This file is indexed.

/usr/include/openturns/ComplexMatrixImplementation.hxx is in libopenturns-dev 1.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
//                                               -*- C++ -*-
/**
 *  @file  ComplexMatrixImplementation.hxx
 *  @brief ComplexMatrixImplementation implements the Matrix class with complex values
 *
 *  Copyright (C) 2005-2013 EDF-EADS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  @author schueller
 *  @date   2012-04-18 17:56:46 +0200 (Wed, 18 Apr 2012)
 */
#ifndef OPENTURNS_COMPLEXMATRIXIMPLEMENTATION_HXX
#define OPENTURNS_COMPLEXMATRIXIMPLEMENTATION_HXX

#include "PersistentCollection.hxx"
#include "Collection.hxx"
#include "NumericalPoint.hxx"
#include "MatrixImplementation.hxx"

BEGIN_NAMESPACE_OPENTURNS

/**
 * @class ComplexMatrixImplementation
 *
 * ComplexMatrixImplementation implements the classical mathematical ComplexMatrixImplementation
 */

class ComplexMatrixImplementation
  : public PersistentCollection<NumericalComplex>

{
  CLASSNAME;

#ifndef SWIG
  /** Declaration of friend operators */
  friend ComplexMatrixImplementation operator * (const NumericalComplex s,
      const ComplexMatrixImplementation & matrix)
  {
    return matrix.operator * (s);
  }
#endif

public:

  typedef Collection<NumericalComplex>        NumericalComplexCollection;
  typedef Collection<NumericalScalar>         NumericalScalarCollection;

  /** Default constructor */
  ComplexMatrixImplementation();

  /** Constructor with size (rowDim and colDim) */
  ComplexMatrixImplementation(const UnsignedLong rowDim,
                              const UnsignedLong colDim);

  /** Constructor from range of external collection */
  template <class InputIterator>
  ComplexMatrixImplementation(const UnsignedLong rowDim,
                              const UnsignedLong colDim,
                              const InputIterator first,
                              const InputIterator last);

  /** Constructor from external collection */
  /** If the dimensions of the matrix and of the collection */
  /** do not correspond, either the collection is truncated */
  /** or the rest of the matrix is filled with zeros */
  ComplexMatrixImplementation(const UnsignedLong rowDim,
                              const UnsignedLong colDim,
                              const Collection<NumericalComplex> & elementsValues);


  /** Constructor from external collection */
  /** If the dimensions of the matrix and of the collection */
  /** do not correspond, either the collection is truncated */
  /** or the rest of the matrix is filled with zeros */
  ComplexMatrixImplementation(const UnsignedLong rowDim,
                              const UnsignedLong colDim,
                              const Collection<NumericalScalar> & elementsValues);

  /** Constructor from MatrixImplementation */
  ComplexMatrixImplementation(const MatrixImplementation & matrix);

  /** Virtual constructor */
  virtual ComplexMatrixImplementation * clone() const;

  /** Set small elements to zero */
  virtual ComplexMatrixImplementation clean(const NumericalScalar threshold) const;

  virtual ComplexMatrixImplementation cleanHerm(const NumericalScalar threshold) const;

  /** String converter */
  virtual String __repr__() const;
  virtual String __str__(const String & offset = "") const;

  /** Operator () gives access to the elements of the ComplexMatrixImplementation (to modify these elements) */
  /** The element of the ComplexMatrixImplementation is designated by its row number i and its column number j */
  NumericalComplex & operator () (const UnsignedLong i,
                                  const UnsignedLong j);

  /** Operator () gives access to the elements of the ComplexMatrixImplementation (read only) */
  /** The element of the ComplexMatrixImplementation is designated by its row number i and its column number j */
  const NumericalComplex & operator () (const UnsignedLong i,
                                        const UnsignedLong j) const;

  /** Get the dimensions of the ComplexMatrixImplementation */
  /** Number of rows */
  const UnsignedLong getNbRows() const;
  /** Number of columns */
  const UnsignedLong getNbColumns() const;
  /** Dimension (for square matrices only */
  const UnsignedLong getDimension() const;

  /** ComplexMatrixImplementation transpose */
  ComplexMatrixImplementation transpose () const;
  ComplexMatrixImplementation transposeHerm () const;

  /** ComplexMatrixImplementation conjugate */
  ComplexMatrixImplementation conjugate () const;
  ComplexMatrixImplementation conjugateHerm () const;

  /** ComplexMatrixImplementation conjugateTranspose */
  ComplexMatrixImplementation conjugateTranspose () const;

  /** "Hermitianize" ComplexMatrixImplementation in case it is an hermitian matrix (stored as a triangular matrix) */
  void hermitianize() const;

  /** Get the real part of the matrix */
  MatrixImplementation realRect() const;
  MatrixImplementation realSym() const;

  /** Get the imaginary part of the matrix */
  MatrixImplementation imagRect() const;
  MatrixImplementation imagSym() const;

