/usr/include/OGRE/OgreGpuProgramParams.h is in libogre-1.9-dev 1.9.0+dfsg1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 | /*
-----------------------------------------------------------------------------
This source file is part of OGRE
(Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org
Copyright (c) 2000-2013 Torus Knot Software Ltd
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef __GpuProgramParams_H_
#define __GpuProgramParams_H_
// Precompiler options
#include "OgrePrerequisites.h"
#include "OgreSharedPtr.h"
#include "OgreIteratorWrappers.h"
#include "OgreSerializer.h"
#include "OgreRenderOperation.h"
#include "OgreAny.h"
#include "Threading/OgreThreadHeaders.h"
#include "OgreHeaderPrefix.h"
namespace Ogre {
/** \addtogroup Core
* @{
*/
/** \addtogroup Materials
* @{
*/
/** Enumeration of the types of constant we may encounter in programs.
@note Low-level programs, by definition, will always use either
float4 or int4 constant types since that is the fundamental underlying
type in assembler.
*/
enum GpuConstantType
{
GCT_FLOAT1 = 1,
GCT_FLOAT2 = 2,
GCT_FLOAT3 = 3,
GCT_FLOAT4 = 4,
GCT_SAMPLER1D = 5,
GCT_SAMPLER2D = 6,
GCT_SAMPLER3D = 7,
GCT_SAMPLERCUBE = 8,
GCT_SAMPLERRECT = 9,
GCT_SAMPLER1DSHADOW = 10,
GCT_SAMPLER2DSHADOW = 11,
GCT_SAMPLER2DARRAY = 12,
GCT_MATRIX_2X2 = 13,
GCT_MATRIX_2X3 = 14,
GCT_MATRIX_2X4 = 15,
GCT_MATRIX_3X2 = 16,
GCT_MATRIX_3X3 = 17,
GCT_MATRIX_3X4 = 18,
GCT_MATRIX_4X2 = 19,
GCT_MATRIX_4X3 = 20,
GCT_MATRIX_4X4 = 21,
GCT_INT1 = 22,
GCT_INT2 = 23,
GCT_INT3 = 24,
GCT_INT4 = 25,
GCT_SUBROUTINE = 26,
GCT_DOUBLE1 = 27,
GCT_DOUBLE2 = 28,
GCT_DOUBLE3 = 29,
GCT_DOUBLE4 = 30,
GCT_MATRIX_DOUBLE_2X2 = 31,
GCT_MATRIX_DOUBLE_2X3 = 32,
GCT_MATRIX_DOUBLE_2X4 = 33,
GCT_MATRIX_DOUBLE_3X2 = 34,
GCT_MATRIX_DOUBLE_3X3 = 35,
GCT_MATRIX_DOUBLE_3X4 = 36,
GCT_MATRIX_DOUBLE_4X2 = 37,
GCT_MATRIX_DOUBLE_4X3 = 38,
GCT_MATRIX_DOUBLE_4X4 = 39,
GCT_UNKNOWN = 99
};
/** The variability of a GPU parameter, as derived from auto-params targeting it.
These values must be powers of two since they are used in masks.
*/
enum GpuParamVariability
{
/// No variation except by manual setting - the default
GPV_GLOBAL = 1,
/// Varies per object (based on an auto param usually), but not per light setup
GPV_PER_OBJECT = 2,
/// Varies with light setup
GPV_LIGHTS = 4,
/// Varies with pass iteration number
GPV_PASS_ITERATION_NUMBER = 8,
/// Full mask (16-bit)
GPV_ALL = 0xFFFF
};
/** Information about predefined program constants.
@note Only available for high-level programs but is referenced generically
by GpuProgramParameters.
*/
struct _OgreExport GpuConstantDefinition
{
/// Data type
GpuConstantType constType;
/// Physical start index in buffer (either float, double or int buffer)
size_t physicalIndex;
/// Logical index - used to communicate this constant to the rendersystem
size_t logicalIndex;
/** Number of raw buffer slots per element
(some programs pack each array element to float4, some do not) */
size_t elementSize;
/// Length of array
size_t arraySize;
/// How this parameter varies (bitwise combination of GpuProgramVariability)
mutable uint16 variability;
bool isFloat() const
{
return isFloat(constType);
}
static bool isFloat(GpuConstantType c)
{
switch(c)
{
case GCT_INT1:
case GCT_INT2:
case GCT_INT3:
case GCT_INT4:
case GCT_SAMPLER1D:
case GCT_SAMPLER2D:
case GCT_SAMPLER2DARRAY:
case GCT_SAMPLER3D:
case GCT_SAMPLERCUBE:
case GCT_SAMPLER1DSHADOW:
case GCT_SAMPLER2DSHADOW:
return false;
default:
return true;
};
}
bool isDouble() const
{
return isDouble(constType);
}
static bool isDouble(GpuConstantType c)
{
switch(c)
{
case GCT_INT1:
case GCT_INT2:
case GCT_INT3:
case GCT_INT4:
case GCT_FLOAT1:
case GCT_FLOAT2:
case GCT_FLOAT3:
case GCT_FLOAT4:
case GCT_SAMPLER1D:
case GCT_SAMPLER2D:
case GCT_SAMPLER2DARRAY:
case GCT_SAMPLER3D:
case GCT_SAMPLERCUBE:
case GCT_SAMPLER1DSHADOW:
case GCT_SAMPLER2DSHADOW:
return false;
default:
return true;
};
}
bool isSampler() const
{
return isSampler(constType);
}
static bool isSampler(GpuConstantType c)
{
switch(c)
{
case GCT_SAMPLER1D:
case GCT_SAMPLER2D:
case GCT_SAMPLER2DARRAY:
case GCT_SAMPLER3D:
case GCT_SAMPLERCUBE:
case GCT_SAMPLER1DSHADOW:
case GCT_SAMPLER2DSHADOW:
return true;
default:
return false;
};
}
bool isSubroutine() const
{
return isSubroutine(constType);
}
static bool isSubroutine(GpuConstantType c)
{
return c == GCT_SUBROUTINE;
}
/** Get the element size of a given type, including whether to pad the
elements into multiples of 4 (e.g. SM1 and D3D does, GLSL doesn't)
*/
static size_t getElementSize(GpuConstantType ctype, bool padToMultiplesOf4)
{
if (padToMultiplesOf4)
{
switch(ctype)
{
case GCT_FLOAT1:
case GCT_INT1:
case GCT_SAMPLER1D:
case GCT_SAMPLER2D:
case GCT_SAMPLER2DARRAY:
case GCT_SAMPLER3D:
case GCT_SAMPLERCUBE:
case GCT_SAMPLER1DSHADOW:
case GCT_SAMPLER2DSHADOW:
case GCT_FLOAT2:
case GCT_INT2:
case GCT_FLOAT3:
case GCT_INT3:
case GCT_FLOAT4:
case GCT_INT4:
return 4;
case GCT_MATRIX_2X2:
case GCT_MATRIX_2X3:
case GCT_MATRIX_2X4:
case GCT_DOUBLE1:
case GCT_DOUBLE2:
case GCT_DOUBLE3:
case GCT_DOUBLE4:
return 8; // 2 float4s
case GCT_MATRIX_3X2:
case GCT_MATRIX_3X3:
case GCT_MATRIX_3X4:
return 12; // 3 float4s
case GCT_MATRIX_4X2:
case GCT_MATRIX_4X3:
case GCT_MATRIX_4X4:
case GCT_MATRIX_DOUBLE_2X2:
case GCT_MATRIX_DOUBLE_2X3:
case GCT_MATRIX_DOUBLE_2X4:
return 16; // 4 float4s
case GCT_MATRIX_DOUBLE_3X2:
case GCT_MATRIX_DOUBLE_3X3:
case GCT_MATRIX_DOUBLE_3X4:
return 24;
case GCT_MATRIX_DOUBLE_4X2:
case GCT_MATRIX_DOUBLE_4X3:
case GCT_MATRIX_DOUBLE_4X4:
return 32;
default:
return 4;
