This file is indexed.

/usr/include/OpenMS/ANALYSIS/SVM/SVMWrapper.h is in libopenms-dev 1.11.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
// --------------------------------------------------------------------------
//                   OpenMS -- Open-Source Mass Spectrometry
// --------------------------------------------------------------------------
// Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
// ETH Zurich, and Freie Universitaet Berlin 2002-2013.
//
// This software is released under a three-clause BSD license:
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//  * Neither the name of any author or any participating institution
//    may be used to endorse or promote products derived from this software
//    without specific prior written permission.
// For a full list of authors, refer to the file AUTHORS.
// --------------------------------------------------------------------------
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
// INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// --------------------------------------------------------------------------
// $Maintainer: Sandro Andreotti $
// $Authors: Nico Pfeifer, Chris Bielow $
// --------------------------------------------------------------------------

#ifndef OPENMS_ANALYSIS_SVM_SVMWRAPPER_H
#define OPENMS_ANALYSIS_SVM_SVMWRAPPER_H

#include <svm.h>

#include <OpenMS/CONCEPT/Types.h>
#include <OpenMS/CONCEPT/ProgressLogger.h>
#include <OpenMS/DATASTRUCTURES/String.h>
#include <OpenMS/FORMAT/TextFile.h>
#include <OpenMS/SYSTEM/File.h>

#include <string>
#include <vector>
#include <map>
#include <cmath>
#include <iostream>
#include <fstream>

namespace OpenMS
{

  /// Data structure used in SVMWrapper
  struct SVMData
  {
    std::vector<std::vector<std::pair<Int, DoubleReal> > > sequences;
    std::vector<DoubleReal> labels;

    SVMData() :
      sequences(std::vector<std::vector<std::pair<Int, DoubleReal> > >()),
      labels(std::vector<DoubleReal>())
    {
    }

    SVMData(std::vector<std::vector<std::pair<Int, DoubleReal> > > & seqs, std::vector<DoubleReal> & lbls) :
      sequences(seqs),
      labels(lbls)
    {
    }

    bool operator==(const SVMData & rhs) const
    {
      return sequences == rhs.sequences
             && labels == rhs.labels;
    }

    bool store(const String & filename) const
    {
      std::ofstream output_file(filename.c_str());

      // checking if file is writable
      if (!File::writable(filename) || sequences.size() != labels.size())
      {
        return false;
      }

      // writing feature vectors
      for (Size i = 0; i < sequences.size(); i++)
      {
        output_file << labels[i] << " ";
        for (Size j = 0; j < sequences[i].size(); ++j)
        {
          output_file << sequences[i][j].second << ":" << sequences[i][j].first << " ";
        }
        output_file << std::endl;
      }
      output_file.flush();
      output_file.close();
      std::cout.flush();
      return true;
    }

    bool load(const String & filename)
    {
      Size counter = 0;
      std::vector<String> parts;
      std::vector<String> temp_parts;

      if (!File::exists(filename))
      {
        return false;
      }
      if (!File::readable(filename))
      {
        return false;
      }
      if (File::empty(filename))
      {
        return false;
      }

      TextFile text_file(filename.c_str(), true);
      TextFile::iterator it;

      it = text_file.begin();

      sequences.resize(text_file.size(), std::vector<std::pair<Int, DoubleReal> >());
      labels.resize(text_file.size(), 0.);
      while (counter < text_file.size() && it != text_file.end())
      {
        it->split(' ', parts);
        labels[counter] = parts[0].trim().toFloat();
        sequences[counter].resize(parts.size(), std::pair<Int, DoubleReal>());
        for (Size j = 1; j < parts.size(); ++j)
        {
          parts[j].split(':', temp_parts);
          if (temp_parts.size() < 2)
          {
            return false;
          }
          sequences[counter][j - 1].second = temp_parts[0].trim().toFloat();
          sequences[counter][j - 1].first = temp_parts[1].trim().toInt();
        }
        ++counter;
        ++it;
      }
      return true;
    }

  };

  /**
    @brief Serves as a wrapper for the libsvm

    This class can be used for svm predictions. You can either perform classification or regression and
        choose certain kernel fuctions and additional parameters. Furthermore the models can be saved and
        loaded and we support also a new kernel function that was specially designed for learning with
        small sequences of different lengths.
  */
  class OPENMS_DLLAPI SVMWrapper :
    public ProgressLogger
  {
public:

