This file is indexed.

/usr/include/OGRE/OgreVector3.h is in libogre-1.9-dev 1.9.0+dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
/*
-----------------------------------------------------------------------------
This source file is part of OGRE
    (Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/

Copyright (c) 2000-2013 Torus Knot Software Ltd

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef __Vector3_H__
#define __Vector3_H__

#include "OgrePrerequisites.h"
#include "OgreMath.h"
#include "OgreQuaternion.h"

namespace Ogre
{

	/** \addtogroup Core
	*  @{
	*/
	/** \addtogroup Math
	*  @{
	*/
	/** Standard 3-dimensional vector.
        @remarks
            A direction in 3D space represented as distances along the 3
            orthogonal axes (x, y, z). Note that positions, directions and
            scaling factors can be represented by a vector, depending on how
            you interpret the values.
    */
    class _OgreExport Vector3
    {
    public:
		Real x, y, z;

    public:
        /** Default constructor.
            @note
                It does <b>NOT</b> initialize the vector for efficiency.
        */
        inline Vector3()
        {
        }

        inline Vector3( const Real fX, const Real fY, const Real fZ )
            : x( fX ), y( fY ), z( fZ )
        {
        }

        inline explicit Vector3( const Real afCoordinate[3] )
            : x( afCoordinate[0] ),
              y( afCoordinate[1] ),
              z( afCoordinate[2] )
        {
        }

        inline explicit Vector3( const int afCoordinate[3] )
        {
            x = (Real)afCoordinate[0];
            y = (Real)afCoordinate[1];
            z = (Real)afCoordinate[2];
        }

        inline explicit Vector3( Real* const r )
            : x( r[0] ), y( r[1] ), z( r[2] )
        {
        }

        inline explicit Vector3( const Real scaler )
            : x( scaler )
            , y( scaler )
            , z( scaler )
        {
        }


		/** Exchange the contents of this vector with another. 
		*/
		inline void swap(Vector3& other)
		{
			std::swap(x, other.x);
			std::swap(y, other.y);
			std::swap(z, other.z);
		}

		inline Real operator [] ( const size_t i ) const
        {
            assert( i < 3 );

            return *(&x+i);
        }

		inline Real& operator [] ( const size_t i )
        {
            assert( i < 3 );

            return *(&x+i);
        }
		/// Pointer accessor for direct copying
		inline Real* ptr()
		{
			return &x;
		}
		/// Pointer accessor for direct copying
		inline const Real* ptr() const
		{
			return &x;
		}

        /** Assigns the value of the other vector.
            @param
                rkVector The other vector
        */
        inline Vector3& operator = ( const Vector3& rkVector )
        {
            x = rkVector.x;
            y = rkVector.y;
            z = rkVector.z;

            return *this;
        }

        inline Vector3& operator = ( const Real fScaler )
        {
            x = fScaler;
            y = fScaler;
            z = fScaler;

            return *this;
        }

        inline bool operator == ( const Vector3& rkVector ) const
        {
            return ( x == rkVector.x && y == rkVector.y && z == rkVector.z );
        }

        inline bool operator != ( const Vector3& rkVector ) const
        {
            return ( x != rkVector.x || y != rkVector.y || z != rkVector.z );
        }

        // arithmetic operations
        inline Vector3 operator + ( const Vector3& rkVector ) const
        {
            return Vector3(
                x + rkVector.x,
                y + rkVector.y,
                z + rkVector.z);
        }

        inline Vector3 operator - ( const Vector3& rkVector ) const
        {
            return Vector3(
                x - rkVector.x,
                y - rkVector.y,
                z - rkVector.z);
        }

        inline Vector3 operator * ( const Real fScalar ) const
        {
            return Vector3(
                x * fScalar,
                y * fScalar,
                z * fScalar);
        }

        inline Vector3 operator * ( const Vector3& rhs) const
        {
            return Vector3(
                x * rhs.x,
                y * rhs.y,
                z * rhs.z);
        }

        inline Vector3 operator / ( const Real fScalar ) const
        {
            assert( fScalar != 0.0 );

            Real fInv = 1.0f / fScalar;

            return Vector3(
                x * fInv,
                y * fInv,
                z * fInv);
        }

        inline Vector3 operator / ( const Vector3& rhs) const
        {
            return Vector3(
                x / rhs.x,
                y / rhs.y,
                z / rhs.z);
        }

        inline const Vector3& operator + () const
        {
            return *this;
        }

        inline Vector3 operator - () const
        {
            return Vector3(-x, -y, -z);
        }

