This file is indexed.

/usr/include/opencv2/ml/ml.hpp is in libopencv-ml-dev 2.4.8+dfsg1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                        Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_ML_HPP__
#define __OPENCV_ML_HPP__

#include "opencv2/core/core.hpp"
#include <limits.h>

#ifdef __cplusplus

#include <map>
#include <string>
#include <iostream>

// Apple defines a check() macro somewhere in the debug headers
// that interferes with a method definiton in this header
#undef check

/****************************************************************************************\
*                               Main struct definitions                                  *
\****************************************************************************************/

/* log(2*PI) */
#define CV_LOG2PI (1.8378770664093454835606594728112)

/* columns of <trainData> matrix are training samples */
#define CV_COL_SAMPLE 0

/* rows of <trainData> matrix are training samples */
#define CV_ROW_SAMPLE 1

#define CV_IS_ROW_SAMPLE(flags) ((flags) & CV_ROW_SAMPLE)

struct CvVectors
{
    int type;
    int dims, count;
    CvVectors* next;
    union
    {
        uchar** ptr;
        float** fl;
        double** db;
    } data;
};

#if 0
/* A structure, representing the lattice range of statmodel parameters.
   It is used for optimizing statmodel parameters by cross-validation method.
   The lattice is logarithmic, so <step> must be greater then 1. */
typedef struct CvParamLattice
{
    double min_val;
    double max_val;
    double step;
}
CvParamLattice;

CV_INLINE CvParamLattice cvParamLattice( double min_val, double max_val,
                                         double log_step )
{
    CvParamLattice pl;
    pl.min_val = MIN( min_val, max_val );
    pl.max_val = MAX( min_val, max_val );
    pl.step = MAX( log_step, 1. );
    return pl;
}

CV_INLINE CvParamLattice cvDefaultParamLattice( void )
{
    CvParamLattice pl = {0,0,0};
    return pl;
}
#endif

/* Variable type */
#define CV_VAR_NUMERICAL    0
#define CV_VAR_ORDERED      0
#define CV_VAR_CATEGORICAL  1

#define CV_TYPE_NAME_ML_SVM         "opencv-ml-svm"
#define CV_TYPE_NAME_ML_KNN         "opencv-ml-knn"
#define CV_TYPE_NAME_ML_NBAYES      "opencv-ml-bayesian"
#define CV_TYPE_NAME_ML_EM          "opencv-ml-em"
#define CV_TYPE_NAME_ML_BOOSTING    "opencv-ml-boost-tree"
#define CV_TYPE_NAME_ML_TREE        "opencv-ml-tree"
#define CV_TYPE_NAME_ML_ANN_MLP     "opencv-ml-ann-mlp"
#define CV_TYPE_NAME_ML_CNN         "opencv-ml-cnn"
#define CV_TYPE_NAME_ML_RTREES      "opencv-ml-random-trees"
#define CV_TYPE_NAME_ML_ERTREES     "opencv-ml-extremely-randomized-trees"
#define CV_TYPE_NAME_ML_GBT         "opencv-ml-gradient-boosting-trees"

#define CV_TRAIN_ERROR  0
#define CV_TEST_ERROR   1

class CV_EXPORTS_W CvStatModel
{
public:
    CvStatModel();
    virtual ~CvStatModel();

    virtual void clear();

    CV_WRAP virtual void save( const char* filename, const char* name=0 ) const;
    CV_WRAP virtual void load( const char* filename, const char* name=0 );

    virtual void write( CvFileStorage* storage, const char* name ) const;
    virtual void read( CvFileStorage* storage, CvFileNode* node );

protected:
    const char* default_model_name;
};

/****************************************************************************************\
*                                 Normal Bayes Classifier                                *
\****************************************************************************************/

/* The structure, representing the grid range of statmodel parameters.
   It is used for optimizing statmodel accuracy by varying model parameters,
   the accuracy estimate being computed by cross-validation.
   The grid is logarithmic, so <step> must be greater then 1. */

class CvMLData;

struct CV_EXPORTS_W_MAP CvParamGrid
{
    // SVM params type
    enum { SVM_C=0, SVM_GAMMA=1, SVM_P=2, SVM_NU=3, SVM_COEF=4, SVM_DEGREE=5 };

    CvParamGrid()
    {
        min_val = max_val = step = 0;
    }

    CvParamGrid( double min_val, double max_val, double log_step );
    //CvParamGrid( int param_id );
    bool check() const;

    CV_PROP_RW double min_val;
    CV_PROP_RW double max_val;
    CV_PROP_RW double step;
};

inline CvParamGrid::CvParamGrid( double _min_val, double _max_val, double _log_step )
{
    min_val = _min_val;
    max_val = _max_val;
    step = _log_step;
}

class CV_EXPORTS_W CvNormalBayesClassifier : public CvStatModel
{
public:
    CV_WRAP CvNormalBayesClassifier();
    virtual ~CvNormalBayesClassifier();

    CvNormalBayesClassifier( const CvMat* trainData, const CvMat* responses,
        const CvMat* varIdx=0, const CvMat* sampleIdx=0 );

    virtual bool train( const CvMat* trainData, const CvMat* responses,
        const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false );

    virtual float predict( const CvMat* samples, CV_OUT CvMat* results=0 ) const;
    CV_WRAP virtual void clear();

    CV_WRAP CvNormalBayesClassifier( const cv::Mat& trainData, const cv::Mat& responses,
                            const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() );
    CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
                       const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
                       bool update=false );
    CV_WRAP virtual float predict( const cv::Mat& samples, CV_OUT cv::Mat* results=0 ) const;

    virtual void write( CvFileStorage* storage, const char* name ) const;
    virtual void read( CvFileStorage* storage, CvFileNode* node );

protected:
    int     var_count, var_all;
    CvMat*  var_idx;
    CvMat*  cls_labels;
    CvMat** count;
    CvMat** sum;
    CvMat** productsum;
    CvMat** avg;
    CvMat** inv_eigen_values;
    CvMat** cov_rotate_mats;
    CvMat*  c;
};


/****************************************************************************************\
*                          K-Nearest Neighbour Classifier                                *
\****************************************************************************************/

// k Nearest Neighbors
class CV_EXPORTS_W CvKNearest : public CvStatModel
{
public:

    CV_WRAP CvKNearest();
    virtual ~CvKNearest();

    CvKNearest( const CvMat* trainData, const CvMat* responses,
                const CvMat* sampleIdx=0, bool isRegression=false, int max_k=32 );

    virtual bool train( const CvMat* trainData, const CvMat* responses,
                        const CvMat* sampleIdx=0, bool is_regression=false,
                        int maxK=32, bool updateBase=false );

    virtual float find_nearest( const CvMat* samples, int k, CV_OUT CvMat* results=0,
        const float** neighbors=0, CV_OUT CvMat* neighborResponses=0, CV_OUT CvMat* dist=0 ) const;

    CV_WRAP CvKNearest( const cv::Mat& trainData, const cv::Mat& responses,
               const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, int max_k=32 );

    CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
                       const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false,
                       int maxK=32, bool updateBase=false );

    virtual float find_nearest( const cv::Mat& samples, int k, cv::Mat* results=0,
                                const float** neighbors=0, cv::Mat* neighborResponses=0,
                                cv::Mat* dist=0 ) const;
    CV_WRAP virtual float find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results,
                                        CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const;

    virtual void clear();
    int get_max_k() const;
    int get_var_count() const;
    int get_sample_count() const;
    bool is_regression() const;

    virtual float write_results( int k, int k1, int start, int end,
        const float* neighbor_responses, const float* dist, CvMat* _results,
        CvMat* _neighbor_responses, CvMat* _dist, Cv32suf* sort_buf ) const;

    virtual void find_neighbors_direct( const CvMat* _samples, int k, int start, int end,
        float* neighbor_responses, const float** neighbors, float* dist ) const;

protected:

    int max_k, var_count;
    int total;
    bool regression;
    CvVectors* samples;
};

/****************************************************************************************\
*                                   Support Vector Machines                              *
\****************************************************************************************/

// SVM training parameters
struct CV_EXPORTS_W_MAP CvSVMParams
{
    CvSVMParams();
    CvSVMParams( int svm_type, int kernel_type,
                 double degree, double gamma, double coef0,
                 double Cvalue, double nu, double p,
                 CvMat* class_weights, CvTermCriteria term_crit );