  /** Operator overload */
  /** ComplexMatrixImplementation addition (must have the same dimensions) */
  ComplexMatrixImplementation operator + (const ComplexMatrixImplementation & matrix) const;
  /** ComplexMatrixImplementation addition with MatrixImplementation */
  ComplexMatrixImplementation operator + (const MatrixImplementation & matrix) const;

  /** ComplexMatrixImplementation substraction (must have the same dimensions) */
  ComplexMatrixImplementation operator - (const ComplexMatrixImplementation & matrix) const;
  /** ComplexMatrixImplementation substraction with MatrixImplementation  */
  ComplexMatrixImplementation operator - (const MatrixImplementation & matrix) const;

  /** Multiplication with a NumericalComplex */
  ComplexMatrixImplementation operator * (const NumericalComplex s) const ;

  /** Division by a NumericalComplex*/
  ComplexMatrixImplementation operator / (const NumericalComplex s) const ;

  /** ComplexMatrixImplementation multiplications (must have consistent dimensions) */
  ComplexMatrixImplementation genProd(const ComplexMatrixImplementation & matrix) const;
  ComplexMatrixImplementation symProd(const ComplexMatrixImplementation & m,
                                      const char symSide) const;
  ComplexMatrixImplementation hermProd(const ComplexMatrixImplementation & m,
                                       const char hermSide) const;
  /** Triangular matrix product : side argument L/R for the position of the triangular matrix, up/lo to tell if it  */
  ComplexMatrixImplementation triangularProd(const ComplexMatrixImplementation & m,
      const char side = 'L',
      const char uplo = 'L') const;

  /** ComplexMatrixImplementation integer power */
  ComplexMatrixImplementation genPower(const UnsignedLong n) const;
  ComplexMatrixImplementation symPower(const UnsignedLong n) const;
  ComplexMatrixImplementation hermPower(const UnsignedLong n) const;

  /** Multiplications with a NumericalComplexCollection (must have consistent dimensions) */
  NumericalComplexCollection genVectProd (const NumericalComplexCollection & pt) const;
  NumericalComplexCollection genVectProd (const NumericalScalarCollection & pt) const;
  NumericalComplexCollection genVectProd (const NumericalPoint & pt) const;

  /** Using some optimization (for Hermitian matrix) */
  NumericalComplexCollection hermVectProd (const NumericalComplexCollection & pt) const;
  NumericalComplexCollection hermVectProd (const NumericalScalarCollection & pt) const;
  NumericalComplexCollection hermVectProd (const NumericalPoint & pt) const;

  /** Using triangular matrix */
  NumericalComplexCollection triangularVectProd(const NumericalComplexCollection & pt,
      const char side = 'L') const;
  NumericalComplexCollection triangularVectProd(const NumericalScalarCollection & pt,
      const char side = 'L') const;


  NumericalComplexCollection triangularVectProd(const NumericalPoint & pt,
      const char side = 'L') const;

  /** Check if the matrix is self-adjoint */
  virtual Bool isHermitian() const;

  /** Check if the matrix is HPD */
  virtual Bool isHermitianPositiveDefinite(const Bool keepIntact = true);

  /** Build the Cholesky factorization of the matrix */
  virtual ComplexMatrixImplementation computeCholesky(const Bool keepIntact = true);

  /** Comparison operators */
  Bool operator == (const ComplexMatrixImplementation & rhs) const ;
  inline Bool operator != (const ComplexMatrixImplementation & rhs) const
  {
    return !((*this) == rhs);
  }

  /** Empty returns true if there is no element in the ComplexMatrixImplementation */
  const Bool isEmpty() const;

  /** Returns true if triangular lower or upper */
  const Bool isTriangular(Bool lower = true) const;

  /** Method save() stores the object through the StorageManager */
  void save(Advocate & adv) const;

  /** Method load() reloads the object from the StorageManager */
  void load(Advocate & adv);

  // These functions are only intended to be used by SWIG, DO NOT use them for your own purpose !
  // INTENTIONALY NOT DOCUMENTED
  const NumericalComplex * __baseaddress__ () const;
  UnsignedLong __elementsize__ () const;
  UnsignedLong __stride__ (UnsignedLong dim) const;

protected:

  /** ComplexMatrixImplementation Dimensions */
  UnsignedLong nbRows_;
  UnsignedLong nbColumns_;

  /** Position conversion function : the indices i & j are used to compute the actual position of the element in the collection */
  inline UnsignedLong convertPosition (const UnsignedLong i,
                                       const UnsignedLong j) const;

}; /* class ComplexMatrixImplementation */

inline UnsignedLong ComplexMatrixImplementation::convertPosition (const UnsignedLong i,
    const UnsignedLong j) const
{
  return i + nbRows_ * j ;
}

/** Constructor from range of external collection */
template <class InputIterator>
ComplexMatrixImplementation::ComplexMatrixImplementation(const UnsignedLong rowDim,
    const UnsignedLong colDim,
    const InputIterator first,
    const InputIterator last)
  : PersistentCollection<NumericalComplex>(rowDim * colDim, 0.0),
    nbRows_(rowDim),
    nbColumns_(colDim)
{
  this->assign(first, last);
}

END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_COMPLEXMATRIXIMPLEMENTATION_HXX */