        // overloaded operators to help Vector3
        inline friend Vector3 operator * ( const Real fScalar, const Vector3& rkVector )
        {
            return Vector3(
                fScalar * rkVector.x,
                fScalar * rkVector.y,
                fScalar * rkVector.z);
        }

        inline friend Vector3 operator / ( const Real fScalar, const Vector3& rkVector )
        {
            return Vector3(
                fScalar / rkVector.x,
                fScalar / rkVector.y,
                fScalar / rkVector.z);
        }

        inline friend Vector3 operator + (const Vector3& lhs, const Real rhs)
        {
            return Vector3(
                lhs.x + rhs,
                lhs.y + rhs,
                lhs.z + rhs);
        }

        inline friend Vector3 operator + (const Real lhs, const Vector3& rhs)
        {
            return Vector3(
                lhs + rhs.x,
                lhs + rhs.y,
                lhs + rhs.z);
        }

        inline friend Vector3 operator - (const Vector3& lhs, const Real rhs)
        {
            return Vector3(
                lhs.x - rhs,
                lhs.y - rhs,
                lhs.z - rhs);
        }

        inline friend Vector3 operator - (const Real lhs, const Vector3& rhs)
        {
            return Vector3(
                lhs - rhs.x,
                lhs - rhs.y,
                lhs - rhs.z);
        }

        // arithmetic updates
        inline Vector3& operator += ( const Vector3& rkVector )
        {
            x += rkVector.x;
            y += rkVector.y;
            z += rkVector.z;

            return *this;
        }

        inline Vector3& operator += ( const Real fScalar )
        {
            x += fScalar;
            y += fScalar;
            z += fScalar;
            return *this;
        }

        inline Vector3& operator -= ( const Vector3& rkVector )
        {
            x -= rkVector.x;
            y -= rkVector.y;
            z -= rkVector.z;

            return *this;
        }

        inline Vector3& operator -= ( const Real fScalar )
        {
            x -= fScalar;
            y -= fScalar;
            z -= fScalar;
            return *this;
        }

        inline Vector3& operator *= ( const Real fScalar )
        {
            x *= fScalar;
            y *= fScalar;
            z *= fScalar;
            return *this;
        }

        inline Vector3& operator *= ( const Vector3& rkVector )
        {
            x *= rkVector.x;
            y *= rkVector.y;
            z *= rkVector.z;

            return *this;
        }

        inline Vector3& operator /= ( const Real fScalar )
        {
            assert( fScalar != 0.0 );

            Real fInv = 1.0f / fScalar;

            x *= fInv;
            y *= fInv;
            z *= fInv;

            return *this;
        }

        inline Vector3& operator /= ( const Vector3& rkVector )
        {
            x /= rkVector.x;
            y /= rkVector.y;
            z /= rkVector.z;

            return *this;
        }


        /** Returns the length (magnitude) of the vector.
            @warning
                This operation requires a square root and is expensive in
                terms of CPU operations. If you don't need to know the exact
                length (e.g. for just comparing lengths) use squaredLength()
                instead.
        */
        inline Real length () const
        {
            return Math::Sqrt( x * x + y * y + z * z );
        }

        /** Returns the square of the length(magnitude) of the vector.
            @remarks
                This  method is for efficiency - calculating the actual
                length of a vector requires a square root, which is expensive
                in terms of the operations required. This method returns the
                square of the length of the vector, i.e. the same as the
                length but before the square root is taken. Use this if you
                want to find the longest / shortest vector without incurring
                the square root.
        */
        inline Real squaredLength () const
        {
            return x * x + y * y + z * z;
        }

        /** Returns the distance to another vector.
            @warning
                This operation requires a square root and is expensive in
                terms of CPU operations. If you don't need to know the exact
                distance (e.g. for just comparing distances) use squaredDistance()
                instead.
        */
        inline Real distance(const Vector3& rhs) const
        {
            return (*this - rhs).length();
        }

        /** Returns the square of the distance to another vector.
            @remarks
                This method is for efficiency - calculating the actual
                distance to another vector requires a square root, which is
                expensive in terms of the operations required. This method
                returns the square of the distance to another vector, i.e.
                the same as the distance but before the square root is taken.
                Use this if you want to find the longest / shortest distance
                without incurring the square root.
        */
        inline Real squaredDistance(const Vector3& rhs) const
        {
            return (*this - rhs).squaredLength();
        }