    CV_PROP_RW int         svm_type;
    CV_PROP_RW int         kernel_type;
    CV_PROP_RW double      degree; // for poly
    CV_PROP_RW double      gamma;  // for poly/rbf/sigmoid
    CV_PROP_RW double      coef0;  // for poly/sigmoid

    CV_PROP_RW double      C;  // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
    CV_PROP_RW double      nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
    CV_PROP_RW double      p; // for CV_SVM_EPS_SVR
    CvMat*      class_weights; // for CV_SVM_C_SVC
    CV_PROP_RW CvTermCriteria term_crit; // termination criteria
};


struct CV_EXPORTS CvSVMKernel
{
    typedef void (CvSVMKernel::*Calc)( int vec_count, int vec_size, const float** vecs,
                                       const float* another, float* results );
    CvSVMKernel();
    CvSVMKernel( const CvSVMParams* params, Calc _calc_func );
    virtual bool create( const CvSVMParams* params, Calc _calc_func );
    virtual ~CvSVMKernel();

    virtual void clear();
    virtual void calc( int vcount, int n, const float** vecs, const float* another, float* results );

    const CvSVMParams* params;
    Calc calc_func;

    virtual void calc_non_rbf_base( int vec_count, int vec_size, const float** vecs,
                                    const float* another, float* results,
                                    double alpha, double beta );

    virtual void calc_linear( int vec_count, int vec_size, const float** vecs,
                              const float* another, float* results );
    virtual void calc_rbf( int vec_count, int vec_size, const float** vecs,
                           const float* another, float* results );
    virtual void calc_poly( int vec_count, int vec_size, const float** vecs,
                            const float* another, float* results );
    virtual void calc_sigmoid( int vec_count, int vec_size, const float** vecs,
                               const float* another, float* results );
};


struct CvSVMKernelRow
{
    CvSVMKernelRow* prev;
    CvSVMKernelRow* next;
    float* data;
};


struct CvSVMSolutionInfo
{
    double obj;
    double rho;
    double upper_bound_p;
    double upper_bound_n;
    double r;   // for Solver_NU
};

class CV_EXPORTS CvSVMSolver
{
public:
    typedef bool (CvSVMSolver::*SelectWorkingSet)( int& i, int& j );
    typedef float* (CvSVMSolver::*GetRow)( int i, float* row, float* dst, bool existed );
    typedef void (CvSVMSolver::*CalcRho)( double& rho, double& r );

    CvSVMSolver();

    CvSVMSolver( int count, int var_count, const float** samples, schar* y,
                 int alpha_count, double* alpha, double Cp, double Cn,
                 CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
                 SelectWorkingSet select_working_set, CalcRho calc_rho );
    virtual bool create( int count, int var_count, const float** samples, schar* y,
                 int alpha_count, double* alpha, double Cp, double Cn,
                 CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
                 SelectWorkingSet select_working_set, CalcRho calc_rho );
    virtual ~CvSVMSolver();

    virtual void clear();
    virtual bool solve_generic( CvSVMSolutionInfo& si );

    virtual bool solve_c_svc( int count, int var_count, const float** samples, schar* y,
                              double Cp, double Cn, CvMemStorage* storage,
                              CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si );
    virtual bool solve_nu_svc( int count, int var_count, const float** samples, schar* y,
                               CvMemStorage* storage, CvSVMKernel* kernel,
                               double* alpha, CvSVMSolutionInfo& si );
    virtual bool solve_one_class( int count, int var_count, const float** samples,
                                  CvMemStorage* storage, CvSVMKernel* kernel,
                                  double* alpha, CvSVMSolutionInfo& si );

    virtual bool solve_eps_svr( int count, int var_count, const float** samples, const float* y,
                                CvMemStorage* storage, CvSVMKernel* kernel,
                                double* alpha, CvSVMSolutionInfo& si );

    virtual bool solve_nu_svr( int count, int var_count, const float** samples, const float* y,
                               CvMemStorage* storage, CvSVMKernel* kernel,
                               double* alpha, CvSVMSolutionInfo& si );

    virtual float* get_row_base( int i, bool* _existed );
    virtual float* get_row( int i, float* dst );

    int sample_count;
    int var_count;
    int cache_size;
    int cache_line_size;
    const float** samples;
    const CvSVMParams* params;
    CvMemStorage* storage;
    CvSVMKernelRow lru_list;
    CvSVMKernelRow* rows;

    int alpha_count;

    double* G;
    double* alpha;

    // -1 - lower bound, 0 - free, 1 - upper bound
    schar* alpha_status;

    schar* y;
    double* b;
    float* buf[2];
    double eps;
    int max_iter;
    double C[2];  // C[0] == Cn, C[1] == Cp
    CvSVMKernel* kernel;

    SelectWorkingSet select_working_set_func;
    CalcRho calc_rho_func;
    GetRow get_row_func;

    virtual bool select_working_set( int& i, int& j );
    virtual bool select_working_set_nu_svm( int& i, int& j );
    virtual void calc_rho( double& rho, double& r );
    virtual void calc_rho_nu_svm( double& rho, double& r );

    virtual float* get_row_svc( int i, float* row, float* dst, bool existed );
    virtual float* get_row_one_class( int i, float* row, float* dst, bool existed );
    virtual float* get_row_svr( int i, float* row, float* dst, bool existed );
};


struct CvSVMDecisionFunc
{
    double rho;
    int sv_count;
    double* alpha;
    int* sv_index;
};


// SVM model
class CV_EXPORTS_W CvSVM : public CvStatModel
{
public:
    // SVM type
    enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };

    // SVM kernel type
    enum { LINEAR=0, POLY=1, RBF=2, SIGMOID=3 };

    // SVM params type
    enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 };

    CV_WRAP CvSVM();
    virtual ~CvSVM();

    CvSVM( const CvMat* trainData, const CvMat* responses,
           const CvMat* varIdx=0, const CvMat* sampleIdx=0,
           CvSVMParams params=CvSVMParams() );

    virtual bool train( const CvMat* trainData, const CvMat* responses,
                        const CvMat* varIdx=0, const CvMat* sampleIdx=0,
                        CvSVMParams params=CvSVMParams() );

    virtual bool train_auto( const CvMat* trainData, const CvMat* responses,
        const CvMat* varIdx, const CvMat* sampleIdx, CvSVMParams params,
        int kfold = 10,
        CvParamGrid Cgrid      = get_default_grid(CvSVM::C),
        CvParamGrid gammaGrid  = get_default_grid(CvSVM::GAMMA),
        CvParamGrid pGrid      = get_default_grid(CvSVM::P),
        CvParamGrid nuGrid     = get_default_grid(CvSVM::NU),
        CvParamGrid coeffGrid  = get_default_grid(CvSVM::COEF),
        CvParamGrid degreeGrid = get_default_grid(CvSVM::DEGREE),
        bool balanced=false );

    virtual float predict( const CvMat* sample, bool returnDFVal=false ) const;
    virtual float predict( const CvMat* samples, CV_OUT CvMat* results ) const;

    CV_WRAP CvSVM( const cv::Mat& trainData, const cv::Mat& responses,
          const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
          CvSVMParams params=CvSVMParams() );

    CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
                       const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
                       CvSVMParams params=CvSVMParams() );

    CV_WRAP virtual bool train_auto( const cv::Mat& trainData, const cv::Mat& responses,
                            const cv::Mat& varIdx, const cv::Mat& sampleIdx, CvSVMParams params,
                            int k_fold = 10,
                            CvParamGrid Cgrid      = CvSVM::get_default_grid(CvSVM::C),
                            CvParamGrid gammaGrid  = CvSVM::get_default_grid(CvSVM::GAMMA),
                            CvParamGrid pGrid      = CvSVM::get_default_grid(CvSVM::P),
                            CvParamGrid nuGrid     = CvSVM::get_default_grid(CvSVM::NU),
                            CvParamGrid coeffGrid  = CvSVM::get_default_grid(CvSVM::COEF),
                            CvParamGrid degreeGrid = CvSVM::get_default_grid(CvSVM::DEGREE),
                            bool balanced=false);
    CV_WRAP virtual float predict( const cv::Mat& sample, bool returnDFVal=false ) const;
    CV_WRAP_AS(predict_all) void predict( cv::InputArray samples, cv::OutputArray results ) const;

