Bool isIntegral() const;

  /** Tell if the distribution has elliptical copula */
  virtual Bool hasEllipticalCopula() const;

  /** Tell if the distribution has independent copula */
  virtual Bool hasIndependentCopula() const;

  /** Get the support of a distribution that intersect a given interval */
  virtual NumericalSample getSupport(const Interval & interval) const;

  /** Get the support on the whole range */
  virtual NumericalSample getSupport() const;

  /** Compute the density generator of the elliptical generator, i.e.
   *  the function phi such that the density of the distribution can
   *  be written as p(x) = phi(t(x-mu)R(x-mu))                      */
  virtual NumericalScalar computeDensityGenerator(const NumericalScalar betaSquare) const;

  /** Compute the derivative of the density generator */
  virtual NumericalScalar computeDensityGeneratorDerivative(const NumericalScalar betaSquare) const;

  /** Compute the seconde derivative of the density generator */
  virtual NumericalScalar computeDensityGeneratorSecondDerivative(const NumericalScalar betaSquare) const;

  /** Compute the radial distribution CDF */
  virtual NumericalScalar computeRadialDistributionCDF(const NumericalScalar radius,
      const Bool tail = false) const;

  /** Get the i-th marginal distribution */
  virtual Implementation getMarginal(const UnsignedLong i) const;

  /** Get the distribution of the marginal distribution corresponding to indices dimensions */
  virtual Implementation getMarginal(const Indices & indices) const;

  /** Get the copula of a distribution */
  virtual Implementation getCopula() const;

  /** Compute the DDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
  virtual NumericalScalar computeConditionalDDF(const NumericalScalar x,
      const NumericalPoint & y) const;

  /** Compute the PDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
  virtual NumericalScalar computeConditionalPDF(const NumericalScalar x,
      const NumericalPoint & y) const;

  /** Compute the CDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) */
  virtual NumericalScalar computeConditionalCDF(const NumericalScalar x,
      const NumericalPoint & y) const;

  /** Compute the quantile of Xi | X1, ..., Xi-1, i.e. x such that CDF(x|y) = q with x = Xi, y = (X1,...,Xi-1) */
  virtual NumericalScalar computeConditionalQuantile(const NumericalScalar q,
      const NumericalPoint & y) const;

  /** Get the isoprobabilist transformation */
  virtual IsoProbabilisticTransformation getIsoProbabilisticTransformation() const;

  /** Get the inverse isoprobabilist transformation */
  virtual InverseIsoProbabilisticTransformation getInverseIsoProbabilisticTransformation() const;

  /** Get the standard distribution */
  virtual Implementation getStandardDistribution() const;

  /** Get the standard representative in the parametric family, associated with the standard moments */
  virtual Implementation getStandardRepresentative() const;

  /** integrationNodesNumber accessors */
  UnsignedLong getIntegrationNodesNumber() const;
  void setIntegrationNodesNumber(const UnsignedLong integrationNodesNumber) const;

  /** Gauss nodes and weights accessor */
  NumericalSample getGaussNodesAndWeights() const;
  NumericalPoint getGaussNodesAndWeights(NumericalPoint & weights) const;

  /** Draw the PDF of the distribution when its dimension is 1 or 2 */
  virtual Graph drawPDF() const;

  /** Draw the PDF of the distribution when its dimension is 1 */
  virtual Graph drawPDF(const NumericalScalar xMin,
                        const NumericalScalar xMax,
                        const UnsignedLong pointNumber = ResourceMap::GetAsUnsignedLong("DistributionImplementation-DefaultPointNumber")) const;

  virtual Graph drawPDF(const UnsignedLong pointNumber) const;

  /** Draw the PDF of a 1D marginal */
  virtual Graph drawMarginal1DPDF(const UnsignedLong marginalIndex,
                                  const NumericalScalar xMin,
                                  const NumericalScalar xMax,
                                  const UnsignedLong pointNumber) const;

  /** Draw the PDF of the distribution when its dimension is 2 */
  virtual Graph drawPDF(const NumericalPoint & xMin,
                        const NumericalPoint & xMax,
                        const Indices & pointNumber) const;

  virtual Graph drawPDF(const NumericalPoint & xMin,
                        const NumericalPoint & xMax) const;

  virtual Graph drawPDF(const Indices & pointNumber) const;


  /** Draw the PDF of a 2D marginal */
  virtual Graph drawMarginal2DPDF(const UnsignedLong firstMarginal,
                                  const UnsignedLong secondMarginal,
                                  const NumericalPoint & xMin,
                                  const NumericalPoint & xMax,
                                  const Indices & pointNumber) const;

  /** Draw the CDF of the distribution when its dimension is 1 or 2 */
  virtual Graph drawCDF() const;