};
}
else
{
switch(ctype)
{
case GCT_FLOAT1:
case GCT_DOUBLE1:
case GCT_INT1:
case GCT_SAMPLER1D:
case GCT_SAMPLER2D:
case GCT_SAMPLER2DARRAY:
case GCT_SAMPLER3D:
case GCT_SAMPLERCUBE:
case GCT_SAMPLER1DSHADOW:
case GCT_SAMPLER2DSHADOW:
return 1;
case GCT_FLOAT2:
case GCT_INT2:
case GCT_DOUBLE2:
return 2;
case GCT_FLOAT3:
case GCT_INT3:
case GCT_DOUBLE3:
return 3;
case GCT_FLOAT4:
case GCT_INT4:
case GCT_DOUBLE4:
return 4;
case GCT_MATRIX_2X2:
case GCT_MATRIX_DOUBLE_2X2:
return 4;
case GCT_MATRIX_2X3:
case GCT_MATRIX_3X2:
case GCT_MATRIX_DOUBLE_2X3:
case GCT_MATRIX_DOUBLE_3X2:
return 6;
case GCT_MATRIX_2X4:
case GCT_MATRIX_4X2:
case GCT_MATRIX_DOUBLE_2X4:
case GCT_MATRIX_DOUBLE_4X2:
return 8;
case GCT_MATRIX_3X3:
case GCT_MATRIX_DOUBLE_3X3:
return 9;
case GCT_MATRIX_3X4:
case GCT_MATRIX_4X3:
case GCT_MATRIX_DOUBLE_3X4:
case GCT_MATRIX_DOUBLE_4X3:
return 12;
case GCT_MATRIX_4X4:
case GCT_MATRIX_DOUBLE_4X4:
return 16;
default:
return 4;
};
}
}
GpuConstantDefinition()
: constType(GCT_UNKNOWN)
, physicalIndex((std::numeric_limits<size_t>::max)())
, logicalIndex(0)
, elementSize(0)
, arraySize(1)
, variability(GPV_GLOBAL) {}
};
typedef map<String, GpuConstantDefinition>::type GpuConstantDefinitionMap;
typedef ConstMapIterator<GpuConstantDefinitionMap> GpuConstantDefinitionIterator;
/// Struct collecting together the information for named constants.
struct _OgreExport GpuNamedConstants : public GpuParamsAlloc
{
/// Total size of the float buffer required
size_t floatBufferSize;
/// Total size of the double buffer required
size_t doubleBufferSize;
/// Total size of the int buffer required
size_t intBufferSize;
/// Map of parameter names to GpuConstantDefinition
GpuConstantDefinitionMap map;
GpuNamedConstants() : floatBufferSize(0), doubleBufferSize(0), intBufferSize(0) {}
/** Generate additional constant entries for arrays based on a base definition.
@remarks
Array uniforms will be added just with their base name with no array
suffix. This method will add named entries for array suffixes too
so individual array entries can be addressed. Note that we only
individually index array elements if the array size is up to 16
entries in size. Anything larger than that only gets a [0] entry
as well as the main entry, to save cluttering up the name map. After
all, you can address the larger arrays in a bulk fashion much more
easily anyway.
*/
void generateConstantDefinitionArrayEntries(const String& paramName,
const GpuConstantDefinition& baseDef);
/// Indicates whether all array entries will be generated and added to the definitions map
static bool getGenerateAllConstantDefinitionArrayEntries();
/** Sets whether all array entries will be generated and added to the definitions map.
@remarks
Usually, array entries can only be individually indexed if they're up to 16 entries long,
to save memory - arrays larger than that can be set but only via the bulk setting
methods. This option allows you to choose to individually index every array entry.
*/
static void setGenerateAllConstantDefinitionArrayEntries(bool generateAll);
/** Saves constant definitions to a file, compatible with GpuProgram::setManualNamedConstantsFile.
@see GpuProgram::setManualNamedConstantsFile
*/
void save(const String& filename) const;
/** Loads constant definitions from a stream, compatible with GpuProgram::setManualNamedConstantsFile.
@see GpuProgram::setManualNamedConstantsFile
*/
void load(DataStreamPtr& stream);
size_t calculateSize(void) const;
protected:
/** Indicates whether all array entries will be generated and added to the definitions map
@remarks
Normally, the number of array entries added to the definitions map is capped at 16
to save memory. Setting this value to <code>true</code> allows all of the entries
to be generated and added to the map.
*/
static bool msGenerateAllConstantDefinitionArrayEntries;
};
typedef SharedPtr<GpuNamedConstants> GpuNamedConstantsPtr;
/// Simple class for loading / saving GpuNamedConstants
class _OgreExport GpuNamedConstantsSerializer : public Serializer
{
public:
GpuNamedConstantsSerializer();
virtual ~GpuNamedConstantsSerializer();
void exportNamedConstants(const GpuNamedConstants* pConsts, const String& filename,
Endian endianMode = ENDIAN_NATIVE);
void exportNamedConstants(const GpuNamedConstants* pConsts, DataStreamPtr stream,
Endian endianMode = ENDIAN_NATIVE);
void importNamedConstants(DataStreamPtr& stream, GpuNamedConstants* pDest);
};
/** Structure recording the use of a physical buffer by a logical parameter
index. Only used for low-level programs.
*/
struct _OgreExport GpuLogicalIndexUse
{
/// Physical buffer index
size_t physicalIndex;
/// Current physical size allocation
size_t currentSize;
/// How the contents of this slot vary
mutable uint16 variability;
GpuLogicalIndexUse()
: physicalIndex(99999), currentSize(0), variability(GPV_GLOBAL) {}
GpuLogicalIndexUse(size_t bufIdx, size_t curSz, uint16 v)
: physicalIndex(bufIdx), currentSize(curSz), variability(v) {}
};
typedef map<size_t, GpuLogicalIndexUse>::type GpuLogicalIndexUseMap;
/// Container struct to allow params to safely & update shared list of logical buffer assignments
struct _OgreExport GpuLogicalBufferStruct : public GpuParamsAlloc
{
OGRE_MUTEX(mutex);
/// Map from logical index to physical buffer location
GpuLogicalIndexUseMap map;
/// Shortcut to know the buffer size needs
size_t bufferSize;
GpuLogicalBufferStruct() : bufferSize(0) {}
};
typedef SharedPtr<GpuLogicalBufferStruct> GpuLogicalBufferStructPtr;
/** Definition of container that holds the current float constants.