    /**
      @brief    Parameters for the svm to be set from outside

          This type is used to specify the kind of parameter that
          is to be set or retrieved by the set/getParameter methods.
      */
    enum SVM_parameter_type
    {
      SVM_TYPE,                         ///< the svm type cab be NU_SVR or EPSILON_SVR
      KERNEL_TYPE,                  ///< the kernel type
      DEGREE,                           ///< the degree for the polynomial- kernel
      C,                                    ///< the C parameter of the svm
      NU,                                   ///< the nu parameter for nu-SVR
      P,                                    ///< the epsilon parameter for epsilon-SVR
      GAMMA,                            ///< the gamma parameter of the POLY, RBF and SIGMOID kernel
      PROBABILITY,                  ///<
      SIGMA,                            ///<
      BORDER_LENGTH                 ///<
    };

    /// Kernel type
    enum SVM_kernel_type
    {
      OLIGO = 19,
      OLIGO_COMBINED
    };

    /// standard constructor
    SVMWrapper();

    /// destructor
    virtual ~SVMWrapper();

    /**
      @brief You can set the parameters of the svm:

       KERNEL_TYPE: can be LINEAR                    for the linear kernel
                           RBF                       for the rbf kernel
                           POLY                    for the polynomial kernel
                           SIGMOID                       for the sigmoid kernel
       DEGREE:      the degree for the polynomial- kernel and the
                    locality- improved kernel

       C:            the C parameter of the svm
      */
    void setParameter(SVM_parameter_type type, Int value);

    /**
      @brief sets the double parameters of the svm

      */
    void setParameter(SVM_parameter_type type, DoubleReal value);

    /**
      @brief	trains the svm

    The svm is trained with the data stored in the 'svm_problem' structure.
      */
    Int train(struct svm_problem * problem);

    /**
      @brief	trains the svm

    The svm is trained with the data stored in the 'SVMData' structure.
      */
    Int train(SVMData & problem);

    /**
      @brief	saves the svm model

    The model of the trained svm is saved into 'modelFilename'. Throws an exception if
    the model cannot be saved.

          @exception Exception::UnableToCreateFile
      */
    void saveModel(std::string modelFilename) const;

    /**
      @brief loads the model

    The svm- model is loaded. After this, the svm is ready for
    prediction.
    */
    void loadModel(std::string modelFilename);

    /**
      @brief predicts the labels using the trained model

       The prediction process is started and the results are stored in 'predicted_labels'.

    */
    void predict(struct svm_problem * problem, std::vector<DoubleReal> & predicted_labels);

    /**
      @brief predicts the labels using the trained model

       The prediction process is started and the results are stored in 'predicted_labels'.

    */
    void predict(const SVMData & problem, std::vector<DoubleReal> & results);

    /**
      @brief You can get the actual int- parameters of the svm

       KERNEL_TYPE: can be LINEAR                    for the linear kernel
                           RBF                       for the rbf kernel
                           POLY                     for the polynomial kernel
                           SIGMOID                       for the sigmoid kernel

       DEGREE:       the degree for the polynomial- kernel and the
                     locality- improved kernel

       SVM_TYPE:     the SVm type of the svm: can be NU_SVR or EPSILON_SVR
    */
    Int getIntParameter(SVM_parameter_type type);

    /**
      @brief You can get the actual double- parameters of the svm

      C:            the C parameter of the svm
      P:			      the P parameter of the svm (sets the epsilon in
                                                epsilon-svr)
      NU:           the nu parameter in nu-SVR
      GAMMA:				for POLY, RBF and SIGMOID
    */
    DoubleReal getDoubleParameter(SVM_parameter_type type);

    /**
      @brief You can create 'number' equally sized random partitions

      This function creates 'number' equally sized random partitions and stores them in 'partitions'.

    */
    static void createRandomPartitions(svm_problem * problem, Size number, std::vector<svm_problem *> & partitions);

    /**
      @brief You can create 'number' equally sized random partitions

      This function creates 'number' equally sized random partitions and stores them in 'partitions'.

    */
    static void createRandomPartitions(const SVMData & problem,
                                       Size                                  number,
                                       std::vector<SVMData> & problems);
    /**
      @brief You can merge partitions excuding the partition with index 'except'

    */
    static svm_problem * mergePartitions(const std::vector<svm_problem *> & problems, Size except);

    /**
      @brief You can merge partitions excuding the partition with index 'except'

    */
    static void mergePartitions(const std::vector<SVMData> & problems,
                                Size                                            except,
                                SVMData & merged_problem);

    /**
      @brief predicts the labels using the trained model

       The prediction process is started and the results are stored in 'predicted_rts'.