  /** Draw the CDF of the distribution when its dimension is 1 */
  virtual Graph drawCDF(const NumericalScalar xMin,
                        const NumericalScalar xMax,
                        const UnsignedLong pointNumber = ResourceMap::GetAsUnsignedLong("DistributionImplementation-DefaultPointNumber")) const;

  virtual Graph drawCDF(const UnsignedLong pointNumber) const;


  /** Draw the CDF of the distribution when its dimension is 2 */
  virtual Graph drawCDF(const NumericalPoint & xMin,
                        const NumericalPoint & xMax,
                        const Indices & pointNumber) const;

  virtual Graph drawCDF(const NumericalPoint & xMin,
                        const NumericalPoint & xMax) const;

  virtual Graph drawCDF(const Indices & pointNumber) const;


  /** Draw the CDF of a 1D marginal */
  virtual Graph drawMarginal1DCDF(const UnsignedLong marginalIndex,
                                  const NumericalScalar xMin,
                                  const NumericalScalar xMax,
                                  const UnsignedLong pointNumber) const;

  /** Draw the CDF of a 2D marginal */
  virtual Graph drawMarginal2DCDF(const UnsignedLong firstMarginal,
                                  const UnsignedLong secondMarginal,
                                  const NumericalPoint & xMin,
                                  const NumericalPoint & xMax,
                                  const Indices & pointNumber) const;

  /** Parameters value and description accessor */
  virtual NumericalPointWithDescriptionCollection getParametersCollection() const;
  virtual void setParametersCollection(const NumericalPointWithDescriptionCollection & parametersCollection);
  virtual void setParametersCollection(const NumericalPointCollection & parametersCollection);
  virtual void setParametersCollection(const NumericalPoint & parameters);

  /** Total number of parameters */
  virtual UnsignedLong getParametersNumber() const;

  /** Description accessor */
  void setDescription(const Description & description);
  Description getDescription() const;

  /** Method save() stores the object through the StorageManager */
  virtual void save(Advocate & adv) const;

  /** Method load() reloads the object from the StorageManager */
  virtual void load(Advocate & adv);

  /** Accessor to PDF computation precision */
  NumericalScalar getPDFEpsilon() const;

  /** Accessor to CDF computation precision */
  NumericalScalar getCDFEpsilon() const;

  /** Get a positon indicator for a 1D distribution */
  NumericalScalar getPositionIndicator() const;

  /** Get a dispersion indicator for a 1D distribution */
  NumericalScalar getDispersionIndicator() const;

protected:

  /** Draw the PDF of a discrete distribution */
  virtual Graph drawDiscretePDF(const NumericalScalar xMin,
                                const NumericalScalar xMax,
                                const UnsignedLong pointNumber = ResourceMap::GetAsUnsignedLong("DistributionImplementation-DefaultPointNumber")) const;

  /** Draw the CDF of a discrete distribution */
  Graph drawDiscreteCDF(const NumericalScalar xMin,
                        const NumericalScalar xMax,
                        const UnsignedLong pointNumber) const;

  /** Compute the PDF and CDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1)
      Used to speed-up the computeConditionalQuantile() method */
  NumericalScalar computeConditionalPDFAndCDF(const NumericalScalar x,
      const NumericalPoint & y,
      NumericalScalar & cdf,
      const Implementation & conditioningDistribution,
      const Implementation & conditionedDistribution,
      const NumericalScalar xMin) const;

  /** Compute the CDF of Xi | X1, ..., Xi-1. x = Xi, y = (X1,...,Xi-1) with reuse of expansive data */
  NumericalScalar computeConditionalCDFForQuantile(const NumericalScalar x,
      const NumericalPoint & y,
      const Implementation & conditioningDistribution,
      const Implementation & conditionedDistribution,
      const NumericalScalar xMin) const;

  /** Compute the characteristic function of 1D distributions in a regular pattern with cache */
  virtual NumericalComplex computeCharacteristicFunction(const UnsignedLong index,
      const NumericalScalar step) const;
  virtual NumericalComplex computeLogCharacteristicFunction(const UnsignedLong index,
      const NumericalScalar step) const;
  virtual NumericalComplex computeCharacteristicFunction(const Indices & indices,
      const NumericalPoint & step) const;
  virtual NumericalComplex computeLogCharacteristicFunction(const Indices & indices,
      const NumericalPoint & step) const;

  /** Compute the mean of the distribution */
  virtual void computeMean() const;

  /** Compute the covariance of the distribution */
  virtual void computeCovariance() const;

  /** Compute the shifted moments of the distribution */
  virtual NumericalPoint computeShiftedMoment(const UnsignedLong n,
      const NumericalPoint & shift) const;

  /** Compute the nodes and weights of the 1D gauss integration rule over [-1, 1] */
  virtual void computeGaussNodesAndWeights() const;

  /** Dimension accessor */
  void setDimension(UnsignedLong dim);