        /** Calculates the dot (scalar) product of this vector with another.
            @remarks
                The dot product can be used to calculate the angle between 2
                vectors. If both are unit vectors, the dot product is the
                cosine of the angle; otherwise the dot product must be
                divided by the product of the lengths of both vectors to get
                the cosine of the angle. This result can further be used to
                calculate the distance of a point from a plane.
            @param
                vec Vector with which to calculate the dot product (together
                with this one).
            @return
                A float representing the dot product value.
        */
        inline Real dotProduct(const Vector3& vec) const
        {
            return x * vec.x + y * vec.y + z * vec.z;
        }

        /** Calculates the absolute dot (scalar) product of this vector with another.
            @remarks
                This function work similar dotProduct, except it use absolute value
                of each component of the vector to computing.
            @param
                vec Vector with which to calculate the absolute dot product (together
                with this one).
            @return
                A Real representing the absolute dot product value.
        */
        inline Real absDotProduct(const Vector3& vec) const
        {
            return Math::Abs(x * vec.x) + Math::Abs(y * vec.y) + Math::Abs(z * vec.z);
        }

        /** Normalises the vector.
            @remarks
                This method normalises the vector such that it's
                length / magnitude is 1. The result is called a unit vector.
            @note
                This function will not crash for zero-sized vectors, but there
                will be no changes made to their components.
            @return The previous length of the vector.
        */
        inline Real normalise()
        {
            Real fLength = Math::Sqrt( x * x + y * y + z * z );

            // Will also work for zero-sized vectors, but will change nothing
			// We're not using epsilons because we don't need to.
            // Read http://www.ogre3d.org/forums/viewtopic.php?f=4&t=61259
            if ( fLength > Real(0.0f) )
            {
                Real fInvLength = 1.0f / fLength;
                x *= fInvLength;
                y *= fInvLength;
                z *= fInvLength;
            }

            return fLength;
        }

        /** Calculates the cross-product of 2 vectors, i.e. the vector that
            lies perpendicular to them both.
            @remarks
                The cross-product is normally used to calculate the normal
                vector of a plane, by calculating the cross-product of 2
                non-equivalent vectors which lie on the plane (e.g. 2 edges
                of a triangle).
            @param rkVector
                Vector which, together with this one, will be used to
                calculate the cross-product.
            @return
                A vector which is the result of the cross-product. This
                vector will <b>NOT</b> be normalised, to maximise efficiency
                - call Vector3::normalise on the result if you wish this to
                be done. As for which side the resultant vector will be on, the
                returned vector will be on the side from which the arc from 'this'
                to rkVector is anticlockwise, e.g. UNIT_Y.crossProduct(UNIT_Z)
                = UNIT_X, whilst UNIT_Z.crossProduct(UNIT_Y) = -UNIT_X.
				This is because OGRE uses a right-handed coordinate system.
            @par
                For a clearer explanation, look a the left and the bottom edges
                of your monitor's screen. Assume that the first vector is the
                left edge and the second vector is the bottom edge, both of
                them starting from the lower-left corner of the screen. The
                resulting vector is going to be perpendicular to both of them
                and will go <i>inside</i> the screen, towards the cathode tube
                (assuming you're using a CRT monitor, of course).
        */
        inline Vector3 crossProduct( const Vector3& rkVector ) const
        {
            return Vector3(
                y * rkVector.z - z * rkVector.y,
                z * rkVector.x - x * rkVector.z,
                x * rkVector.y - y * rkVector.x);
        }

        /** Returns a vector at a point half way between this and the passed
            in vector.
        */
        inline Vector3 midPoint( const Vector3& vec ) const
        {
            return Vector3(
                ( x + vec.x ) * 0.5f,
                ( y + vec.y ) * 0.5f,
                ( z + vec.z ) * 0.5f );
        }

        /** Returns true if the vector's scalar components are all greater
            that the ones of the vector it is compared against.
        */
        inline bool operator < ( const Vector3& rhs ) const
        {
            if( x < rhs.x && y < rhs.y && z < rhs.z )
                return true;
            return false;
        }

        /** Returns true if the vector's scalar components are all smaller
            that the ones of the vector it is compared against.
        */
        inline bool operator > ( const Vector3& rhs ) const
        {
            if( x > rhs.x && y > rhs.y && z > rhs.z )
                return true;
            return false;
        }