@note Not necessarily in direct index order to constant indexes, logical
to physical index map is derived from GpuProgram
*/
typedef vector<float>::type FloatConstantList;
/** Definition of container that holds the current double constants.
@note Not necessarily in direct index order to constant indexes, logical
to physical index map is derived from GpuProgram
*/
typedef vector<double>::type DoubleConstantList;
/** Definition of container that holds the current float constants.
@note Not necessarily in direct index order to constant indexes, logical
to physical index map is derived from GpuProgram
*/
typedef vector<int>::type IntConstantList;
/** A group of manually updated parameters that are shared between many parameter sets.
@remarks
Sometimes you want to set some common parameters across many otherwise
different parameter sets, and keep them all in sync together. This class
allows you to define a set of parameters that you can share across many
parameter sets and have the parameters that match automatically be pulled
from the shared set, rather than you having to set them on all the parameter
sets individually.
@par
Parameters in a shared set are matched up with instances in a GpuProgramParameters
structure by matching names. It is up to you to define the named parameters
that a shared set contains, and ensuring the definition matches.
@note
Shared parameter sets can be named, and looked up using the GpuProgramManager.
*/
class _OgreExport GpuSharedParameters : public GpuParamsAlloc
{
protected:
GpuNamedConstants mNamedConstants;
FloatConstantList mFloatConstants;
DoubleConstantList mDoubleConstants;
IntConstantList mIntConstants;
String mName;
// Optional data the rendersystem might want to store
mutable Any mRenderSystemData;
/// Not used when copying data, but might be useful to RS using shared buffers
size_t mFrameLastUpdated;
/// Version number of the definitions in this buffer
unsigned long mVersion;
public:
GpuSharedParameters(const String& name);
virtual ~GpuSharedParameters();
/// Get the name of this shared parameter set
const String& getName() { return mName; }
/** Add a new constant definition to this shared set of parameters.
@remarks
Unlike GpuProgramParameters, where the parameter list is defined by the
program being compiled, this shared parameter set is defined by the
user. Only parameters which have been predefined here may be later
updated.
*/
void addConstantDefinition(const String& name, GpuConstantType constType, size_t arraySize = 1);
/** Remove a constant definition from this shared set of parameters.
*/
void removeConstantDefinition(const String& name);
/** Remove a constant definition from this shared set of parameters.
*/
void removeAllConstantDefinitions();
/** Get the version number of this shared parameter set, can be used to identify when
changes have occurred.
*/
unsigned long getVersion() const { return mVersion; }
size_t calculateSize(void) const;
/** Mark the shared set as being dirty (values modified).
@remarks
You do not need to call this yourself, set is marked as dirty whenever
setNamedConstant or (non const) getFloatPointer et al are called.
*/
void _markDirty();
/// Get the frame in which this shared parameter set was last updated
size_t getFrameLastUpdated() const { return mFrameLastUpdated; }
/** Gets an iterator over the named GpuConstantDefinition instances as defined
by the user.
*/
GpuConstantDefinitionIterator getConstantDefinitionIterator(void) const;
/** Get a specific GpuConstantDefinition for a named parameter.
*/
const GpuConstantDefinition& getConstantDefinition(const String& name) const;
/** Get the full list of GpuConstantDefinition instances.
*/
const GpuNamedConstants& getConstantDefinitions() const;
/** @copydoc GpuProgramParameters::setNamedConstant(const String& name, Real val) */
void setNamedConstant(const String& name, Real val);
/** @copydoc GpuProgramParameters::setNamedConstant(const String& name, int val) */
void setNamedConstant(const String& name, int val);
/** @copydoc GpuProgramParameters::setNamedConstant(const String& name, const Vector4& vec) */
void setNamedConstant(const String& name, const Vector4& vec);
/** @copydoc GpuProgramParameters::setNamedConstant(const String& name, const Vector3& vec) */
void setNamedConstant(const String& name, const Vector3& vec);
/** @copydoc GpuProgramParameters::setNamedConstant(const String& name, const Vector2& vec) */
void setNamedConstant(const String& name, const Vector2& vec);
/** @copydoc GpuProgramParameters::setNamedConstant(const String& name, const Matrix4& m) */
void setNamedConstant(const String& name, const Matrix4& m);
/** @copydoc GpuProgramParameters::setNamedConstant(const String& name, const Matrix4* m, size_t numEntries) */
void setNamedConstant(const String& name, const Matrix4* m, size_t numEntries);
/** @copydoc GpuProgramParameters::setNamedConstant(const String& name, const float *val, size_t count) */
void setNamedConstant(const String& name, const float *val, size_t count);
/** @copydoc GpuProgramParameters::setNamedConstant(const String& name, const double *val, size_t count) */
void setNamedConstant(const String& name, const double *val, size_t count);
/** @copydoc GpuProgramParameters::setNamedConstant(const String& name, const ColourValue& colour) */
void setNamedConstant(const String& name, const ColourValue& colour);
/** @copydoc GpuProgramParameters::setNamedConstant(const String& name, const int *val, size_t count) */
void setNamedConstant(const String& name, const int *val, size_t count);
/// Get a pointer to the 'nth' item in the float buffer
float* getFloatPointer(size_t pos) { _markDirty(); return &mFloatConstants[pos]; }
/// Get a pointer to the 'nth' item in the float buffer
const float* getFloatPointer(size_t pos) const { return &mFloatConstants[pos]; }
/// Get a pointer to the 'nth' item in the double buffer
double* getDoublePointer(size_t pos) { _markDirty(); return &mDoubleConstants[pos]; }
/// Get a pointer to the 'nth' item in the double buffer
const double* getDoublePointer(size_t pos) const { return &mDoubleConstants[pos]; }
/// Get a pointer to the 'nth' item in the int buffer
int* getIntPointer(size_t pos) { _markDirty(); return &mIntConstants[pos]; }
/// Get a pointer to the 'nth' item in the int buffer
const int* getIntPointer(size_t pos) const { return &mIntConstants[pos]; }
/// Get a reference to the list of float constants
const FloatConstantList& getFloatConstantList() const { return mFloatConstants; }
/// Get a reference to the list of double constants
const DoubleConstantList& getDoubleConstantList() const { return mDoubleConstants; }
/// Get a reference to the list of int constants
const IntConstantList& getIntConstantList() const { return mIntConstants; }
/** Internal method that the RenderSystem might use to store optional data. */
void _setRenderSystemData(const Any& data) const { mRenderSystemData = data; }
/** Internal method that the RenderSystem might use to store optional data. */
const Any& _getRenderSystemData() const { return mRenderSystemData; }
};
/// Shared pointer used to hold references to GpuProgramParameters instances
typedef SharedPtr<GpuSharedParameters> GpuSharedParametersPtr;
class GpuProgramParameters;
/** This class records the usage of a set of shared parameters in a concrete
set of GpuProgramParameters.
