This file is indexed.

/usr/include/openigtlink/igtlImageMessage2.h is in libopenigtlink-dev 1.10.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/*=========================================================================

  Program:   The OpenIGTLink Library
  Language:  C++
  Web page:  http://openigtlink.org/

  Copyright (c) Insight Software Consortium. All rights reserved.

  This software is distributed WITHOUT ANY WARRANTY; without even
  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
  PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef __igtlImageMessage2_h
#define __igtlImageMessage2_h

#include "igtlObject.h"
//#include "igtlMacros.h"
#include "igtlMacro.h"
#include "igtlMath.h"
#include "igtlMessageBase.h"


#define  FRAGMENTED_PACK 


namespace igtl
{


/// A class for the GET_IMAGE message type. The difference between the ImageMessage and
/// ImageMessage2 classes is that the ImageMessage2 class supports fragmented pack.
/// Fragmeted pack allows allocating memory for each segment independently.
/// The version 1 library assumes that the memory area for entire message pack
/// is allocated at once, causing extra memory copies in some applications.
/// (For example, copying image from source into the pack memory)
class IGTLCommon_EXPORT GetImageMessage2: public MessageBase
{
public:
  typedef GetImageMessage2                Self;
  typedef MessageBase                    Superclass;
  typedef SmartPointer<Self>             Pointer;
  typedef SmartPointer<const Self>       ConstPointer;

  igtlTypeMacro(igtl::GetImageMessage2, igtl::MessageBase);
  igtlNewMacro(igtl::GetImageMessage2);

  
protected:
  GetImageMessage2() : MessageBase() { this->m_DefaultBodyType  = "GET_IMAGE"; };
  ~GetImageMessage2() {};
protected:
  virtual int  GetBodyPackSize() { return 0; };
  virtual int  PackBody()        { AllocatePack(); return 1; };
  virtual int  UnpackBody()      { return 1; };
};


/// A class for the IMAGE message type with support for fragmented packing.
/// The IMAGE format supports 2D or 3D images with metric information including
/// image matrix size, voxel size, coordinate system type, position, and orientation.
/// The body section of the IMAGE data consists of two parts: image header to transfer
/// the metric information and image body to transfer the array of pixel or voxel values.
/// The data type of pixel or voxel can be either scalar or vector, and numerical values
/// can be 8-, 16-, 32-bit integer, or 32- or 64-bit floating point. The pixel values
/// can be either big-endian or little-endian, since the sender software can specify
/// the byte order in the image header. The format also supports "partial image transfer",
/// in which a region of the image is transferred instead of the whole image. This mechanism
/// is suitable for real-time applications, in which images are updated region-by-region.
/// The sub-volume must be box-shaped and defined by 6 parameters consisting of the indices
/// for the corner voxel of the sub-volume and matrix size of the sub-volume.
///
/// The difference between the ImageMessage and
/// ImageMessage2 classes is that the ImageMessage2 class supports fragmented pack.
/// Fragmeted pack allows allocating memory for each segment independently.
/// The version 1 library assumes that the memory area for entire message pack
/// is allocated at once, causing extra memory copies in some applications.
/// (For example, copying image from source into the pack memory)
class IGTLCommon_EXPORT ImageMessage2: public MessageBase
{
public:
  typedef ImageMessage2              Self;
  typedef MessageBase               Superclass;
  typedef SmartPointer<Self>        Pointer;
  typedef SmartPointer<const Self>  ConstPointer;

  igtlTypeMacro(igtl::ImageMessage2, igtl::MessageBase)
  igtlNewMacro(igtl::ImageMessage2);

public:

  /// Coordinate sysmtem. Either left-posterior-superior (LPS) or right-anterior-superior (RAS).
  enum {
    COORDINATE_RAS=1,
    COORDINATE_LPS=2
  };

  /// Endian used in the bite array for the image data.
  enum {
    ENDIAN_BIG=1,
    ENDIAN_LITTLE=2
  };

  /// Pixel data type either scalar or vector. 
  enum {
    DTYPE_SCALAR = 1,
    DTYPE_VECTOR = 3
  };

  /// Pixel data type.
  enum {
    TYPE_INT8    = 2,
    TYPE_UINT8   = 3,
    TYPE_INT16   = 4,
    TYPE_UINT16  = 5,
    TYPE_INT32   = 6,
    TYPE_UINT32  = 7,
    TYPE_FLOAT32 = 10,
    TYPE_FLOAT64 = 11
  };


public:

  /// Sets image dimensions by an array of the numbers of pixels in i, j and k directions.
  /// SetDimensions() should be called prior to SetSubVolume(), since SetDimensions()
  /// sets subvolume parameters automatically assuming that subvolume = entire volume.
  void SetDimensions(int s[3]);

  /// Sets image dimensions by the numbers of pixels in i, j and k directions.
  /// SetDimensions() should be called prior to SetSubVolume(), since SetDimensions()
  /// sets subvolume parameters automatically assuming that subvolume = entire volume.
  void SetDimensions(int i, int j, int k);