    CV_WRAP virtual int get_support_vector_count() const;
    virtual const float* get_support_vector(int i) const;
    virtual CvSVMParams get_params() const { return params; };
    CV_WRAP virtual void clear();

    static CvParamGrid get_default_grid( int param_id );

    virtual void write( CvFileStorage* storage, const char* name ) const;
    virtual void read( CvFileStorage* storage, CvFileNode* node );
    CV_WRAP int get_var_count() const { return var_idx ? var_idx->cols : var_all; }

protected:

    virtual bool set_params( const CvSVMParams& params );
    virtual bool train1( int sample_count, int var_count, const float** samples,
                    const void* responses, double Cp, double Cn,
                    CvMemStorage* _storage, double* alpha, double& rho );
    virtual bool do_train( int svm_type, int sample_count, int var_count, const float** samples,
                    const CvMat* responses, CvMemStorage* _storage, double* alpha );
    virtual void create_kernel();
    virtual void create_solver();

    virtual float predict( const float* row_sample, int row_len, bool returnDFVal=false ) const;

    virtual void write_params( CvFileStorage* fs ) const;
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );

    void optimize_linear_svm();

    CvSVMParams params;
    CvMat* class_labels;
    int var_all;
    float** sv;
    int sv_total;
    CvMat* var_idx;
    CvMat* class_weights;
    CvSVMDecisionFunc* decision_func;
    CvMemStorage* storage;

    CvSVMSolver* solver;
    CvSVMKernel* kernel;

private:
    CvSVM(const CvSVM&);
    CvSVM& operator = (const CvSVM&);
};

/****************************************************************************************\
*                              Expectation - Maximization                                *
\****************************************************************************************/
namespace cv
{
class CV_EXPORTS_W EM : public Algorithm
{
public:
    // Type of covariation matrices
    enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL};

    // Default parameters
    enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};

    // The initial step
    enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};

    CV_WRAP EM(int nclusters=EM::DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL,
       const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
                                                 EM::DEFAULT_MAX_ITERS, FLT_EPSILON));

    virtual ~EM();
    CV_WRAP virtual void clear();

    CV_WRAP virtual bool train(InputArray samples,
                       OutputArray logLikelihoods=noArray(),
                       OutputArray labels=noArray(),
                       OutputArray probs=noArray());

    CV_WRAP virtual bool trainE(InputArray samples,
                        InputArray means0,
                        InputArray covs0=noArray(),
                        InputArray weights0=noArray(),
                        OutputArray logLikelihoods=noArray(),
                        OutputArray labels=noArray(),
                        OutputArray probs=noArray());

    CV_WRAP virtual bool trainM(InputArray samples,
                        InputArray probs0,
                        OutputArray logLikelihoods=noArray(),
                        OutputArray labels=noArray(),
                        OutputArray probs=noArray());

    CV_WRAP Vec2d predict(InputArray sample,
                OutputArray probs=noArray()) const;

    CV_WRAP bool isTrained() const;

    AlgorithmInfo* info() const;
    virtual void read(const FileNode& fn);

protected:

    virtual void setTrainData(int startStep, const Mat& samples,
                              const Mat* probs0,
                              const Mat* means0,
                              const vector<Mat>* covs0,
                              const Mat* weights0);

    bool doTrain(int startStep,
                 OutputArray logLikelihoods,
                 OutputArray labels,
                 OutputArray probs);
    virtual void eStep();
    virtual void mStep();

    void clusterTrainSamples();
    void decomposeCovs();
    void computeLogWeightDivDet();

    Vec2d computeProbabilities(const Mat& sample, Mat* probs) const;

    // all inner matrices have type CV_64FC1
    CV_PROP_RW int nclusters;
    CV_PROP_RW int covMatType;
    CV_PROP_RW int maxIters;
    CV_PROP_RW double epsilon;

    Mat trainSamples;
    Mat trainProbs;
    Mat trainLogLikelihoods;
    Mat trainLabels;

    CV_PROP Mat weights;
    CV_PROP Mat means;
    CV_PROP vector<Mat> covs;

    vector<Mat> covsEigenValues;
    vector<Mat> covsRotateMats;
    vector<Mat> invCovsEigenValues;
    Mat logWeightDivDet;
};
} // namespace cv

/****************************************************************************************\
*                                      Decision Tree                                     *
\****************************************************************************************/\
struct CvPair16u32s
{
    unsigned short* u;
    int* i;
};


#define CV_DTREE_CAT_DIR(idx,subset) \
    (2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1)

struct CvDTreeSplit
{
    int var_idx;
    int condensed_idx;
    int inversed;
    float quality;
    CvDTreeSplit* next;
    union
    {
        int subset[2];
        struct
        {
            float c;
            int split_point;
        }
        ord;
    };
};

struct CvDTreeNode
{
    int class_idx;
    int Tn;
    double value;

    CvDTreeNode* parent;
    CvDTreeNode* left;
    CvDTreeNode* right;

    CvDTreeSplit* split;

    int sample_count;
    int depth;
    int* num_valid;
    int offset;
    int buf_idx;
    double maxlr;

    // global pruning data
    int complexity;
    double alpha;
    double node_risk, tree_risk, tree_error;

    // cross-validation pruning data
    int* cv_Tn;
    double* cv_node_risk;
    double* cv_node_error;

    int get_num_valid(int vi) { return num_valid ? num_valid[vi] : sample_count; }
    void set_num_valid(int vi, int n) { if( num_valid ) num_valid[vi] = n; }
};


struct CV_EXPORTS_W_MAP CvDTreeParams
{
    CV_PROP_RW int   max_categories;
    CV_PROP_RW int   max_depth;
    CV_PROP_RW int   min_sample_count;
    CV_PROP_RW int   cv_folds;
    CV_PROP_RW bool  use_surrogates;
    CV_PROP_RW bool  use_1se_rule;
    CV_PROP_RW bool  truncate_pruned_tree;
    CV_PROP_RW float regression_accuracy;
    const float* priors;

    CvDTreeParams();
    CvDTreeParams( int max_depth, int min_sample_count,
                   float regression_accuracy, bool use_surrogates,
                   int max_categories, int cv_folds,
                   bool use_1se_rule, bool truncate_pruned_tree,
                   const float* priors );
};


struct CV_EXPORTS CvDTreeTrainData
{
    CvDTreeTrainData();
    CvDTreeTrainData( const CvMat* trainData, int tflag,
                      const CvMat* responses, const CvMat* varIdx=0,
                      const CvMat* sampleIdx=0, const CvMat* varType=0,
                      const CvMat* missingDataMask=0,
                      const CvDTreeParams& params=CvDTreeParams(),
                      bool _shared=false, bool _add_labels=false );
    virtual ~CvDTreeTrainData();

    virtual void set_data( const CvMat* trainData, int tflag,
                          const CvMat* responses, const CvMat* varIdx=0,
                          const CvMat* sampleIdx=0, const CvMat* varType=0,
                          const CvMat* missingDataMask=0,
                          const CvDTreeParams& params=CvDTreeParams(),
                          bool _shared=false, bool _add_labels=false,
                          bool _update_data=false );
    virtual void do_responses_copy();

    virtual void get_vectors( const CvMat* _subsample_idx,
         float* values, uchar* missing, float* responses, bool get_class_idx=false );

    virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );

    virtual void write_params( CvFileStorage* fs ) const;
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );

    // release all the data
    virtual void clear();

    int get_num_classes() const;
    int get_var_type(int vi) const;
    int get_work_var_count() const {return work_var_count;}

    virtual const float* get_ord_responses( CvDTreeNode* n, float* values_buf, int* sample_indices_buf );
    virtual const int* get_class_labels( CvDTreeNode* n, int* labels_buf );
    virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf );
    virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf );
    virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf );
    virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* sorted_indices_buf,
                                   const float** ord_values, const int** sorted_indices, int* sample_indices_buf );
    virtual int get_child_buf_idx( CvDTreeNode* n );