    */
    void predict(const std::vector<svm_node *> & vectors, std::vector<DoubleReal> & predicted_rts);

    /**
      @brief Stores the stored labels of the encoded SVM data at 'labels'

    */
    static void getLabels(svm_problem * problem, std::vector<DoubleReal> & labels);

    /**
      @brief Performs a CV for the data given by 'problem'

    */
    DoubleReal performCrossValidation(svm_problem * problem_ul,
                                      const SVMData & problem_l,
                                      const bool                                        is_labeled,
                                      const   std::map<SVM_parameter_type, DoubleReal> & start_values_map,
                                      const   std::map<SVM_parameter_type, DoubleReal> & step_sizes_map,
                                      const   std::map<SVM_parameter_type, DoubleReal> & end_values_map,
                                      Size                                                                                number_of_partitions,
                                      Size                                                                                  number_of_runs,
                                      std::map<SVM_parameter_type, DoubleReal> & best_parameters,
                                      bool                                                                                            additive_step_sizes = true,
                                      bool                                                                                        output = false,
                                      String                                                                                      performances_file_name = "performances.txt",
                                      bool                                                                                            mcc_as_performance_measure = false);


    /**
          @brief Returns the probability parameter sigma of the fitted laplace model.

          The libsvm is used to fit a laplace model to the prediction values by performing
          an internal cv using the training set if setParameter(PROBABILITY, 1) was invoked
          before using train. Look for your libsvm documentation for more details.
          The model parameter sigma is returned by this method.	If no model was fitted during
          training zero is returned.
        */
    DoubleReal getSVRProbability();

    /**
              @brief returns the value of the oligo kernel for sequences 'x' and 'y'

          This function computes the kernel value of the oligo kernel,
                  which was introduced by Meinicke et al. in 2004. 'x' and
                  'y' are encoded by encodeOligo and 'gauss_table' has to be
                  constructed by calculateGaussTable.

                  'max_distance' can be used to speed up the computation
                  even further by restricting the maximum distance between a k_mer at
                  position i in sequence 'x' and a k_mer at position j
                  in sequence 'y'. If i - j > 'max_distance' the value is not
                  added to the kernel value. This approximation is switched
                  off by default (max_distance < 0).
    */
    static DoubleReal kernelOligo(const std::vector<std::pair<int, double> > & x,
                                  const std::vector<std::pair<int, double> > & y,
                                  const std::vector<double> & gauss_table,
                                  int                                                                     max_distance = -1);

    /**
      @brief calculates the oligo kernel value for the encoded sequences 'x' and 'y'

      This kernel function calculates the oligo kernel value [Meinicke 04] for
      the sequences 'x' and 'y' that had been encoded by the encodeOligoBorder... function
      of the LibSVMEncoder class.
    */
    static DoubleReal kernelOligo(const svm_node * x, const svm_node * y, const std::vector<DoubleReal> & gauss_table, DoubleReal sigma_square = 0, Size    max_distance = 50);

    /**
      @brief calculates the significance borders of the error model and stores them in 'sigmas'

    */
    void getSignificanceBorders(svm_problem * data, std::pair<DoubleReal, DoubleReal> & borders, DoubleReal confidence = 0.95, Size number_of_runs = 5, Size number_of_partitions = 5, DoubleReal step_size = 0.01, Size max_iterations = 1000000);

    /**
      @brief calculates the significance borders of the error model and stores them in 'sigmas'

    */
    void getSignificanceBorders(const SVMData & data,
                                std::pair<DoubleReal, DoubleReal> & sigmas,
                                DoubleReal confidence = 0.95,
                                Size number_of_runs = 5,
                                Size number_of_partitions = 5,
                                DoubleReal step_size = 0.01,
                                Size max_iterations = 1000000);

    /**
      @brief calculates a p-value for a given data point using the model parameters

      Uses the model parameters to calculate the p-value for 'point' which has the data
      entries: measured, predicted retention time.

    */
    DoubleReal getPValue(DoubleReal sigma1, DoubleReal sigma2, std::pair<DoubleReal, DoubleReal> point);

    /**
      @brief stores the prediction values for the encoded data in 'decision_values'

      This function can be used to get the prediction values of the data if a model
      is already trained by the train() method. For regression the result is the same
      as for the method predict. For classification this function returns the distance from
      the separating hyperplane. For multiclass classification the decision_values vector
      will be empty.