  /// Gets image dimensions as an array of the numbers of pixels in i, j and k directions.
  void GetDimensions(int s[3]);

  /// Gets image dimensions as the numbers of pixels in i, j and k directions.
  void GetDimensions(int &i, int &j, int &k);

  /// Sets sub-volume dimensions and offset by arrays of the dimensions and the offset.
  /// SetSubVolume() should be called after calling SetDiemensions(), since SetDimensions()
  /// reset the subvolume parameters automatically. Returns non-zero value if the subvolume
  /// is successfully specified. Returns zero, if invalid subvolume is specified.
  int  SetSubVolume(int dim[3], int off[3]);

  /// Sets sub-volume dimensions and offset by the dimensions and the offset in i, j and k
  /// directions. SetSubVolume() should be called after calling SetDiemensions(),
  /// since SetDimensions() reset the subvolume parameters automatically.
  /// Returns non-zero value if the subvolume is successfully specified. 
  /// Returns zero, if invalid subvolume is specified.
  int  SetSubVolume(int dimi, int dimj, int dimk, int offi, int offj, int offk);

  /// Gets sub-volume dimensions and offset using arrays of the dimensions and the offset.
  void GetSubVolume(int dim[3], int off[3]);

  /// Gets sub-volume dimensions and offset by the dimensions and the offset in i, j and k
  /// directions.
  void GetSubVolume(int &dimi, int &dimj, int &dimk, int &offi, int &offj, int &offk);

  /// Sets spacings by an array of spacing values in i, j and k directions.
  void SetSpacing(float s[3]);

  /// Sets spacings by spacing values in i, j and k directions.
  void SetSpacing(float si, float sj, float sk);

  /// Gets spacings using an array of spacing values in i, j and k directions.
  void GetSpacing(float s[3]);

  /// Gets spacings using spacing values in i, j and k directions.
  void GetSpacing(float &si, float &sj, float &sk);

  /// Sets the coordinates of the origin by an array of positions along the first (R or L),
  /// second (A or P) and the third (S) axes.
  void SetOrigin(float p[3]);

  /// Sets the coordinates of the origin by positions along the first (R or L), second (A or P)
  /// and the third (S) axes.
  void SetOrigin(float px, float py, float pz);

  /// Gets the coordinates of the origin using an array of positions along the first (R or L),
  /// second (A or P) and the third (S) axes.
  void GetOrigin(float p[3]);

  /// Gets the coordinates of the origin by positions along the first (R or L), second (A or P)
  /// and the third (S) axes.
  void GetOrigin(float &px, float &py, float &pz);

  /// Sets the orientation of the image by an array of the normal vectors for the i, j
  /// and k indeces.
  void SetNormals(float o[3][3]);

  /// Sets the orientation of the image by the normal vectors for the i, j and k indeces.
  void SetNormals(float t[3], float s[3], float n[3]);

  /// Gets the orientation of the image using an array of the normal vectors for the i, j
  /// and k indeces.
  void GetNormals(float o[3][3]);

  /// Gets the orientation of the image using the normal vectors for the i, j and k indeces.
  void GetNormals(float t[3], float s[3], float n[3]);

  /// Sets the number of components for each voxel.
  void SetNumComponents(int num);

  /// Gets the number of components for each voxel.
  int  GetNumComponents();

  /// Sets the origin/orientation matrix.
  void SetMatrix(Matrix4x4& mat);

  /// Gets the origin/orientation matrix.
  void GetMatrix(Matrix4x4& mat);

  /// Sets the image scalar type.
  void SetScalarType(int t)    { scalarType = t; };

  /// Sets the image scalar type to 8-bit integer.
  void SetScalarTypeToInt8()   { scalarType = TYPE_INT8; };

  /// Sets the image scalar type to unsigned 8-bit integer.
  void SetScalarTypeToUint8()  { scalarType = TYPE_UINT8; };

  /// Sets the image scalar type to 16-bit integer.
  void SetScalarTypeToInt16()  { scalarType = TYPE_INT16; };

  /// Sets the image scalar type to unsigned 16-bit integer.
  void SetScalarTypeToUint16() { scalarType = TYPE_UINT16; };

  /// Sets the image scalar type to 32-bit integer.
  void SetScalarTypeToInt32()  { scalarType = TYPE_INT32; };

  /// Sets the image scalar type to unsigned 32-bit integer.
  void SetScalarTypeToUint32() { scalarType = TYPE_UINT32; };

  /// Gets the image scalar type.
  int  GetScalarType()         { return scalarType; };

  /// Gets the size of the scalar type used in the current image data.
  /// (e.g. 1 byte for 8-bit integer)
  int  GetScalarSize()         { return ScalarSizeTable[scalarType]; };

  /// Gets the size of the specified scalar type. (e.g. 1 byte for 8-bit integer)
  int  GetScalarSize(int type) { return ScalarSizeTable[type]; };