    ////////////////////////////////////

    virtual bool set_params( const CvDTreeParams& params );
    virtual CvDTreeNode* new_node( CvDTreeNode* parent, int count,
                                   int storage_idx, int offset );

    virtual CvDTreeSplit* new_split_ord( int vi, float cmp_val,
                int split_point, int inversed, float quality );
    virtual CvDTreeSplit* new_split_cat( int vi, float quality );
    virtual void free_node_data( CvDTreeNode* node );
    virtual void free_train_data();
    virtual void free_node( CvDTreeNode* node );

    int sample_count, var_all, var_count, max_c_count;
    int ord_var_count, cat_var_count, work_var_count;
    bool have_labels, have_priors;
    bool is_classifier;
    int tflag;

    const CvMat* train_data;
    const CvMat* responses;
    CvMat* responses_copy; // used in Boosting

    int buf_count, buf_size; // buf_size is obsolete, please do not use it, use expression ((int64)buf->rows * (int64)buf->cols / buf_count) instead
    bool shared;
    int is_buf_16u;

    CvMat* cat_count;
    CvMat* cat_ofs;
    CvMat* cat_map;

    CvMat* counts;
    CvMat* buf;
    inline size_t get_length_subbuf() const
    {
        size_t res = (size_t)(work_var_count + 1) * (size_t)sample_count;
        return res;
    }

    CvMat* direction;
    CvMat* split_buf;

    CvMat* var_idx;
    CvMat* var_type; // i-th element =
                     //   k<0  - ordered
                     //   k>=0 - categorical, see k-th element of cat_* arrays
    CvMat* priors;
    CvMat* priors_mult;

    CvDTreeParams params;

    CvMemStorage* tree_storage;
    CvMemStorage* temp_storage;

    CvDTreeNode* data_root;

    CvSet* node_heap;
    CvSet* split_heap;
    CvSet* cv_heap;
    CvSet* nv_heap;

    cv::RNG* rng;
};

class CvDTree;
class CvForestTree;

namespace cv
{
    struct DTreeBestSplitFinder;
    struct ForestTreeBestSplitFinder;
}

class CV_EXPORTS_W CvDTree : public CvStatModel
{
public:
    CV_WRAP CvDTree();
    virtual ~CvDTree();

    virtual bool train( const CvMat* trainData, int tflag,
                        const CvMat* responses, const CvMat* varIdx=0,
                        const CvMat* sampleIdx=0, const CvMat* varType=0,
                        const CvMat* missingDataMask=0,
                        CvDTreeParams params=CvDTreeParams() );

    virtual bool train( CvMLData* trainData, CvDTreeParams params=CvDTreeParams() );

    // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
    virtual float calc_error( CvMLData* trainData, int type, std::vector<float> *resp = 0 );

    virtual bool train( CvDTreeTrainData* trainData, const CvMat* subsampleIdx );

    virtual CvDTreeNode* predict( const CvMat* sample, const CvMat* missingDataMask=0,
                                  bool preprocessedInput=false ) const;

    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
                       const cv::Mat& missingDataMask=cv::Mat(),
                       CvDTreeParams params=CvDTreeParams() );

    CV_WRAP virtual CvDTreeNode* predict( const cv::Mat& sample, const cv::Mat& missingDataMask=cv::Mat(),
                                  bool preprocessedInput=false ) const;
    CV_WRAP virtual cv::Mat getVarImportance();

    virtual const CvMat* get_var_importance();
    CV_WRAP virtual void clear();

    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void write( CvFileStorage* fs, const char* name ) const;

    // special read & write methods for trees in the tree ensembles
    virtual void read( CvFileStorage* fs, CvFileNode* node,
                       CvDTreeTrainData* data );
    virtual void write( CvFileStorage* fs ) const;

    const CvDTreeNode* get_root() const;
    int get_pruned_tree_idx() const;
    CvDTreeTrainData* get_data();

protected:
    friend struct cv::DTreeBestSplitFinder;

    virtual bool do_train( const CvMat* _subsample_idx );

    virtual void try_split_node( CvDTreeNode* n );
    virtual void split_node_data( CvDTreeNode* n );
    virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
    virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
                            float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
                            float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
                            float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
                            float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
    virtual double calc_node_dir( CvDTreeNode* node );
    virtual void complete_node_dir( CvDTreeNode* node );
    virtual void cluster_categories( const int* vectors, int vector_count,
        int var_count, int* sums, int k, int* cluster_labels );

    virtual void calc_node_value( CvDTreeNode* node );

    virtual void prune_cv();
    virtual double update_tree_rnc( int T, int fold );
    virtual int cut_tree( int T, int fold, double min_alpha );
    virtual void free_prune_data(bool cut_tree);
    virtual void free_tree();

    virtual void write_node( CvFileStorage* fs, CvDTreeNode* node ) const;
    virtual void write_split( CvFileStorage* fs, CvDTreeSplit* split ) const;
    virtual CvDTreeNode* read_node( CvFileStorage* fs, CvFileNode* node, CvDTreeNode* parent );
    virtual CvDTreeSplit* read_split( CvFileStorage* fs, CvFileNode* node );
    virtual void write_tree_nodes( CvFileStorage* fs ) const;
    virtual void read_tree_nodes( CvFileStorage* fs, CvFileNode* node );

    CvDTreeNode* root;
    CvMat* var_importance;
    CvDTreeTrainData* data;

public:
    int pruned_tree_idx;
};


/****************************************************************************************\
*                                   Random Trees Classifier                              *
\****************************************************************************************/

class CvRTrees;

class CV_EXPORTS CvForestTree: public CvDTree
{
public:
    CvForestTree();
    virtual ~CvForestTree();

    virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx, CvRTrees* forest );

    virtual int get_var_count() const {return data ? data->var_count : 0;}
    virtual void read( CvFileStorage* fs, CvFileNode* node, CvRTrees* forest, CvDTreeTrainData* _data );

    /* dummy methods to avoid warnings: BEGIN */
    virtual bool train( const CvMat* trainData, int tflag,
                        const CvMat* responses, const CvMat* varIdx=0,
                        const CvMat* sampleIdx=0, const CvMat* varType=0,
                        const CvMat* missingDataMask=0,
                        CvDTreeParams params=CvDTreeParams() );

    virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx );
    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void read( CvFileStorage* fs, CvFileNode* node,
                       CvDTreeTrainData* data );
    /* dummy methods to avoid warnings: END */

protected:
    friend struct cv::ForestTreeBestSplitFinder;

    virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
    CvRTrees* forest;
};


struct CV_EXPORTS_W_MAP CvRTParams : public CvDTreeParams
{
    //Parameters for the forest
    CV_PROP_RW bool calc_var_importance; // true <=> RF processes variable importance
    CV_PROP_RW int nactive_vars;
    CV_PROP_RW CvTermCriteria term_crit;

    CvRTParams();
    CvRTParams( int max_depth, int min_sample_count,
                float regression_accuracy, bool use_surrogates,
                int max_categories, const float* priors, bool calc_var_importance,
                int nactive_vars, int max_num_of_trees_in_the_forest,
                float forest_accuracy, int termcrit_type );
};


class CV_EXPORTS_W CvRTrees : public CvStatModel
{
public:
    CV_WRAP CvRTrees();
    virtual ~CvRTrees();
    virtual bool train( const CvMat* trainData, int tflag,
                        const CvMat* responses, const CvMat* varIdx=0,
                        const CvMat* sampleIdx=0, const CvMat* varType=0,
                        const CvMat* missingDataMask=0,
                        CvRTParams params=CvRTParams() );

    virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
    virtual float predict( const CvMat* sample, const CvMat* missing = 0 ) const;
    virtual float predict_prob( const CvMat* sample, const CvMat* missing = 0 ) const;

    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
                       const cv::Mat& missingDataMask=cv::Mat(),
                       CvRTParams params=CvRTParams() );
    CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
    CV_WRAP virtual float predict_prob( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
    CV_WRAP virtual cv::Mat getVarImportance();

    CV_WRAP virtual void clear();

    virtual const CvMat* get_var_importance();
    virtual float get_proximity( const CvMat* sample1, const CvMat* sample2,
        const CvMat* missing1 = 0, const CvMat* missing2 = 0 ) const;

    virtual float calc_error( CvMLData* data, int type , std::vector<float>* resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}

    virtual float get_train_error();

    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void write( CvFileStorage* fs, const char* name ) const;