*/
class _OgreExport GpuSharedParametersUsage : public GpuParamsAlloc
{
protected:
GpuSharedParametersPtr mSharedParams;
// Not a shared pointer since this is also parent
GpuProgramParameters* mParams;
// list of physical mappings that we are going to bring in
struct CopyDataEntry
{
const GpuConstantDefinition* srcDefinition;
const GpuConstantDefinition* dstDefinition;
};
typedef vector<CopyDataEntry>::type CopyDataList;
CopyDataList mCopyDataList;
// Optional data the rendersystem might want to store
mutable Any mRenderSystemData;
/// Version of shared params we based the copydata on
unsigned long mCopyDataVersion;
void initCopyData();
public:
/// Construct usage
GpuSharedParametersUsage(GpuSharedParametersPtr sharedParams,
GpuProgramParameters* params);
/** Update the target parameters by copying the data from the shared
parameters.
@note This method may not actually be called if the RenderSystem
supports using shared parameters directly in their own shared buffer; in
which case the values should not be copied out of the shared area
into the individual parameter set, but bound separately.
*/
void _copySharedParamsToTargetParams();
/// Get the name of the shared parameter set
const String& getName() const { return mSharedParams->getName(); }
GpuSharedParametersPtr getSharedParams() const { return mSharedParams; }
GpuProgramParameters* getTargetParams() const { return mParams; }
/** Internal method that the RenderSystem might use to store optional data. */
void _setRenderSystemData(const Any& data) const { mRenderSystemData = data; }
/** Internal method that the RenderSystem might use to store optional data. */
const Any& _getRenderSystemData() const { return mRenderSystemData; }
};
/** Collects together the program parameters used for a GpuProgram.
@remarks
Gpu program state includes constant parameters used by the program, and
bindings to render system state which is propagated into the constants
by the engine automatically if requested.
@par
GpuProgramParameters objects should be created through the GpuProgram and
may be shared between multiple Pass instances. For this reason they
are managed using a shared pointer, which will ensure they are automatically
deleted when no Pass is using them anymore.
@par
High-level programs use named parameters (uniforms), low-level programs
use indexed constants. This class supports both, but you can tell whether
named constants are supported by calling hasNamedParameters(). There are
references in the documentation below to 'logical' and 'physical' indexes;
logical indexes are the indexes used by low-level programs and represent
indexes into an array of float4's, some of which may be settable, some of
which may be predefined constants in the program. We only store those
constants which have actually been set, therefore our buffer could have
gaps if we used the logical indexes in our own buffers. So instead we map
these logical indexes to physical indexes in our buffer. When using
high-level programs, logical indexes don't necessarily exist, although they
might if the high-level program has a direct, exposed mapping from parameter
names to logical indexes. In addition, high-level languages may or may not pack
arrays of elements that are smaller than float4 (e.g. float2/vec2) contiguously.
This kind of information is held in the ConstantDefinition structure which
is only populated for high-level programs. You don't have to worry about
any of this unless you intend to read parameters back from this structure
rather than just setting them.
*/
class _OgreExport GpuProgramParameters : public GpuParamsAlloc
{
public:
/** Defines the types of automatically updated values that may be bound to GpuProgram
parameters, or used to modify parameters on a per-object basis.
*/
enum AutoConstantType
{
/// The current world matrix
ACT_WORLD_MATRIX,
/// The current world matrix, inverted
ACT_INVERSE_WORLD_MATRIX,
/** Provides transpose of world matrix.
Equivalent to RenderMonkey's "WorldTranspose".
*/
ACT_TRANSPOSE_WORLD_MATRIX,
/// The current world matrix, inverted & transposed
ACT_INVERSE_TRANSPOSE_WORLD_MATRIX,
/// The current array of world matrices, as a 3x4 matrix, used for blending
ACT_WORLD_MATRIX_ARRAY_3x4,
/// The current array of world matrices, used for blending
ACT_WORLD_MATRIX_ARRAY,
/// The current array of world matrices transformed to an array of dual quaternions, represented as a 2x4 matrix
ACT_WORLD_DUALQUATERNION_ARRAY_2x4,
/// The scale and shear components of the current array of world matrices
ACT_WORLD_SCALE_SHEAR_MATRIX_ARRAY_3x4,
/// The current view matrix
ACT_VIEW_MATRIX,
/// The current view matrix, inverted
ACT_INVERSE_VIEW_MATRIX,
/** Provides transpose of view matrix.
Equivalent to RenderMonkey's "ViewTranspose".
*/
ACT_TRANSPOSE_VIEW_MATRIX,
/** Provides inverse transpose of view matrix.
Equivalent to RenderMonkey's "ViewInverseTranspose".
*/
ACT_INVERSE_TRANSPOSE_VIEW_MATRIX,
/// The current projection matrix
ACT_PROJECTION_MATRIX,
/** Provides inverse of projection matrix.
Equivalent to RenderMonkey's "ProjectionInverse".
*/
ACT_INVERSE_PROJECTION_MATRIX,
/** Provides transpose of projection matrix.
Equivalent to RenderMonkey's "ProjectionTranspose".
*/
ACT_TRANSPOSE_PROJECTION_MATRIX,
/** Provides inverse transpose of projection matrix.
Equivalent to RenderMonkey's "ProjectionInverseTranspose".
*/
ACT_INVERSE_TRANSPOSE_PROJECTION_MATRIX,
/// The current view & projection matrices concatenated
ACT_VIEWPROJ_MATRIX,
/** Provides inverse of concatenated view and projection matrices.
Equivalent to RenderMonkey's "ViewProjectionInverse".
*/
ACT_INVERSE_VIEWPROJ_MATRIX,
/** Provides transpose of concatenated view and projection matrices.
Equivalent to RenderMonkey's "ViewProjectionTranspose".
*/
ACT_TRANSPOSE_VIEWPROJ_MATRIX,
/** Provides inverse transpose of concatenated view and projection matrices.
Equivalent to RenderMonkey's "ViewProjectionInverseTranspose".
*/
ACT_INVERSE_TRANSPOSE_VIEWPROJ_MATRIX,
/// The current world & view matrices concatenated
ACT_WORLDVIEW_MATRIX,
/// The current world & view matrices concatenated, then inverted
ACT_INVERSE_WORLDVIEW_MATRIX,
/** Provides transpose of concatenated world and view matrices.
Equivalent to RenderMonkey's "WorldViewTranspose".
*/
ACT_TRANSPOSE_WORLDVIEW_MATRIX,
/// The current world & view matrices concatenated, then inverted & transposed
ACT_INVERSE_TRANSPOSE_WORLDVIEW_MATRIX,
/// view matrices.
/// The current world, view & projection matrices concatenated
ACT_WORLDVIEWPROJ_MATRIX,
/** Provides inverse of concatenated world, view and projection matrices.
Equivalent to RenderMonkey's "WorldViewProjectionInverse".
*/
ACT_INVERSE_WORLDVIEWPROJ_MATRIX,
/** Provides transpose of concatenated world, view and projection matrices.
Equivalent to RenderMonkey's "WorldViewProjectionTranspose".
*/
ACT_TRANSPOSE_WORLDVIEWPROJ_MATRIX,
/** Provides inverse transpose of concatenated world, view and projection
matrices. Equivalent to RenderMonkey's "WorldViewProjectionInverseTranspose".