  /// Sets the Endianess of the image scalars. (default is ENDIAN_BIG)
  void SetEndian(int e)        { endian = e; };

  /// Gets the Endianess of the image scalars.
  int  GetEndian()             { return endian; };

  /// Gets the size (length) of the byte array for the image data.
  /// The size is defined by dimensions[0]*dimensions[1]*dimensions[2]*scalarSize*numComponents.
  // TODO: Should returned value be 64-bit integer?
  int  GetImageSize()
  {
    return dimensions[0]*dimensions[1]*dimensions[2]*GetScalarSize()*numComponents;
  };

  /// Returns coordinate system (COORDINATE_RAS or COORDINATE_LPS)
  int GetCoordinateSystem() { return coordinate;};

  /// Sets coordinate system (COORDINATE_RAS or COORDINATE_LPS)
  void SetCoordinateSystem(int c) {coordinate = c;};

  /// Gets the size (length) of the byte array for the subvolume image data.
  /// The size is defined by subDimensions[0]*subDimensions[1]*subDimensions[2]*
  /// scalarSize*numComponents.
  int  GetSubVolumeImageSize()
  {
    return subDimensions[0]*subDimensions[1]*subDimensions[2]*GetScalarSize()*numComponents;
  };


  /// Allocates a memory area for the scalar data based on the dimensions of the subvolume,
  /// the number of components, and the scalar type.
  /// Note: If FragmentedPack is active, GetScalarPointer() causes extra memory allocation to
  /// create a single pack memroy degrading the performance.
  virtual void  AllocateScalars();

  /// Gets a pointer to the scalar data.
  virtual void* GetScalarPointer();

#ifdef  FRAGMENTED_PACK 
  /// Sets the pointer to the scalar data (for fragmented pack support).
  virtual void  SetScalarPointer(void * p);

  /// Gets a pointer to the scalar data (for fragmented pack support).
  void* GetPackPointer();

  /// Gets the number of fragments for the packed (serialized) data. Returns 3
  /// consisting of header, image header and image body. (for fragmented pack support)
  int   GetNumberOfPackFragments() { return 3;  /* header, image header and image body */ }

  /// Gets a pointer to the specified fragment of the packed data. (for fragmented pack support)
  void* GetPackFragmentPointer(int id);

  /// Gets the size of the specified fragment. (for fragmented pack support)
  int   GetPackFragmentSize(int id);
#endif // FRAGMENTED_PACK 


protected:
  ImageMessage2();
  ~ImageMessage2();
  
protected:

  virtual int  GetBodyPackSize();

#ifdef FRAGMENTED_PACK  
public:  
  /// Pack() serializes the header and body based on the member variables.
  /// PackBody() must be implemented in the child class. (for fragmented pack support)
  virtual int   Pack();
public:
#endif //FRAGMENTED_PACK  

  virtual int  PackBody();
  virtual int  UnpackBody();

#ifdef FRAGMENTED_PACK  
  /// Allocate memory specifying the body size
  /// (used when create a brank package to receive data) (for fragmented pack support)
  virtual void AllocatePack(int bodySize);
#endif //FRAGMENTED_PACK  

  /// A vector containing the numbers of voxels in i, j and k directions.
  int    dimensions[3];

  /// A vector containing the spacings of the voxels in i, j and k directions.
  float  spacing[3];

  /// A vector containing the numbers of voxels of the subvolume in i, j and k directions.
  int    subDimensions[3];

  /// A vector containing the offset (number of voxels) of the first voxel of
  /// the subvolume from the first voxel of the original image.
  int    subOffset[3];

  /// A matrix representing the origin and the orientation of the image.
  Matrix4x4 matrix;

  /// A variable for the Endian of the scalar values in the image.
  int    endian;

  /// A variable for the number of components.
  int    numComponents;

  /// A variable for the scalar type of the voxels.
  int    scalarType;

  /// A variable for the scalar type of the voxels.
  int    coordinate;

  /// A pointer to the serialized image header.
  unsigned char*  m_ImageHeader;

  /// A pointer to the serialized image data.
  unsigned char*  m_Image;

#ifdef  FRAGMENTED_PACK 
  /// A pointer to the serialized data (for backward compatibility with the conventional packing)
  unsigned char*  m_SinglePack;

  /// A variable for the memory size of this->m_SinglePack (for backward compatibility with the
  /// conventional packing)
  int             m_SinglePackSize; 
  /// A variable for the memory size of this->m_Image (for backward compatibility with the
  /// conventional packing)
  int             m_ImageSize;

  /// A flag for the fragmented image pack (allocated by this class).
  int             m_SelfAllocatedImage;

  /// A flag for the fragmented image pack (allocated by this class).
  int             m_SelfAllocatedImageHeader;

#endif 

  /// A table to look up the size of a given scalar type.
  int ScalarSizeTable[12];
};


} // namespace igtl

#endif // _igtlImageMessage2_h