    CvMat* get_active_var_mask();
    CvRNG* get_rng();

    int get_tree_count() const;
    CvForestTree* get_tree(int i) const;

protected:
    virtual std::string getName() const;

    virtual bool grow_forest( const CvTermCriteria term_crit );

    // array of the trees of the forest
    CvForestTree** trees;
    CvDTreeTrainData* data;
    int ntrees;
    int nclasses;
    double oob_error;
    CvMat* var_importance;
    int nsamples;

    cv::RNG* rng;
    CvMat* active_var_mask;
};

/****************************************************************************************\
*                           Extremely randomized trees Classifier                        *
\****************************************************************************************/
struct CV_EXPORTS CvERTreeTrainData : public CvDTreeTrainData
{
    virtual void set_data( const CvMat* trainData, int tflag,
                          const CvMat* responses, const CvMat* varIdx=0,
                          const CvMat* sampleIdx=0, const CvMat* varType=0,
                          const CvMat* missingDataMask=0,
                          const CvDTreeParams& params=CvDTreeParams(),
                          bool _shared=false, bool _add_labels=false,
                          bool _update_data=false );
    virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* missing_buf,
                                   const float** ord_values, const int** missing, int* sample_buf = 0 );
    virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf );
    virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf );
    virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf );
    virtual void get_vectors( const CvMat* _subsample_idx, float* values, uchar* missing,
                              float* responses, bool get_class_idx=false );
    virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );
    const CvMat* missing_mask;
};

class CV_EXPORTS CvForestERTree : public CvForestTree
{
protected:
    virtual double calc_node_dir( CvDTreeNode* node );
    virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual void split_node_data( CvDTreeNode* n );
};

class CV_EXPORTS_W CvERTrees : public CvRTrees
{
public:
    CV_WRAP CvERTrees();
    virtual ~CvERTrees();
    virtual bool train( const CvMat* trainData, int tflag,
                        const CvMat* responses, const CvMat* varIdx=0,
                        const CvMat* sampleIdx=0, const CvMat* varType=0,
                        const CvMat* missingDataMask=0,
                        CvRTParams params=CvRTParams());
    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
                       const cv::Mat& missingDataMask=cv::Mat(),
                       CvRTParams params=CvRTParams());
    virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
protected:
    virtual std::string getName() const;
    virtual bool grow_forest( const CvTermCriteria term_crit );
};


/****************************************************************************************\
*                                   Boosted tree classifier                              *
\****************************************************************************************/

struct CV_EXPORTS_W_MAP CvBoostParams : public CvDTreeParams
{
    CV_PROP_RW int boost_type;
    CV_PROP_RW int weak_count;
    CV_PROP_RW int split_criteria;
    CV_PROP_RW double weight_trim_rate;

    CvBoostParams();
    CvBoostParams( int boost_type, int weak_count, double weight_trim_rate,
                   int max_depth, bool use_surrogates, const float* priors );
};


class CvBoost;

class CV_EXPORTS CvBoostTree: public CvDTree
{
public:
    CvBoostTree();
    virtual ~CvBoostTree();

    virtual bool train( CvDTreeTrainData* trainData,
                        const CvMat* subsample_idx, CvBoost* ensemble );

    virtual void scale( double s );
    virtual void read( CvFileStorage* fs, CvFileNode* node,
                       CvBoost* ensemble, CvDTreeTrainData* _data );
    virtual void clear();

    /* dummy methods to avoid warnings: BEGIN */
    virtual bool train( const CvMat* trainData, int tflag,
                        const CvMat* responses, const CvMat* varIdx=0,
                        const CvMat* sampleIdx=0, const CvMat* varType=0,
                        const CvMat* missingDataMask=0,
                        CvDTreeParams params=CvDTreeParams() );
    virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx );

    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void read( CvFileStorage* fs, CvFileNode* node,
                       CvDTreeTrainData* data );
    /* dummy methods to avoid warnings: END */

protected:

    virtual void try_split_node( CvDTreeNode* n );
    virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
        float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
    virtual void calc_node_value( CvDTreeNode* n );
    virtual double calc_node_dir( CvDTreeNode* n );

    CvBoost* ensemble;
};


class CV_EXPORTS_W CvBoost : public CvStatModel
{
public:
    // Boosting type
    enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 };

    // Splitting criteria
    enum { DEFAULT=0, GINI=1, MISCLASS=3, SQERR=4 };

    CV_WRAP CvBoost();
    virtual ~CvBoost();

    CvBoost( const CvMat* trainData, int tflag,
             const CvMat* responses, const CvMat* varIdx=0,
             const CvMat* sampleIdx=0, const CvMat* varType=0,
             const CvMat* missingDataMask=0,
             CvBoostParams params=CvBoostParams() );

    virtual bool train( const CvMat* trainData, int tflag,
             const CvMat* responses, const CvMat* varIdx=0,
             const CvMat* sampleIdx=0, const CvMat* varType=0,
             const CvMat* missingDataMask=0,
             CvBoostParams params=CvBoostParams(),
             bool update=false );

    virtual bool train( CvMLData* data,
             CvBoostParams params=CvBoostParams(),
             bool update=false );

    virtual float predict( const CvMat* sample, const CvMat* missing=0,
                           CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ,
                           bool raw_mode=false, bool return_sum=false ) const;

    CV_WRAP CvBoost( const cv::Mat& trainData, int tflag,
            const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
            const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
            const cv::Mat& missingDataMask=cv::Mat(),
            CvBoostParams params=CvBoostParams() );

    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
                       const cv::Mat& missingDataMask=cv::Mat(),
                       CvBoostParams params=CvBoostParams(),
                       bool update=false );

    CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
                                   const cv::Range& slice=cv::Range::all(), bool rawMode=false,
                                   bool returnSum=false ) const;

    virtual float calc_error( CvMLData* _data, int type , std::vector<float> *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}

    CV_WRAP virtual void prune( CvSlice slice );

    CV_WRAP virtual void clear();

    virtual void write( CvFileStorage* storage, const char* name ) const;
    virtual void read( CvFileStorage* storage, CvFileNode* node );
    virtual const CvMat* get_active_vars(bool absolute_idx=true);

    CvSeq* get_weak_predictors();

    CvMat* get_weights();
    CvMat* get_subtree_weights();
    CvMat* get_weak_response();
    const CvBoostParams& get_params() const;
    const CvDTreeTrainData* get_data() const;

protected:

    void update_weights_impl( CvBoostTree* tree, double initial_weights[2] );

    virtual bool set_params( const CvBoostParams& params );
    virtual void update_weights( CvBoostTree* tree );
    virtual void trim_weights();
    virtual void write_params( CvFileStorage* fs ) const;
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );

    CvDTreeTrainData* data;
    CvBoostParams params;
    CvSeq* weak;

    CvMat* active_vars;
    CvMat* active_vars_abs;
    bool have_active_cat_vars;

    CvMat* orig_response;
    CvMat* sum_response;
    CvMat* weak_eval;
    CvMat* subsample_mask;
    CvMat* weights;
    CvMat* subtree_weights;
    bool have_subsample;
};


/****************************************************************************************\
*                                   Gradient Boosted Trees                               *
\****************************************************************************************/

// DataType: STRUCT CvGBTreesParams
// Parameters of GBT (Gradient Boosted trees model), including single
// tree settings and ensemble parameters.
//
// weak_count          - count of trees in the ensemble
// loss_function_type  - loss function used for ensemble training
// subsample_portion   - portion of whole training set used for
//                       every single tree training.
//                       subsample_portion value is in (0.0, 1.0].
//                       subsample_portion == 1.0 when whole dataset is
//                       used on each step. Count of sample used on each
//                       step is computed as
//                       int(total_samples_count * subsample_portion).
// shrinkage           - regularization parameter.
//                       Each tree prediction is multiplied on shrinkage value.


struct CV_EXPORTS_W_MAP CvGBTreesParams : public CvDTreeParams
{
    CV_PROP_RW int weak_count;
    CV_PROP_RW int loss_function_type;
    CV_PROP_RW float subsample_portion;
    CV_PROP_RW float shrinkage;

    CvGBTreesParams();
    CvGBTreesParams( int loss_function_type, int weak_count, float shrinkage,
        float subsample_portion, int max_depth, bool use_surrogates );
};