*/
ACT_INVERSE_TRANSPOSE_WORLDVIEWPROJ_MATRIX,
/// render target related values
/** -1 if requires texture flipping, +1 otherwise. It's useful when you bypassed
projection matrix transform, still able use this value to adjust transformed y position.
*/
ACT_RENDER_TARGET_FLIPPING,
/** -1 if the winding has been inverted (e.g. for reflections), +1 otherwise.
*/
ACT_VERTEX_WINDING,
/// Fog colour
ACT_FOG_COLOUR,
/// Fog params: density, linear start, linear end, 1/(end-start)
ACT_FOG_PARAMS,
/// Surface ambient colour, as set in Pass::setAmbient
ACT_SURFACE_AMBIENT_COLOUR,
/// Surface diffuse colour, as set in Pass::setDiffuse
ACT_SURFACE_DIFFUSE_COLOUR,
/// Surface specular colour, as set in Pass::setSpecular
ACT_SURFACE_SPECULAR_COLOUR,
/// Surface emissive colour, as set in Pass::setSelfIllumination
ACT_SURFACE_EMISSIVE_COLOUR,
/// Surface shininess, as set in Pass::setShininess
ACT_SURFACE_SHININESS,
/// Surface alpha rejection value, not as set in Pass::setAlphaRejectionValue, but a floating number between 0.0f and 1.0f instead (255.0f / Pass::getAlphaRejectionValue())
ACT_SURFACE_ALPHA_REJECTION_VALUE,
/// The number of active light sources (better than gl_MaxLights)
ACT_LIGHT_COUNT,
/// The ambient light colour set in the scene
ACT_AMBIENT_LIGHT_COLOUR,
/// Light diffuse colour (index determined by setAutoConstant call)
ACT_LIGHT_DIFFUSE_COLOUR,
/// Light specular colour (index determined by setAutoConstant call)
ACT_LIGHT_SPECULAR_COLOUR,
/// Light attenuation parameters, Vector4(range, constant, linear, quadric)
ACT_LIGHT_ATTENUATION,
/** Spotlight parameters, Vector4(innerFactor, outerFactor, falloff, isSpot)
innerFactor and outerFactor are cos(angle/2)
The isSpot parameter is 0.0f for non-spotlights, 1.0f for spotlights.
Also for non-spotlights the inner and outer factors are 1 and nearly 1 respectively
*/
ACT_SPOTLIGHT_PARAMS,
/// A light position in world space (index determined by setAutoConstant call)
ACT_LIGHT_POSITION,
/// A light position in object space (index determined by setAutoConstant call)
ACT_LIGHT_POSITION_OBJECT_SPACE,
/// A light position in view space (index determined by setAutoConstant call)
ACT_LIGHT_POSITION_VIEW_SPACE,
/// A light direction in world space (index determined by setAutoConstant call)
ACT_LIGHT_DIRECTION,
/// A light direction in object space (index determined by setAutoConstant call)
ACT_LIGHT_DIRECTION_OBJECT_SPACE,
/// A light direction in view space (index determined by setAutoConstant call)
ACT_LIGHT_DIRECTION_VIEW_SPACE,
/** The distance of the light from the center of the object
a useful approximation as an alternative to per-vertex distance
calculations.
*/
ACT_LIGHT_DISTANCE_OBJECT_SPACE,
/** Light power level, a single scalar as set in Light::setPowerScale (index determined by setAutoConstant call) */
ACT_LIGHT_POWER_SCALE,
/// Light diffuse colour pre-scaled by Light::setPowerScale (index determined by setAutoConstant call)
ACT_LIGHT_DIFFUSE_COLOUR_POWER_SCALED,
/// Light specular colour pre-scaled by Light::setPowerScale (index determined by setAutoConstant call)
ACT_LIGHT_SPECULAR_COLOUR_POWER_SCALED,
/// Array of light diffuse colours (count set by extra param)
ACT_LIGHT_DIFFUSE_COLOUR_ARRAY,
/// Array of light specular colours (count set by extra param)
ACT_LIGHT_SPECULAR_COLOUR_ARRAY,
/// Array of light diffuse colours scaled by light power (count set by extra param)
ACT_LIGHT_DIFFUSE_COLOUR_POWER_SCALED_ARRAY,
/// Array of light specular colours scaled by light power (count set by extra param)
ACT_LIGHT_SPECULAR_COLOUR_POWER_SCALED_ARRAY,
/// Array of light attenuation parameters, Vector4(range, constant, linear, quadric) (count set by extra param)
ACT_LIGHT_ATTENUATION_ARRAY,
/// Array of light positions in world space (count set by extra param)
ACT_LIGHT_POSITION_ARRAY,
/// Array of light positions in object space (count set by extra param)
ACT_LIGHT_POSITION_OBJECT_SPACE_ARRAY,
/// Array of light positions in view space (count set by extra param)
ACT_LIGHT_POSITION_VIEW_SPACE_ARRAY,
/// Array of light directions in world space (count set by extra param)
ACT_LIGHT_DIRECTION_ARRAY,
/// Array of light directions in object space (count set by extra param)
ACT_LIGHT_DIRECTION_OBJECT_SPACE_ARRAY,
/// Array of light directions in view space (count set by extra param)
ACT_LIGHT_DIRECTION_VIEW_SPACE_ARRAY,
/** Array of distances of the lights from the center of the object
a useful approximation as an alternative to per-vertex distance
calculations. (count set by extra param)
*/
ACT_LIGHT_DISTANCE_OBJECT_SPACE_ARRAY,
/** Array of light power levels, a single scalar as set in Light::setPowerScale
(count set by extra param)
*/
ACT_LIGHT_POWER_SCALE_ARRAY,
/** Spotlight parameters array of Vector4(innerFactor, outerFactor, falloff, isSpot)
innerFactor and outerFactor are cos(angle/2)
The isSpot parameter is 0.0f for non-spotlights, 1.0f for spotlights.
Also for non-spotlights the inner and outer factors are 1 and nearly 1 respectively.
(count set by extra param)
*/
ACT_SPOTLIGHT_PARAMS_ARRAY,
/** The derived ambient light colour, with 'r', 'g', 'b' components filled with
product of surface ambient colour and ambient light colour, respectively,
and 'a' component filled with surface ambient alpha component.
*/
ACT_DERIVED_AMBIENT_LIGHT_COLOUR,
/** The derived scene colour, with 'r', 'g' and 'b' components filled with sum
of derived ambient light colour and surface emissive colour, respectively,
and 'a' component filled with surface diffuse alpha component.
*/
ACT_DERIVED_SCENE_COLOUR,
/** The derived light diffuse colour (index determined by setAutoConstant call),
with 'r', 'g' and 'b' components filled with product of surface diffuse colour,
light power scale and light diffuse colour, respectively, and 'a' component filled with surface
diffuse alpha component.
*/
ACT_DERIVED_LIGHT_DIFFUSE_COLOUR,
/** The derived light specular colour (index determined by setAutoConstant call),
with 'r', 'g' and 'b' components filled with product of surface specular colour
and light specular colour, respectively, and 'a' component filled with surface
specular alpha component.
