/usr/include/openturns/ConditionalDistribution.hxx is in libopenturns-dev 1.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | // -*- C++ -*-
/**
* @file ConditionalDistribution.hxx
* @brief The ConditionalDistribution distribution
*
* Copyright (C) 2005-2013 EDF-EADS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* @author schueller
* @date 2009-10-27 17:42:46 +0100 (mar. 27 oct. 2009)
*/
#ifndef OPENTURNS_CONDITIONALDISTRIBUTION_HXX
#define OPENTURNS_CONDITIONALDISTRIBUTION_HXX
#include "OTprivate.hxx"
#include "Mixture.hxx"
#include "ResourceMap.hxx"
#include "NumericalMathFunction.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class ConditionalDistribution
*
* The ConditionalDistribution distribution.
*/
class ConditionalDistribution
: public Mixture
{
CLASSNAME;
/** The PosteriorDistribution class is closely linked with the ConditionalDistribution class
as they are the two parts of the Bayesian modeling using distributions */
friend class PosteriorDistribution;
public:
/** Default constructor */
ConditionalDistribution();
/** Parameters constructor */
ConditionalDistribution(const Distribution & conditionedDistribution,
const Distribution & conditioningDistribution);
/** Comparison operator */
Bool operator ==(const ConditionalDistribution & other) const;
/** String converter */
String __repr__() const;
String __str__(const String & offset = "") const;
/* Interface inherited from Distribution */
/** Virtual constructor */
virtual ConditionalDistribution * clone() const;
/** Get one realization of the distribution */
NumericalPoint getRealization() const;
/** Parameters value and description accessor */
NumericalPointWithDescriptionCollection getParametersCollection() const;
using Mixture::setParametersCollection;
void setParametersCollection(const NumericalPointCollection & parametersCollection);
/* Interface specific to ConditionalDistribution */
/** Conditioned distribution accessor */
void setConditionedDistribution(const Distribution & conditionedDistribution);
Distribution getConditionedDistribution() const;
/** Conditioning distribution accessor */
void setConditioningDistribution(const Distribution & conditioningDistribution);
Distribution getConditioningDistribution() const;
/** Get the i-th marginal distribution */
Implementation getMarginal(const UnsignedLong i) const;
/** Get the distribution of the marginal distribution corresponding to indices dimensions */
Implementation getMarginal(const Indices & indices) const;
/** Method save() stores the object through the StorageManager */
void save(Advocate & adv) const;
/** Method load() reloads the object from the StorageManager */
void load(Advocate & adv);
protected:
private:
/** set both parameters */
void setConditionedAndConditioningDistributions(const Distribution & conditionedDistribution,
const Distribution & conditioningDistribution);
/** Compute the expectation of f(\theta)1_{\theta\leq \theta^*} with respect to the prior distribution of \theta */
NumericalPoint computeExpectation(const NumericalMathFunction & f,
const NumericalPoint & thetaStar) const;
/** The conditioned distribution, i.e L(X|Theta) */
Distribution conditionedDistribution_;
/** The conditioning distribution, i.e L(Theta) */
Distribution conditioningDistribution_;
/** Discrete marginals indices */
Indices discreteMarginalsIndices_;
/** Dirac marginals indices */
Indices diracMarginalsIndices_;
/** Continuous marginals indices */
Indices continuousMarginalsIndices_;
/** Lower bounds of the continuous marginals */
NumericalPoint continuousLowerBounds_;
/** Upper bounds of the continuous marginals */
NumericalPoint continuousUpperBounds_;
/** Standard continuous integration nodes */
NumericalSample continuousNodes_;
/** Standard continuous weights */
NumericalPoint continuousWeights_;
/** Discrete integration nodes */
NumericalSample discreteNodes_;
/** Values of the Dirac marginals */
NumericalPoint diracValues_;
}; /* class ConditionalDistribution */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_CONDITIONALDISTRIBUTION_HXX */
|