// DataType: CLASS CvGBTrees
// Gradient Boosting Trees (GBT) algorithm implementation.
//
// data             - training dataset
// params           - parameters of the CvGBTrees
// weak             - array[0..(class_count-1)] of CvSeq
//                    for storing tree ensembles
// orig_response    - original responses of the training set samples
// sum_response     - predicitons of the current model on the training dataset.
//                    this matrix is updated on every iteration.
// sum_response_tmp - predicitons of the model on the training set on the next
//                    step. On every iteration values of sum_responses_tmp are
//                    computed via sum_responses values. When the current
//                    step is complete sum_response values become equal to
//                    sum_responses_tmp.
// sampleIdx       - indices of samples used for training the ensemble.
//                    CvGBTrees training procedure takes a set of samples
//                    (train_data) and a set of responses (responses).
//                    Only pairs (train_data[i], responses[i]), where i is
//                    in sample_idx are used for training the ensemble.
// subsample_train  - indices of samples used for training a single decision
//                    tree on the current step. This indices are countered
//                    relatively to the sample_idx, so that pairs
//                    (train_data[sample_idx[i]], responses[sample_idx[i]])
//                    are used for training a decision tree.
//                    Training set is randomly splited
//                    in two parts (subsample_train and subsample_test)
//                    on every iteration accordingly to the portion parameter.
// subsample_test   - relative indices of samples from the training set,
//                    which are not used for training a tree on the current
//                    step.
// missing          - mask of the missing values in the training set. This
//                    matrix has the same size as train_data. 1 - missing
//                    value, 0 - not a missing value.
// class_labels     - output class labels map.
// rng              - random number generator. Used for spliting the
//                    training set.
// class_count      - count of output classes.
//                    class_count == 1 in the case of regression,
//                    and > 1 in the case of classification.
// delta            - Huber loss function parameter.
// base_value       - start point of the gradient descent procedure.
//                    model prediction is
//                    f(x) = f_0 + sum_{i=1..weak_count-1}(f_i(x)), where
//                    f_0 is the base value.



class CV_EXPORTS_W CvGBTrees : public CvStatModel
{
public:

    /*
    // DataType: ENUM
    // Loss functions implemented in CvGBTrees.
    //
    // SQUARED_LOSS
    // problem: regression
    // loss = (x - x')^2
    //
    // ABSOLUTE_LOSS
    // problem: regression
    // loss = abs(x - x')
    //
    // HUBER_LOSS
    // problem: regression
    // loss = delta*( abs(x - x') - delta/2), if abs(x - x') > delta
    //           1/2*(x - x')^2, if abs(x - x') <= delta,
    //           where delta is the alpha-quantile of pseudo responses from
    //           the training set.
    //
    // DEVIANCE_LOSS
    // problem: classification
    //
    */
    enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS};


    /*
    // Default constructor. Creates a model only (without training).
    // Should be followed by one form of the train(...) function.
    //
    // API
    // CvGBTrees();

    // INPUT
    // OUTPUT
    // RESULT
    */
    CV_WRAP CvGBTrees();


    /*
    // Full form constructor. Creates a gradient boosting model and does the
    // train.
    //
    // API
    // CvGBTrees( const CvMat* trainData, int tflag,
             const CvMat* responses, const CvMat* varIdx=0,
             const CvMat* sampleIdx=0, const CvMat* varType=0,
             const CvMat* missingDataMask=0,
             CvGBTreesParams params=CvGBTreesParams() );

    // INPUT
    // trainData    - a set of input feature vectors.
    //                  size of matrix is
    //                  <count of samples> x <variables count>
    //                  or <variables count> x <count of samples>
    //                  depending on the tflag parameter.
    //                  matrix values are float.
    // tflag         - a flag showing how do samples stored in the
    //                  trainData matrix row by row (tflag=CV_ROW_SAMPLE)
    //                  or column by column (tflag=CV_COL_SAMPLE).
    // responses     - a vector of responses corresponding to the samples
    //                  in trainData.
    // varIdx       - indices of used variables. zero value means that all
    //                  variables are active.
    // sampleIdx    - indices of used samples. zero value means that all
    //                  samples from trainData are in the training set.
    // varType      - vector of <variables count> length. gives every
    //                  variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED.
    //                  varType = 0 means all variables are numerical.
    // missingDataMask  - a mask of misiing values in trainData.
    //                  missingDataMask = 0 means that there are no missing
    //                  values.
    // params         - parameters of GTB algorithm.
    // OUTPUT
    // RESULT
    */
    CvGBTrees( const CvMat* trainData, int tflag,
             const CvMat* responses, const CvMat* varIdx=0,
             const CvMat* sampleIdx=0, const CvMat* varType=0,
             const CvMat* missingDataMask=0,
             CvGBTreesParams params=CvGBTreesParams() );


    /*
    // Destructor.
    */
    virtual ~CvGBTrees();


    /*
    // Gradient tree boosting model training
    //
    // API
    // virtual bool train( const CvMat* trainData, int tflag,
             const CvMat* responses, const CvMat* varIdx=0,
             const CvMat* sampleIdx=0, const CvMat* varType=0,
             const CvMat* missingDataMask=0,
             CvGBTreesParams params=CvGBTreesParams(),
             bool update=false );

    // INPUT
    // trainData    - a set of input feature vectors.
    //                  size of matrix is
    //                  <count of samples> x <variables count>
    //                  or <variables count> x <count of samples>
    //                  depending on the tflag parameter.
    //                  matrix values are float.
    // tflag         - a flag showing how do samples stored in the
    //                  trainData matrix row by row (tflag=CV_ROW_SAMPLE)
    //                  or column by column (tflag=CV_COL_SAMPLE).
    // responses     - a vector of responses corresponding to the samples
    //                  in trainData.
    // varIdx       - indices of used variables. zero value means that all
    //                  variables are active.
    // sampleIdx    - indices of used samples. zero value means that all
    //                  samples from trainData are in the training set.
    // varType      - vector of <variables count> length. gives every
    //                  variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED.
    //                  varType = 0 means all variables are numerical.
    // missingDataMask  - a mask of misiing values in trainData.
    //                  missingDataMask = 0 means that there are no missing
    //                  values.
    // params         - parameters of GTB algorithm.
    // update         - is not supported now. (!)
    // OUTPUT
    // RESULT
    // Error state.
    */
    virtual bool train( const CvMat* trainData, int tflag,
             const CvMat* responses, const CvMat* varIdx=0,
             const CvMat* sampleIdx=0, const CvMat* varType=0,
             const CvMat* missingDataMask=0,
             CvGBTreesParams params=CvGBTreesParams(),
             bool update=false );


    /*
    // Gradient tree boosting model training
    //
    // API
    // virtual bool train( CvMLData* data,
             CvGBTreesParams params=CvGBTreesParams(),
             bool update=false ) {return false;};

    // INPUT
    // data          - training set.
    // params        - parameters of GTB algorithm.
    // update        - is not supported now. (!)
    // OUTPUT
    // RESULT
    // Error state.
    */
    virtual bool train( CvMLData* data,
             CvGBTreesParams params=CvGBTreesParams(),
             bool update=false );


    /*
    // Response value prediction
    //
    // API
    // virtual float predict_serial( const CvMat* sample, const CvMat* missing=0,
             CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ,
             int k=-1 ) const;

    // INPUT
    // sample         - input sample of the same type as in the training set.
    // missing        - missing values mask. missing=0 if there are no
    //                   missing values in sample vector.
    // weak_responses  - predictions of all of the trees.
    //                   not implemented (!)
    // slice           - part of the ensemble used for prediction.
    //                   slice = CV_WHOLE_SEQ when all trees are used.
    // k               - number of ensemble used.
    //                   k is in {-1,0,1,..,<count of output classes-1>}.
    //                   in the case of classification problem
    //                   <count of output classes-1> ensembles are built.
    //                   If k = -1 ordinary prediction is the result,
    //                   otherwise function gives the prediction of the
    //                   k-th ensemble only.
    // OUTPUT
    // RESULT
    // Predicted value.
    */
    virtual float predict_serial( const CvMat* sample, const CvMat* missing=0,
            CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ,
            int k=-1 ) const;

    /*
    // Response value prediction.
    // Parallel version (in the case of TBB existence)
    //
    // API
    // virtual float predict( const CvMat* sample, const CvMat* missing=0,
             CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ,
             int k=-1 ) const;