*/
ACT_DERIVED_LIGHT_SPECULAR_COLOUR,
/// Array of derived light diffuse colours (count set by extra param)
ACT_DERIVED_LIGHT_DIFFUSE_COLOUR_ARRAY,
/// Array of derived light specular colours (count set by extra param)
ACT_DERIVED_LIGHT_SPECULAR_COLOUR_ARRAY,
/** The absolute light number of a local light index. Each pass may have
a number of lights passed to it, and each of these lights will have
an index in the overall light list, which will differ from the local
light index due to factors like setStartLight and setIteratePerLight.
This binding provides the global light index for a local index.
*/
ACT_LIGHT_NUMBER,
/// Returns (int) 1 if the given light casts shadows, 0 otherwise (index set in extra param)
ACT_LIGHT_CASTS_SHADOWS,
/// Returns (int) 1 if the given light casts shadows, 0 otherwise (index set in extra param)
ACT_LIGHT_CASTS_SHADOWS_ARRAY,
/** The distance a shadow volume should be extruded when using
finite extrusion programs.
*/
ACT_SHADOW_EXTRUSION_DISTANCE,
/// The current camera's position in world space
ACT_CAMERA_POSITION,
/// The current camera's position in object space
ACT_CAMERA_POSITION_OBJECT_SPACE,
/// The view/projection matrix of the assigned texture projection frustum
ACT_TEXTURE_VIEWPROJ_MATRIX,
/// Array of view/projection matrices of the first n texture projection frustums
ACT_TEXTURE_VIEWPROJ_MATRIX_ARRAY,
/** The view/projection matrix of the assigned texture projection frustum,
combined with the current world matrix
*/
ACT_TEXTURE_WORLDVIEWPROJ_MATRIX,
/// Array of world/view/projection matrices of the first n texture projection frustums
ACT_TEXTURE_WORLDVIEWPROJ_MATRIX_ARRAY,
/// The view/projection matrix of a given spotlight
ACT_SPOTLIGHT_VIEWPROJ_MATRIX,
/// Array of view/projection matrix of a given spotlight
ACT_SPOTLIGHT_VIEWPROJ_MATRIX_ARRAY,
/** The view/projection matrix of a given spotlight projection frustum,
combined with the current world matrix
*/
ACT_SPOTLIGHT_WORLDVIEWPROJ_MATRIX,
/** An array of the view/projection matrix of a given spotlight projection frustum,
combined with the current world matrix
*/
ACT_SPOTLIGHT_WORLDVIEWPROJ_MATRIX_ARRAY,
/// A custom parameter which will come from the renderable, using 'data' as the identifier
ACT_CUSTOM,
/** provides current elapsed time
*/
ACT_TIME,
/** Single float value, which repeats itself based on given as
parameter "cycle time". Equivalent to RenderMonkey's "Time0_X".
*/
ACT_TIME_0_X,
/// Cosine of "Time0_X". Equivalent to RenderMonkey's "CosTime0_X".
ACT_COSTIME_0_X,
/// Sine of "Time0_X". Equivalent to RenderMonkey's "SinTime0_X".
ACT_SINTIME_0_X,
/// Tangent of "Time0_X". Equivalent to RenderMonkey's "TanTime0_X".
ACT_TANTIME_0_X,
/** Vector of "Time0_X", "SinTime0_X", "CosTime0_X",
"TanTime0_X". Equivalent to RenderMonkey's "Time0_X_Packed".
*/
ACT_TIME_0_X_PACKED,
/** Single float value, which represents scaled time value [0..1],
which repeats itself based on given as parameter "cycle time".
Equivalent to RenderMonkey's "Time0_1".
*/
ACT_TIME_0_1,
/// Cosine of "Time0_1". Equivalent to RenderMonkey's "CosTime0_1".
ACT_COSTIME_0_1,
/// Sine of "Time0_1". Equivalent to RenderMonkey's "SinTime0_1".
ACT_SINTIME_0_1,
/// Tangent of "Time0_1". Equivalent to RenderMonkey's "TanTime0_1".
ACT_TANTIME_0_1,
/** Vector of "Time0_1", "SinTime0_1", "CosTime0_1",
"TanTime0_1". Equivalent to RenderMonkey's "Time0_1_Packed".
*/
ACT_TIME_0_1_PACKED,
/** Single float value, which represents scaled time value [0..2*Pi],
which repeats itself based on given as parameter "cycle time".
Equivalent to RenderMonkey's "Time0_2PI".
*/
ACT_TIME_0_2PI,
/// Cosine of "Time0_2PI". Equivalent to RenderMonkey's "CosTime0_2PI".
ACT_COSTIME_0_2PI,
/// Sine of "Time0_2PI". Equivalent to RenderMonkey's "SinTime0_2PI".
ACT_SINTIME_0_2PI,
/// Tangent of "Time0_2PI". Equivalent to RenderMonkey's "TanTime0_2PI".
ACT_TANTIME_0_2PI,
/** Vector of "Time0_2PI", "SinTime0_2PI", "CosTime0_2PI",
"TanTime0_2PI". Equivalent to RenderMonkey's "Time0_2PI_Packed".
*/
ACT_TIME_0_2PI_PACKED,
/// provides the scaled frame time, returned as a floating point value.
ACT_FRAME_TIME,
/// provides the calculated frames per second, returned as a floating point value.
ACT_FPS,
/// viewport-related values
/** Current viewport width (in pixels) as floating point value.
Equivalent to RenderMonkey's "ViewportWidth".
*/
ACT_VIEWPORT_WIDTH,
/** Current viewport height (in pixels) as floating point value.
Equivalent to RenderMonkey's "ViewportHeight".
*/
ACT_VIEWPORT_HEIGHT,
/** This variable represents 1.0/ViewportWidth.
Equivalent to RenderMonkey's "ViewportWidthInverse".
*/
ACT_INVERSE_VIEWPORT_WIDTH,
/** This variable represents 1.0/ViewportHeight.
Equivalent to RenderMonkey's "ViewportHeightInverse".
*/
ACT_INVERSE_VIEWPORT_HEIGHT,
/** Packed of "ViewportWidth", "ViewportHeight", "ViewportWidthInverse",
"ViewportHeightInverse".
*/
ACT_VIEWPORT_SIZE,
/// view parameters
/** This variable provides the view direction vector (world space).
Equivalent to RenderMonkey's "ViewDirection".
*/
ACT_VIEW_DIRECTION,
/** This variable provides the view side vector (world space).
Equivalent to RenderMonkey's "ViewSideVector".
*/
ACT_VIEW_SIDE_VECTOR,
/** This variable provides the view up vector (world space).
Equivalent to RenderMonkey's "ViewUpVector".
*/
ACT_VIEW_UP_VECTOR,
/** This variable provides the field of view as a floating point value.
Equivalent to RenderMonkey's "FOV".
*/
ACT_FOV,
/** This variable provides the near clip distance as a floating point value.
Equivalent to RenderMonkey's "NearClipPlane".
*/
ACT_NEAR_CLIP_DISTANCE,
/** This variable provides the far clip distance as a floating point value.
Equivalent to RenderMonkey's "FarClipPlane".
*/
ACT_FAR_CLIP_DISTANCE,
/** provides the pass index number within the technique
of the active materil.
*/
ACT_PASS_NUMBER,
/** provides the current iteration number of the pass. The iteration
number is the number of times the current render operation has
been drawn for the active pass.
