/usr/include/OpenMS/MATH/MISC/MathFunctions.h is in libopenms-dev 1.11.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | // --------------------------------------------------------------------------
// OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of any author or any participating institution
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Stephan Aiche$
// $Authors: Marc Sturm $
// --------------------------------------------------------------------------
#ifndef OPENMS_MATH_MISC_MATHFUNCTIONS_H
#define OPENMS_MATH_MISC_MATHFUNCTIONS_H
#include <OpenMS/CONCEPT/Types.h>
namespace OpenMS
{
/**
@brief %Math namespace.
Contains mathematical auxiliary functions.
@ingroup Concept
*/
namespace Math
{
/**
@brief rounds @p x up to the next decimal power 10 ^ @p decPow
@verbatim
e.g.: (123.0 , 1) => 130
(123.0 , 2) => 200
(0.123 ,-2) => 0.13 ( 10^-2 = 0.01 )
@endverbatim
@ingroup MathFunctionsMisc
*/
inline static double ceilDecimal(double x, int decPow)
{
return (ceil(x / pow(10.0, decPow))) * pow(10.0, decPow); // decimal shift right, ceiling, decimal shift left
}
/**
@brief rounds @p x to the next decimal power 10 ^ @p decPow
@verbatim
e.g.: (123.0 , 1) => 120
(123.0 , 2) => 100
@endverbatim
@ingroup MathFunctionsMisc
*/
inline static double roundDecimal(double x, int decPow)
{
if (x > 0)
return (floor(0.5 + x / pow(10.0, decPow))) * pow(10.0, decPow);
return -((floor(0.5 + fabs(x) / pow(10.0, decPow))) * pow(10.0, decPow));
}
/**
@brief transforms point @p x of interval [left1,right1] into interval [left2,right2]
@ingroup MathFunctionsMisc
*/
inline static double intervalTransformation(double x, double left1, double right1, double left2, double right2)
{
return left2 + (x - left1) * (right2 - left2) / (right1 - left1);
}
/**
@brief Transforms a number from linear to log10 scale. Avoids negative logarithms by adding 1.
@param x The number to transform
@ingroup MathFunctionsMisc
*/
inline double linear2log(double x)
{
return log10(x + 1); //+1 to avoid negative logarithms
}
/**
@brief Transforms a number from log10 to to linear scale. Subtracts the 1 added by linear2log(double)
@param x The number to transform
@ingroup MathFunctionsMisc
*/
inline double log2linear(double x)
{
return pow(10, x) - 1;
}
/**
@brief Returns true if the given interger is odd
@ingroup MathFunctionsMisc
*/
inline bool isOdd(UInt x)
{
return (x & 1) != 0;
}
/**
@brief Rounds the value
@ingroup MathFunctionsMisc
*/
template <typename T>
T round(T x)
{
if (x >= T(0))
{
return T(floor(x + T(0.5)));
}
else
{
return T(ceil(x - T(0.5)));
}
}
/**
@brief Returns if @p a is approximately equal @p b , allowing a tolerance of @p tol
@ingroup MathFunctionsMisc
*/
inline static bool approximatelyEqual(DoubleReal a, DoubleReal b, DoubleReal tol)
{
return std::fabs(a - b) <= tol;
}
/**
@brief Returns the greatest common divisor (gcd) of two numbers by applying the Euclidean algorithm.
@param a A number.
@param b A number.
@return The greatest common divisor.
@see gcd(T a, T b, T& a1, T& b1)
@ingroup MathFunctionsMisc
*/
template <typename T>
T gcd(T a, T b)
{
T c;
while (b != 0)
{
c = a % b;
a = b;
b = c;
}
return a;
}
/**
@brief Returns the greatest common divisor by applying the extended Euclidean algorithm (Knuth TAoCP vol. 2, p342).
Calculates u1, u2 and u3 (which is returned) so that a * u1 + b * u2 = u3 = gcd(a, b, u1, u2)
@param a A number.
@param b A number.
@param u1 A reference to the number to be returned (see the above formula).
@param u2 A reference to the number to be returned (see the above formula).
@return The greatest common divisor.
@see gcd(T, T)
@ingroup MathFunctionsMisc
*/
template <typename T>
T gcd(T a, T b, T & u1, T & u2)
{
u1 = 1;
u2 = 0;
T u3 = a;
T v1 = 0;
T v2 = 1;
T v3 = b;
while (v3 != 0)
{
T q = u3 / v3;
T t1 = u1 - v1 * q;
T t2 = u2 - v2 * q;
T t3 = u3 - v3 * q;
u1 = v1;
u2 = v2;
u3 = v3;
v1 = t1;
v2 = t2;
v3 = t3;
}
return u3;
}
} // namespace Math
} // namespace OpenMS
#endif // OPENMS_MATH_MISC_MATHFUNCTIONS_H
|