        /** Sets this vector's components to the minimum of its own and the
            ones of the passed in vector.
            @remarks
                'Minimum' in this case means the combination of the lowest
                value of x, y and z from both vectors. Lowest is taken just
                numerically, not magnitude, so -1 < 0.
        */
        inline void makeFloor( const Vector3& cmp )
        {
            if( cmp.x < x ) x = cmp.x;
            if( cmp.y < y ) y = cmp.y;
            if( cmp.z < z ) z = cmp.z;
        }

        /** Sets this vector's components to the maximum of its own and the
            ones of the passed in vector.
            @remarks
                'Maximum' in this case means the combination of the highest
                value of x, y and z from both vectors. Highest is taken just
                numerically, not magnitude, so 1 > -3.
        */
        inline void makeCeil( const Vector3& cmp )
        {
            if( cmp.x > x ) x = cmp.x;
            if( cmp.y > y ) y = cmp.y;
            if( cmp.z > z ) z = cmp.z;
        }

        /** Generates a vector perpendicular to this vector (eg an 'up' vector).
            @remarks
                This method will return a vector which is perpendicular to this
                vector. There are an infinite number of possibilities but this
                method will guarantee to generate one of them. If you need more
                control you should use the Quaternion class.
        */
        inline Vector3 perpendicular(void) const
        {
            static const Real fSquareZero = (Real)(1e-06 * 1e-06);

            Vector3 perp = this->crossProduct( Vector3::UNIT_X );

            // Check length
            if( perp.squaredLength() < fSquareZero )
            {
                /* This vector is the Y axis multiplied by a scalar, so we have
                   to use another axis.
                */
                perp = this->crossProduct( Vector3::UNIT_Y );
            }
			perp.normalise();

            return perp;
        }
        /** Generates a new random vector which deviates from this vector by a
            given angle in a random direction.
            @remarks
                This method assumes that the random number generator has already
                been seeded appropriately.
            @param
                angle The angle at which to deviate
            @param
                up Any vector perpendicular to this one (which could generated
                by cross-product of this vector and any other non-colinear
                vector). If you choose not to provide this the function will
                derive one on it's own, however if you provide one yourself the
                function will be faster (this allows you to reuse up vectors if
                you call this method more than once)
            @return
                A random vector which deviates from this vector by angle. This
                vector will not be normalised, normalise it if you wish
                afterwards.
        */
        inline Vector3 randomDeviant(
            const Radian& angle,
            const Vector3& up = Vector3::ZERO ) const
        {
            Vector3 newUp;

            if (up == Vector3::ZERO)
            {
                // Generate an up vector
                newUp = this->perpendicular();
            }
            else
            {
                newUp = up;
            }

            // Rotate up vector by random amount around this
            Quaternion q;
            q.FromAngleAxis( Radian(Math::UnitRandom() * Math::TWO_PI), *this );
            newUp = q * newUp;

            // Finally rotate this by given angle around randomised up
            q.FromAngleAxis( angle, newUp );
            return q * (*this);
        }

		/** Gets the angle between 2 vectors.
		@remarks
			Vectors do not have to be unit-length but must represent directions.
		*/
		inline Radian angleBetween(const Vector3& dest) const
		{
			Real lenProduct = length() * dest.length();

			// Divide by zero check
			if(lenProduct < 1e-6f)
				lenProduct = 1e-6f;

			Real f = dotProduct(dest) / lenProduct;

			f = Math::Clamp(f, (Real)-1.0, (Real)1.0);
			return Math::ACos(f);

		}
        /** Gets the shortest arc quaternion to rotate this vector to the destination
            vector.
        @remarks
            If you call this with a dest vector that is close to the inverse
            of this vector, we will rotate 180 degrees around the 'fallbackAxis'
			(if specified, or a generated axis if not) since in this case
			ANY axis of rotation is valid.
        */
        Quaternion getRotationTo(const Vector3& dest,
			const Vector3& fallbackAxis = Vector3::ZERO) const
        {
            // Based on Stan Melax's article in Game Programming Gems
            Quaternion q;
            // Copy, since cannot modify local
            Vector3 v0 = *this;
            Vector3 v1 = dest;
            v0.normalise();
            v1.normalise();

            Real d = v0.dotProduct(v1);
            // If dot == 1, vectors are the same
            if (d >= 1.0f)
            {
                return Quaternion::IDENTITY;
            }
			if (d < (1e-6f - 1.0f))
			{
				if (fallbackAxis != Vector3::ZERO)
				{
					// rotate 180 degrees about the fallback axis
					q.FromAngleAxis(Radian(Math::PI), fallbackAxis);
				}
				else
				{
					// Generate an axis
					Vector3 axis = Vector3::UNIT_X.crossProduct(*this);
					if (axis.isZeroLength()) // pick another if colinear
						axis = Vector3::UNIT_Y.crossProduct(*this);
					axis.normalise();
					q.FromAngleAxis(Radian(Math::PI), axis);
				}
			}
			else
			{
                Real s = Math::Sqrt( (1+d)*2 );
	            Real invs = 1 / s;