*/
ACT_PASS_ITERATION_NUMBER,
/** Provides a parametric animation value [0..1], only available
where the renderable specifically implements it.
*/
ACT_ANIMATION_PARAMETRIC,
/** Provides the texel offsets required by this rendersystem to map
texels to pixels. Packed as
float4(absoluteHorizontalOffset, absoluteVerticalOffset,
horizontalOffset / viewportWidth, verticalOffset / viewportHeight)
*/
ACT_TEXEL_OFFSETS,
/** Provides information about the depth range of the scene as viewed
from the current camera.
Passed as float4(minDepth, maxDepth, depthRange, 1 / depthRange)
*/
ACT_SCENE_DEPTH_RANGE,
/** Provides information about the depth range of the scene as viewed
from a given shadow camera. Requires an index parameter which maps
to a light index relative to the current light list.
Passed as float4(minDepth, maxDepth, depthRange, 1 / depthRange)
*/
ACT_SHADOW_SCENE_DEPTH_RANGE,
/** Provides an array of information about the depth range of the scene as viewed
from a given shadow camera. Requires an index parameter which maps
to a light index relative to the current light list.
Passed as float4(minDepth, maxDepth, depthRange, 1 / depthRange)
*/
ACT_SHADOW_SCENE_DEPTH_RANGE_ARRAY,
/** Provides the fixed shadow colour as configured via SceneManager::setShadowColour;
useful for integrated modulative shadows.
*/
ACT_SHADOW_COLOUR,
/** Provides texture size of the texture unit (index determined by setAutoConstant
call). Packed as float4(width, height, depth, 1)
*/
ACT_TEXTURE_SIZE,
/** Provides inverse texture size of the texture unit (index determined by setAutoConstant
call). Packed as float4(1 / width, 1 / height, 1 / depth, 1)
*/
ACT_INVERSE_TEXTURE_SIZE,
/** Provides packed texture size of the texture unit (index determined by setAutoConstant
call). Packed as float4(width, height, 1 / width, 1 / height)
*/
ACT_PACKED_TEXTURE_SIZE,
/** Provides the current transform matrix of the texture unit (index determined by setAutoConstant
call), as seen by the fixed-function pipeline.
*/
ACT_TEXTURE_MATRIX,
/** Provides the position of the LOD camera in world space, allowing you
to perform separate LOD calculations in shaders independent of the rendering
camera. If there is no separate LOD camera then this is the real camera
position. See Camera::setLodCamera.
*/
ACT_LOD_CAMERA_POSITION,
/** Provides the position of the LOD camera in object space, allowing you
to perform separate LOD calculations in shaders independent of the rendering
camera. If there is no separate LOD camera then this is the real camera
position. See Camera::setLodCamera.
*/
ACT_LOD_CAMERA_POSITION_OBJECT_SPACE,
/** Binds custom per-light constants to the shaders. */
ACT_LIGHT_CUSTOM,
ACT_UNKNOWN = 999
};
/** Defines the type of the extra data item used by the auto constant.
*/
enum ACDataType {
/// no data is required
ACDT_NONE,
/// the auto constant requires data of type int
ACDT_INT,
/// the auto constant requires data of type real
ACDT_REAL
};
/** Defines the base element type of the auto constant
*/
enum ElementType {
ET_INT,
ET_REAL
};
/** Structure defining an auto constant that's available for use in
a parameters object.
*/
struct AutoConstantDefinition
{
AutoConstantType acType;
String name;
size_t elementCount;
/// The type of the constant in the program
ElementType elementType;
/// The type of any extra data
ACDataType dataType;
AutoConstantDefinition(AutoConstantType _acType, const String& _name,
size_t _elementCount, ElementType _elementType,
ACDataType _dataType)
:acType(_acType), name(_name), elementCount(_elementCount),
elementType(_elementType), dataType(_dataType)
{
}
};
/** Structure recording the use of an automatic parameter. */
class AutoConstantEntry
{
public:
/// The type of parameter
AutoConstantType paramType;
/// The target (physical) constant index
size_t physicalIndex;
/** The number of elements per individual entry in this constant
Used in case people used packed elements smaller than 4 (e.g. GLSL)
and bind an auto which is 4-element packed to it */
size_t elementCount;
/// Additional information to go with the parameter
union{
size_t data;
Real fData;
};
/// The variability of this parameter (see GpuParamVariability)
uint16 variability;
AutoConstantEntry(AutoConstantType theType, size_t theIndex, size_t theData,
uint16 theVariability, size_t theElemCount = 4)
: paramType(theType), physicalIndex(theIndex), elementCount(theElemCount),
data(theData), variability(theVariability) {}
AutoConstantEntry(AutoConstantType theType, size_t theIndex, Real theData,
uint16 theVariability, size_t theElemCount = 4)
: paramType(theType), physicalIndex(theIndex), elementCount(theElemCount),
fData(theData), variability(theVariability) {}
};
// Auto parameter storage
typedef vector<AutoConstantEntry>::type AutoConstantList;
typedef vector<GpuSharedParametersUsage>::type GpuSharedParamUsageList;
// Map that store subroutines associated with slots
typedef HashMap<unsigned int, String> SubroutineMap;
typedef HashMap<unsigned int, String>::const_iterator SubroutineIterator;
protected:
SubroutineMap mSubroutineMap;
static AutoConstantDefinition AutoConstantDictionary[];
/// Packed list of floating-point constants (physical indexing)
FloatConstantList mFloatConstants;
/// Packed list of double-point constants (physical indexing)
DoubleConstantList mDoubleConstants;
/// Packed list of integer constants (physical indexing)
IntConstantList mIntConstants;
/** Logical index to physical index map - for low-level programs
or high-level programs which pass params this way. */
GpuLogicalBufferStructPtr mFloatLogicalToPhysical;
/** Logical index to physical index map - for low-level programs
or high-level programs which pass params this way. */
GpuLogicalBufferStructPtr mDoubleLogicalToPhysical;
/** Logical index to physical index map - for low-level programs
or high-level programs which pass params this way. */
GpuLogicalBufferStructPtr mIntLogicalToPhysical;
/// Mapping from parameter names to def - high-level programs are expected to populate this
GpuNamedConstantsPtr mNamedConstants;
/// List of automatically updated parameters
AutoConstantList mAutoConstants;
/// The combined variability masks of all parameters
uint16 mCombinedVariability;
/// Do we need to transpose matrices?
bool mTransposeMatrices;
/// flag to indicate if names not found will be ignored
bool mIgnoreMissingParams;
/// physical index for active pass iteration parameter real constant entry;
size_t mActivePassIterationIndex;
/** Gets the low-level structure for a logical index.
*/
GpuLogicalIndexUse* _getFloatConstantLogicalIndexUse(size_t logicalIndex, size_t requestedSize, uint16 variability);
/** Gets the low-level structure for a logical index.
*/
GpuLogicalIndexUse* _getDoubleConstantLogicalIndexUse(size_t logicalIndex, size_t requestedSize, uint16 variability);
/** Gets the physical buffer index associated with a logical int constant index.