    // INPUT
    // sample         - input sample of the same type as in the training set.
    // missing        - missing values mask. missing=0 if there are no
    //                   missing values in sample vector.
    // weak_responses  - predictions of all of the trees.
    //                   not implemented (!)
    // slice           - part of the ensemble used for prediction.
    //                   slice = CV_WHOLE_SEQ when all trees are used.
    // k               - number of ensemble used.
    //                   k is in {-1,0,1,..,<count of output classes-1>}.
    //                   in the case of classification problem
    //                   <count of output classes-1> ensembles are built.
    //                   If k = -1 ordinary prediction is the result,
    //                   otherwise function gives the prediction of the
    //                   k-th ensemble only.
    // OUTPUT
    // RESULT
    // Predicted value.
    */
    virtual float predict( const CvMat* sample, const CvMat* missing=0,
            CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ,
            int k=-1 ) const;

    /*
    // Deletes all the data.
    //
    // API
    // virtual void clear();

    // INPUT
    // OUTPUT
    // delete data, weak, orig_response, sum_response,
    //        weak_eval, subsample_train, subsample_test,
    //        sample_idx, missing, lass_labels
    // delta = 0.0
    // RESULT
    */
    CV_WRAP virtual void clear();

    /*
    // Compute error on the train/test set.
    //
    // API
    // virtual float calc_error( CvMLData* _data, int type,
    //        std::vector<float> *resp = 0 );
    //
    // INPUT
    // data  - dataset
    // type  - defines which error is to compute: train (CV_TRAIN_ERROR) or
    //         test (CV_TEST_ERROR).
    // OUTPUT
    // resp  - vector of predicitons
    // RESULT
    // Error value.
    */
    virtual float calc_error( CvMLData* _data, int type,
            std::vector<float> *resp = 0 );

    /*
    //
    // Write parameters of the gtb model and data. Write learned model.
    //
    // API
    // virtual void write( CvFileStorage* fs, const char* name ) const;
    //
    // INPUT
    // fs     - file storage to read parameters from.
    // name   - model name.
    // OUTPUT
    // RESULT
    */
    virtual void write( CvFileStorage* fs, const char* name ) const;


    /*
    //
    // Read parameters of the gtb model and data. Read learned model.
    //
    // API
    // virtual void read( CvFileStorage* fs, CvFileNode* node );
    //
    // INPUT
    // fs     - file storage to read parameters from.
    // node   - file node.
    // OUTPUT
    // RESULT
    */
    virtual void read( CvFileStorage* fs, CvFileNode* node );


    // new-style C++ interface
    CV_WRAP CvGBTrees( const cv::Mat& trainData, int tflag,
              const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
              const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
              const cv::Mat& missingDataMask=cv::Mat(),
              CvGBTreesParams params=CvGBTreesParams() );

    CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
                       const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
                       const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
                       const cv::Mat& missingDataMask=cv::Mat(),
                       CvGBTreesParams params=CvGBTreesParams(),
                       bool update=false );

    CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
                           const cv::Range& slice = cv::Range::all(),
                           int k=-1 ) const;

protected:

    /*
    // Compute the gradient vector components.
    //
    // API
    // virtual void find_gradient( const int k = 0);

    // INPUT
    // k        - used for classification problem, determining current
    //            tree ensemble.
    // OUTPUT
    // changes components of data->responses
    // which correspond to samples used for training
    // on the current step.
    // RESULT
    */
    virtual void find_gradient( const int k = 0);


    /*
    //
    // Change values in tree leaves according to the used loss function.
    //
    // API
    // virtual void change_values(CvDTree* tree, const int k = 0);
    //
    // INPUT
    // tree      - decision tree to change.
    // k         - used for classification problem, determining current
    //             tree ensemble.
    // OUTPUT
    // changes 'value' fields of the trees' leaves.
    // changes sum_response_tmp.
    // RESULT
    */
    virtual void change_values(CvDTree* tree, const int k = 0);


    /*
    //
    // Find optimal constant prediction value according to the used loss
    // function.
    // The goal is to find a constant which gives the minimal summary loss
    // on the _Idx samples.
    //
    // API
    // virtual float find_optimal_value( const CvMat* _Idx );
    //
    // INPUT
    // _Idx        - indices of the samples from the training set.
    // OUTPUT
    // RESULT
    // optimal constant value.
    */
    virtual float find_optimal_value( const CvMat* _Idx );


    /*
    //
    // Randomly split the whole training set in two parts according
    // to params.portion.
    //
    // API
    // virtual void do_subsample();
    //
    // INPUT
    // OUTPUT
    // subsample_train - indices of samples used for training
    // subsample_test  - indices of samples used for test
    // RESULT
    */
    virtual void do_subsample();


    /*
    //
    // Internal recursive function giving an array of subtree tree leaves.
    //
    // API
    // void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node );
    //
    // INPUT
    // node         - current leaf.
    // OUTPUT
    // count        - count of leaves in the subtree.
    // leaves       - array of pointers to leaves.
    // RESULT
    */
    void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node );


    /*
    //
    // Get leaves of the tree.
    //
    // API
    // CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len );
    //
    // INPUT
    // dtree            - decision tree.
    // OUTPUT
    // len              - count of the leaves.
    // RESULT
    // CvDTreeNode**    - array of pointers to leaves.
    */
    CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len );


    /*
    //
    // Is it a regression or a classification.
    //
    // API
    // bool problem_type();
    //
    // INPUT
    // OUTPUT
    // RESULT
    // false if it is a classification problem,
    // true - if regression.
    */
    virtual bool problem_type() const;


    /*
    //
    // Write parameters of the gtb model.
    //
    // API
    // virtual void write_params( CvFileStorage* fs ) const;
    //
    // INPUT
    // fs           - file storage to write parameters to.
    // OUTPUT
    // RESULT
    */
    virtual void write_params( CvFileStorage* fs ) const;


    /*
    //
    // Read parameters of the gtb model and data.
    //
    // API
    // virtual void read_params( CvFileStorage* fs );
    //
    // INPUT
    // fs           - file storage to read parameters from.
    // OUTPUT
    // params       - parameters of the gtb model.
    // data         - contains information about the structure
    //                of the data set (count of variables,
    //                their types, etc.).
    // class_labels - output class labels map.
    // RESULT
    */
    virtual void read_params( CvFileStorage* fs, CvFileNode* fnode );
    int get_len(const CvMat* mat) const;


    CvDTreeTrainData* data;
    CvGBTreesParams params;

    CvSeq** weak;
    CvMat* orig_response;
    CvMat* sum_response;
    CvMat* sum_response_tmp;
    CvMat* sample_idx;
    CvMat* subsample_train;
    CvMat* subsample_test;
    CvMat* missing;
    CvMat* class_labels;

    cv::RNG* rng;

    int class_count;
    float delta;
    float base_value;

};



/****************************************************************************************\
*                              Artificial Neural Networks (ANN)                          *
\****************************************************************************************/

/////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////

struct CV_EXPORTS_W_MAP CvANN_MLP_TrainParams
{
    CvANN_MLP_TrainParams();
    CvANN_MLP_TrainParams( CvTermCriteria term_crit, int train_method,
                           double param1, double param2=0 );
    ~CvANN_MLP_TrainParams();

    enum { BACKPROP=0, RPROP=1 };

    CV_PROP_RW CvTermCriteria term_crit;
    CV_PROP_RW int train_method;

    // backpropagation parameters
    CV_PROP_RW double bp_dw_scale, bp_moment_scale;

    // rprop parameters
    CV_PROP_RW double rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max;
};


class CV_EXPORTS_W CvANN_MLP : public CvStatModel
{
public:
    CV_WRAP CvANN_MLP();
    CvANN_MLP( const CvMat* layerSizes,
               int activateFunc=CvANN_MLP::SIGMOID_SYM,
               double fparam1=0, double fparam2=0 );

    virtual ~CvANN_MLP();

    virtual void create( const CvMat* layerSizes,
                         int activateFunc=CvANN_MLP::SIGMOID_SYM,
                         double fparam1=0, double fparam2=0 );

    virtual int train( const CvMat* inputs, const CvMat* outputs,
                       const CvMat* sampleWeights, const CvMat* sampleIdx=0,
                       CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(),
                       int flags=0 );
    virtual float predict( const CvMat* inputs, CV_OUT CvMat* outputs ) const;