				Vector3 c = v0.crossProduct(v1);

    	        q.x = c.x * invs;
        	    q.y = c.y * invs;
            	q.z = c.z * invs;
            	q.w = s * 0.5f;
				q.normalise();
			}
            return q;
        }

        /** Returns true if this vector is zero length. */
        inline bool isZeroLength(void) const
        {
            Real sqlen = (x * x) + (y * y) + (z * z);
            return (sqlen < (1e-06 * 1e-06));

        }

        /** As normalise, except that this vector is unaffected and the
            normalised vector is returned as a copy. */
        inline Vector3 normalisedCopy(void) const
        {
            Vector3 ret = *this;
            ret.normalise();
            return ret;
        }

        /** Calculates a reflection vector to the plane with the given normal .
        @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not.
        */
        inline Vector3 reflect(const Vector3& normal) const
        {
            return Vector3( *this - ( 2 * this->dotProduct(normal) * normal ) );
        }

		/** Returns whether this vector is within a positional tolerance
			of another vector.
		@param rhs The vector to compare with
		@param tolerance The amount that each element of the vector may vary by
			and still be considered equal
		*/
		inline bool positionEquals(const Vector3& rhs, Real tolerance = 1e-03) const
		{
			return Math::RealEqual(x, rhs.x, tolerance) &&
				Math::RealEqual(y, rhs.y, tolerance) &&
				Math::RealEqual(z, rhs.z, tolerance);

		}

		/** Returns whether this vector is within a positional tolerance
			of another vector, also take scale of the vectors into account.
		@param rhs The vector to compare with
		@param tolerance The amount (related to the scale of vectors) that distance
            of the vector may vary by and still be considered close
		*/
		inline bool positionCloses(const Vector3& rhs, Real tolerance = 1e-03f) const
		{
			return squaredDistance(rhs) <=
                (squaredLength() + rhs.squaredLength()) * tolerance;
		}

		/** Returns whether this vector is within a directional tolerance
			of another vector.
		@param rhs The vector to compare with
		@param tolerance The maximum angle by which the vectors may vary and
			still be considered equal
		@note Both vectors should be normalised.
		*/
		inline bool directionEquals(const Vector3& rhs,
			const Radian& tolerance) const
		{
			Real dot = dotProduct(rhs);
			Radian angle = Math::ACos(dot);

			return Math::Abs(angle.valueRadians()) <= tolerance.valueRadians();

		}

		/// Check whether this vector contains valid values
		inline bool isNaN() const
		{
			return Math::isNaN(x) || Math::isNaN(y) || Math::isNaN(z);
		}

		/// Extract the primary (dominant) axis from this direction vector
		inline Vector3 primaryAxis() const
		{
			Real absx = Math::Abs(x);
			Real absy = Math::Abs(y);
			Real absz = Math::Abs(z);
			if (absx > absy)
				if (absx > absz)
					return x > 0 ? Vector3::UNIT_X : Vector3::NEGATIVE_UNIT_X;
				else
					return z > 0 ? Vector3::UNIT_Z : Vector3::NEGATIVE_UNIT_Z;
			else // absx <= absy
				if (absy > absz)
					return y > 0 ? Vector3::UNIT_Y : Vector3::NEGATIVE_UNIT_Y;
				else
					return z > 0 ? Vector3::UNIT_Z : Vector3::NEGATIVE_UNIT_Z;


		}

		// special points
        static const Vector3 ZERO;
        static const Vector3 UNIT_X;
        static const Vector3 UNIT_Y;
        static const Vector3 UNIT_Z;
        static const Vector3 NEGATIVE_UNIT_X;
        static const Vector3 NEGATIVE_UNIT_Y;
        static const Vector3 NEGATIVE_UNIT_Z;
        static const Vector3 UNIT_SCALE;

        /** Function for writing to a stream.
        */
        inline _OgreExport friend std::ostream& operator <<
            ( std::ostream& o, const Vector3& v )
        {
            o << "Vector3(" << v.x << ", " << v.y << ", " << v.z << ")";
            return o;
        }
    };
	/** @} */
	/** @} */

}
#endif