    */
    void getDecisionValues(svm_problem * data, std::vector<DoubleReal> & decision_values);

    /**
      @brief Scales the data such that every coloumn is scaled to [-1, 1].

      Scales the x[][].value values of the svm_problem* structure. If the second
      parameter is omitted, the data is scaled to [-1, 1]. Otherwise the data is scaled to [0, max_scale_value]
    */
    void scaleData(svm_problem * data, Int max_scale_value = -1);

    static void calculateGaussTable(Size border_length, DoubleReal sigma, std::vector<DoubleReal> & gauss_table);

    /**
      @brief computes the kernel matrix using the actual svm parameters	and the given data

      This function can be used to compute a kernel matrix. 'problem1' and 'problem2'
      are used together wit the oligo kernel function (could be extended if you
      want to use your own kernel functions).

    */
    svm_problem * computeKernelMatrix(svm_problem * problem1, svm_problem * problem2);

    /**
      @brief computes the kernel matrix using the actual svm parameters	and the given data

      This function can be used to compute a kernel matrix. 'problem1' and 'problem2'
      are used together wit the oligo kernel function (could be extended if you
      want to use your own kernel functions).

    */
    svm_problem * computeKernelMatrix(const SVMData & problem1, const SVMData & problem2);

    /**
      @brief This is used for being able to perform predictions with non libsvm standard kernels

    */
    void setTrainingSample(svm_problem * training_sample);

    /**
      @brief This is used for being able to perform predictions with non libsvm standard kernels

    */
    void setTrainingSample(SVMData & training_sample);

    /**
      @brief This function fills probabilities with the probability estimates for the first class.

      The libSVM function svm_predict_probability is called to get probability estimates
      for the positive class. Since this is only used for binary classification it is sufficient
      for every test example to report the probability of the test example belonging to the positive
      class. Probability estimates have to be turned on during training (svm.setParameter(PROBABILITY, 1)),
      otherwise this method will fill the 'probabilities' vector with -1s.
    */
    void getSVCProbabilities(struct svm_problem * problem, std::vector<DoubleReal> & probabilities, std::vector<DoubleReal> & prediction_labels);

    /**
      @brief Sets weights for the classes in C_SVC (see libsvm documentation for further details)

    */
    void setWeights(const std::vector<Int> & weight_labels, const std::vector<DoubleReal> & weights);

private:
    /**
       @brief find next grid search parameter combination

       The current grid cell is given in @p actual_values.
       The result is returned in @p actual_values.

    */
    bool nextGrid_(const std::vector<DoubleReal> & start_values,
                   const std::vector<DoubleReal> & step_sizes,
                   const std::vector<DoubleReal> & end_values,
                   const bool additive_step_sizes,
                   std::vector<DoubleReal> & actual_values);

    Size getNumberOfEnclosedPoints_(DoubleReal m1, DoubleReal m2, const std::vector<std::pair<DoubleReal, DoubleReal> > & points);

    /**
      @brief Initializes the svm with standard parameters

    */
    void initParameters_();

    /**
      @brief This function is passed to lib svm for output control

      The intention is to discard the output, as we don't need it.

    */
    static void printToVoid_(const char * /*s*/);

    svm_parameter * param_;                                                                 // the parameters for the svm
    svm_model * model_;                                                                       // the learnt svm discriminant
    DoubleReal                                                      sigma_;                                 // for the oligo kernel (amount of positional smearing)
    std::vector<DoubleReal>                             sigmas_;                                    // for the combined oligo kernel (amount of positional smearing)
    std::vector<DoubleReal>                             gauss_table_;                           // lookup table for fast computation of the oligo kernel
    std::vector<std::vector<DoubleReal> > gauss_tables_;                        // lookup table for fast computation of the combined oligo kernel
    Size                                                                    kernel_type_;                           // the actual kernel type
    Size                                                                    border_length_;                     // the actual kernel type
    svm_problem * training_set_;                                                                        // the training set
    svm_problem * training_problem_;                                                                // the training set
    SVMData                                                             training_data_;                     // the training set (different encoding)

  };

} // namespace OpenMS

#endif // OPENMS_ANALYSIS_SVM_SVMWRAPPER_H