  /** Quantile computation for dimension=1 */
  virtual NumericalScalar computeScalarQuantile(const NumericalScalar prob,
      const Bool tail = false,
      const NumericalScalar precision = ResourceMap::GetAsNumericalScalar("DistributionImplementation-DefaultQuantileEpsilon")) const;

  /** Compute the numerical range of the distribution given the parameters values */
  virtual void computeRange();
  virtual NumericalPoint computeLowerBound() const;
  virtual NumericalPoint computeUpperBound() const;

  /** Compute the standard distribution associated with the current distribution */
  virtual void computeStandardDistribution() const;

  mutable NumericalPoint mean_;
  mutable CovarianceMatrix covariance_;
  mutable NumericalSample gaussNodesAndWeights_;

  /** The integration nodes number for covariance computation */
  mutable UnsignedLong integrationNodesNumber_;

  /** Flags to avoid redundant computations */
  mutable Bool isAlreadyComputedMean_;
  mutable Bool isAlreadyComputedCovariance_;
  mutable Bool isAlreadyComputedGaussNodesAndWeights_;

  /** Indicators for PDF and CDF absolute precision. By default, equals to DefaultPDFEpsilon, DefaultCDFEpsilon and DefaultQuantileEpsilon */
  mutable NumericalScalar pdfEpsilon_;
  mutable NumericalScalar cdfEpsilon_;
  mutable NumericalScalar quantileEpsilon_;

  /** Standard distribution */
  mutable Bool isAlreadyComputedStandardDistribution_;
  mutable Implementation p_standardDistribution_;

  /** Optimization to make a call to computeScalarQuantile less costly
      The strategy is to build a cheap approximation of the quantile
      function at the first call to the computeScalarQuantile method
      then to use it to initialize the quantile search
  */
  void initializeQuantileCache() const;
  mutable Bool isAlreadyInitializedQuantileCache_;
  /** Sample that stores some precomputed quantiles: the first component is the probability level, the second component is the scalar quantile value */
  mutable NumericalSample scalarQuantileCache_;

  /** Optimization for the generating function evaluation */
  mutable Bool isAlreadyCreatedGeneratingFunction_;
  mutable UniVariatePolynomial generatingFunction_;

private:

  // Structure used to wrap the computePDF() method for drawing purpose
  struct PDFWrapper
  {
    PDFWrapper(const DistributionImplementation * p_distribution):
      p_distribution_(p_distribution) {};

    NumericalPoint computePDF(const NumericalPoint & point) const
    {
      const NumericalScalar pdf(p_distribution_->computePDF(point));
      return NumericalPoint(1, pdf);
    };

    const DistributionImplementation * p_distribution_;
  }; // struct PDFWrapper

  // Structure used to wrap the computeCDF() method for drawing purpose
  struct CDFWrapper
  {
    CDFWrapper(const DistributionImplementation * p_distribution):
      p_distribution_(p_distribution) {};

    NumericalPoint computeCDF(const NumericalPoint & point) const
    {
      return NumericalPoint(1, p_distribution_->computeCDF(point));
    };

    const DistributionImplementation * p_distribution_;
  }; // struct CDFWrapper

  // Structure used to implement the computeQuantile() method efficiently
  struct QuantileWrapper
  {
    QuantileWrapper(const Collection< Implementation > marginals,
                    const DistributionImplementation * p_distribution)
      : marginals_(marginals)
      , p_distribution_(p_distribution)
      , dimension_(p_distribution->getDimension())
    {
      // Nothing to do
    }

    NumericalPoint computeDiagonal(const NumericalPoint & u) const
    {
      const NumericalScalar cdf(p_distribution_->computeCDF(diagonalToSpace(u[0])));
      LOGDEBUG(OSS() << "in DistributionImplementation::QuantileWrapper::computeDiagonal, u=" << u << ", cdf=" << cdf);
      return NumericalPoint(1, cdf);
    }

    NumericalPoint diagonalToSpace(const NumericalScalar tau) const
    {
      NumericalPoint x(dimension_);
      for (UnsignedLong i = 0; i < dimension_; ++i) x[i] = marginals_[i]->computeQuantile(tau)[0];
      LOGDEBUG(OSS() << "in DistributionImplementation::QuantileWrapper::diagonalToSpace, tau=" << tau << ", x=" << x);
      return x;
    }

    const Collection< Implementation > marginals_;
    const DistributionImplementation * p_distribution_;
    const UnsignedLong dimension_;
  }; // struct QuantileWrapper

  /** The dimension of the distributionImplementation */
  UnsignedLong dimension_;

  /** The weight used ONLY by Mixture */
  NumericalScalar weight_;

  /** Range of the distribution */
  Interval range_;

  /** Description of each component */
  Description description_;
}; /* class DistributionImplementation */


END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_DISTRIBUTIONIMPLEMENTATION_HXX */