    CV_WRAP CvANN_MLP( const cv::Mat& layerSizes,
              int activateFunc=CvANN_MLP::SIGMOID_SYM,
              double fparam1=0, double fparam2=0 );

    CV_WRAP virtual void create( const cv::Mat& layerSizes,
                        int activateFunc=CvANN_MLP::SIGMOID_SYM,
                        double fparam1=0, double fparam2=0 );

    CV_WRAP virtual int train( const cv::Mat& inputs, const cv::Mat& outputs,
                      const cv::Mat& sampleWeights, const cv::Mat& sampleIdx=cv::Mat(),
                      CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(),
                      int flags=0 );

    CV_WRAP virtual float predict( const cv::Mat& inputs, CV_OUT cv::Mat& outputs ) const;

    CV_WRAP virtual void clear();

    // possible activation functions
    enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 };

    // available training flags
    enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 };

    virtual void read( CvFileStorage* fs, CvFileNode* node );
    virtual void write( CvFileStorage* storage, const char* name ) const;

    int get_layer_count() { return layer_sizes ? layer_sizes->cols : 0; }
    const CvMat* get_layer_sizes() { return layer_sizes; }
    double* get_weights(int layer)
    {
        return layer_sizes && weights &&
            (unsigned)layer <= (unsigned)layer_sizes->cols ? weights[layer] : 0;
    }

    virtual void calc_activ_func_deriv( CvMat* xf, CvMat* deriv, const double* bias ) const;

protected:

    virtual bool prepare_to_train( const CvMat* _inputs, const CvMat* _outputs,
            const CvMat* _sample_weights, const CvMat* sampleIdx,
            CvVectors* _ivecs, CvVectors* _ovecs, double** _sw, int _flags );

    // sequential random backpropagation
    virtual int train_backprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );

    // RPROP algorithm
    virtual int train_rprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );

    virtual void calc_activ_func( CvMat* xf, const double* bias ) const;
    virtual void set_activ_func( int _activ_func=SIGMOID_SYM,
                                 double _f_param1=0, double _f_param2=0 );
    virtual void init_weights();
    virtual void scale_input( const CvMat* _src, CvMat* _dst ) const;
    virtual void scale_output( const CvMat* _src, CvMat* _dst ) const;
    virtual void calc_input_scale( const CvVectors* vecs, int flags );
    virtual void calc_output_scale( const CvVectors* vecs, int flags );

    virtual void write_params( CvFileStorage* fs ) const;
    virtual void read_params( CvFileStorage* fs, CvFileNode* node );

    CvMat* layer_sizes;
    CvMat* wbuf;
    CvMat* sample_weights;
    double** weights;
    double f_param1, f_param2;
    double min_val, max_val, min_val1, max_val1;
    int activ_func;
    int max_count, max_buf_sz;
    CvANN_MLP_TrainParams params;
    cv::RNG* rng;
};

/****************************************************************************************\
*                           Auxilary functions declarations                              *
\****************************************************************************************/

/* Generates <sample> from multivariate normal distribution, where <mean> - is an
   average row vector, <cov> - symmetric covariation matrix */
CVAPI(void) cvRandMVNormal( CvMat* mean, CvMat* cov, CvMat* sample,
                           CvRNG* rng CV_DEFAULT(0) );

/* Generates sample from gaussian mixture distribution */
CVAPI(void) cvRandGaussMixture( CvMat* means[],
                               CvMat* covs[],
                               float weights[],
                               int clsnum,
                               CvMat* sample,
                               CvMat* sampClasses CV_DEFAULT(0) );

#define CV_TS_CONCENTRIC_SPHERES 0

/* creates test set */
CVAPI(void) cvCreateTestSet( int type, CvMat** samples,
                 int num_samples,
                 int num_features,
                 CvMat** responses,
                 int num_classes, ... );

/****************************************************************************************\
*                                      Data                                             *
\****************************************************************************************/

#define CV_COUNT     0
#define CV_PORTION   1

struct CV_EXPORTS CvTrainTestSplit
{
    CvTrainTestSplit();
    CvTrainTestSplit( int train_sample_count, bool mix = true);
    CvTrainTestSplit( float train_sample_portion, bool mix = true);

    union
    {
        int count;
        float portion;
    } train_sample_part;
    int train_sample_part_mode;

    bool mix;
};

class CV_EXPORTS CvMLData
{
public:
    CvMLData();
    virtual ~CvMLData();

    // returns:
    // 0 - OK
    // -1 - file can not be opened or is not correct
    int read_csv( const char* filename );

    const CvMat* get_values() const;
    const CvMat* get_responses();
    const CvMat* get_missing() const;

    void set_response_idx( int idx ); // old response become predictors, new response_idx = idx
                                      // if idx < 0 there will be no response
    int get_response_idx() const;

    void set_train_test_split( const CvTrainTestSplit * spl );
    const CvMat* get_train_sample_idx() const;
    const CvMat* get_test_sample_idx() const;
    void mix_train_and_test_idx();

    const CvMat* get_var_idx();
    void chahge_var_idx( int vi, bool state ); // misspelled (saved for back compitability),
                                               // use change_var_idx
    void change_var_idx( int vi, bool state ); // state == true to set vi-variable as predictor

    const CvMat* get_var_types();
    int get_var_type( int var_idx ) const;
    // following 2 methods enable to change vars type
    // use these methods to assign CV_VAR_CATEGORICAL type for categorical variable
    // with numerical labels; in the other cases var types are correctly determined automatically
    void set_var_types( const char* str );  // str examples:
                                            // "ord[0-17],cat[18]", "ord[0,2,4,10-12], cat[1,3,5-9,13,14]",
                                            // "cat", "ord" (all vars are categorical/ordered)
    void change_var_type( int var_idx, int type); // type in { CV_VAR_ORDERED, CV_VAR_CATEGORICAL }

    void set_delimiter( char ch );
    char get_delimiter() const;

    void set_miss_ch( char ch );
    char get_miss_ch() const;

    const std::map<std::string, int>& get_class_labels_map() const;

protected:
    virtual void clear();

    void str_to_flt_elem( const char* token, float& flt_elem, int& type);
    void free_train_test_idx();

    char delimiter;
    char miss_ch;
    //char flt_separator;

    CvMat* values;
    CvMat* missing;
    CvMat* var_types;
    CvMat* var_idx_mask;

    CvMat* response_out; // header
    CvMat* var_idx_out; // mat
    CvMat* var_types_out; // mat

    int response_idx;

    int train_sample_count;
    bool mix;

    int total_class_count;
    std::map<std::string, int> class_map;

    CvMat* train_sample_idx;
    CvMat* test_sample_idx;
    int* sample_idx; // data of train_sample_idx and test_sample_idx

    cv::RNG* rng;
};


namespace cv
{

typedef CvStatModel StatModel;
typedef CvParamGrid ParamGrid;
typedef CvNormalBayesClassifier NormalBayesClassifier;
typedef CvKNearest KNearest;
typedef CvSVMParams SVMParams;
typedef CvSVMKernel SVMKernel;
typedef CvSVMSolver SVMSolver;
typedef CvSVM SVM;
typedef CvDTreeParams DTreeParams;
typedef CvMLData TrainData;
typedef CvDTree DecisionTree;
typedef CvForestTree ForestTree;
typedef CvRTParams RandomTreeParams;
typedef CvRTrees RandomTrees;
typedef CvERTreeTrainData ERTreeTRainData;
typedef CvForestERTree ERTree;
typedef CvERTrees ERTrees;
typedef CvBoostParams BoostParams;
typedef CvBoostTree BoostTree;
typedef CvBoost Boost;
typedef CvANN_MLP_TrainParams ANN_MLP_TrainParams;
typedef CvANN_MLP NeuralNet_MLP;
typedef CvGBTreesParams GradientBoostingTreeParams;
typedef CvGBTrees GradientBoostingTrees;

template<> CV_EXPORTS void Ptr<CvDTreeSplit>::delete_obj();

CV_EXPORTS bool initModule_ml(void);

}

#endif // __cplusplus
#endif // __OPENCV_ML_HPP__

/* End of file. */