*/
GpuLogicalIndexUse* _getIntConstantLogicalIndexUse(size_t logicalIndex, size_t requestedSize, uint16 variability);
/// Return the variability for an auto constant
uint16 deriveVariability(AutoConstantType act);
void copySharedParamSetUsage(const GpuSharedParamUsageList& srcList);
GpuSharedParamUsageList mSharedParamSets;
// Optional data the rendersystem might want to store
mutable Any mRenderSystemData;
public:
GpuProgramParameters();
~GpuProgramParameters() {}
/// Copy constructor
GpuProgramParameters(const GpuProgramParameters& oth);
/// Operator = overload
GpuProgramParameters& operator=(const GpuProgramParameters& oth);
/** Internal method for providing a link to a name->definition map for parameters. */
void _setNamedConstants(const GpuNamedConstantsPtr& constantmap);
/** Internal method for providing a link to a logical index->physical index map for parameters. */
void _setLogicalIndexes(const GpuLogicalBufferStructPtr& floatIndexMap, const GpuLogicalBufferStructPtr& doubleIndexMap,
const GpuLogicalBufferStructPtr& intIndexMap);
/// Does this parameter set include named parameters?
bool hasNamedParameters() const { return !mNamedConstants.isNull(); }
/** Does this parameter set include logically indexed parameters?
@note Not mutually exclusive with hasNamedParameters since some high-level
programs still use logical indexes to set the parameters on the
rendersystem.
*/
bool hasLogicalIndexedParameters() const { return !mFloatLogicalToPhysical.isNull(); }
/** Sets a 4-element floating-point parameter to the program.
@param index The logical constant index at which to place the parameter
(each constant is a 4D float)
@param vec The value to set
*/
void setConstant(size_t index, const Vector4& vec);
/** Sets a single floating-point parameter to the program.
@note This is actually equivalent to calling
setConstant(index Vector4(val, 0, 0, 0)) since all constants are 4D.
@param index The logical constant index at which to place the parameter (each constant is
a 4D float)
@param val The value to set
*/
void setConstant(size_t index, Real val);
/** Sets a 4-element floating-point parameter to the program via Vector3.
@param index The logical constant index at which to place the parameter (each constant is
a 4D float).
Note that since you're passing a Vector3, the last element of the 4-element
value will be set to 1 (a homogeneous vector)
@param vec The value to set
*/
void setConstant(size_t index, const Vector3& vec);
/** Sets a 4-element floating-point parameter to the program via Vector2.
@param index The logical constant index at which to place the parameter (each constant is
a 4D float).
Note that since you're passing a Vector2, the last 2 elements of the 4-element
value will be set to 1 (a homogeneous vector)
@param vec The value to set
*/
void setConstant(size_t index, const Vector2& vec);
/** Sets a Matrix4 parameter to the program.
@param index The logical constant index at which to place the parameter (each constant is
a 4D float).
NB since a Matrix4 is 16 floats long, this parameter will take up 4 indexes.
@param m The value to set
*/
void setConstant(size_t index, const Matrix4& m);
/** Sets a list of Matrix4 parameters to the program.
@param index The logical constant index at which to start placing the parameter (each constant is
a 4D float).
NB since a Matrix4 is 16 floats long, so each entry will take up 4 indexes.
@param m Pointer to an array of matrices to set
@param numEntries Number of Matrix4 entries
*/
void setConstant(size_t index, const Matrix4* m, size_t numEntries);
/** Sets a multiple value constant floating-point parameter to the program.
@param index The logical constant index at which to start placing parameters (each constant is
a 4D float)
@param val Pointer to the values to write, must contain 4*count floats
@param count The number of groups of 4 floats to write
*/
void setConstant(size_t index, const float *val, size_t count);
/** Sets a multiple value constant floating-point parameter to the program.
@param index The logical constant index at which to start placing parameters (each constant is
a 4D float)
@param val Pointer to the values to write, must contain 4*count floats
@param count The number of groups of 4 floats to write
*/
void setConstant(size_t index, const double *val, size_t count);
/** Sets a ColourValue parameter to the program.
@param index The logical constant index at which to place the parameter (each constant is
a 4D float)
@param colour The value to set
*/
void setConstant(size_t index, const ColourValue& colour);
/** Sets a multiple value constant integer parameter to the program.
@remarks
Different types of GPU programs support different types of constant parameters.
For example, it's relatively common to find that vertex programs only support
floating point constants, and that fragment programs only support integer (fixed point)
parameters. This can vary depending on the program version supported by the
graphics card being used. You should consult the documentation for the type of
low level program you are using, or alternatively use the methods
provided on RenderSystemCapabilities to determine the options.
@param index The logical constant index at which to place the parameter (each constant is
a 4D integer)
@param val Pointer to the values to write, must contain 4*count ints
@param count The number of groups of 4 ints to write
*/
void setConstant(size_t index, const int *val, size_t count);
/** Write a series of floating point values into the underlying float
constant buffer at the given physical index.
@param physicalIndex The buffer position to start writing
@param val Pointer to a list of values to write
@param count The number of floats to write
*/
void _writeRawConstants(size_t physicalIndex, const float* val, size_t count);
/** Write a series of floating point values into the underlying float
constant buffer at the given physical index.
@param physicalIndex The buffer position to start writing
@param val Pointer to a list of values to write
@param count The number of floats to write
*/
void _writeRawConstants(size_t physicalIndex, const double* val, size_t count);
/** Write a series of integer values into the underlying integer
constant buffer at the given physical index.
@param physicalIndex The buffer position to start writing
@param val Pointer to a list of values to write
@param count The number of ints to write
*/
void _writeRawConstants(size_t physicalIndex, const int* val, size_t count);
/** Read a series of floating point values from the underlying float
constant buffer at the given physical index.
@param physicalIndex The buffer position to start reading
@param count The number of floats to read
@param dest Pointer to a buffer to receive the values
*/
void _readRawConstants(size_t physicalIndex, size_t count, float* dest);
/** Read a series of integer values from the underlying integer
constant buffer at the given physical index.
@param physicalIndex The buffer position to start reading
@param count The number of ints to read
@param dest Pointer to a buffer to receive the values
*/
void _readRawConstants(size_t physicalIndex, size_t count, int* dest);
/** Write a 4-element floating-point parameter to the program directly to
the underlying constants buffer.
@note You can use these methods if you have already derived the physical
constant buffer location, for a slight speed improvement over using
the named / logical index versions.
@param physicalIndex The physical buffer index at which to place the parameter
@param vec The value to set
@param count The number of floats to write; if for example
the uniform constant 'slot' is smaller than a Vector4
*/
void _writeRawConstant(size_t physicalIndex, const Vector4& vec,
size_t count = 4);
/** Write a single floating-point parameter to the program.
@note You can use these methods if you have already derived the physical
constant buffer location, for a slight speed improvement over using
the named / logical index versions.
@param physicalIndex The physical buffer index at which to place the parameter
@param val The value to set
*/
void _writeRawConstant(size_t physicalIndex, Real val);
/** Write a variable number of floating-point parameters to the program.
@note You can use these methods if you have already derived the physical
constant buffer location, for a slight speed improvement over using
the named / logical index versions.
@param physicalIndex The physical buffer index at which to place the parameter
@param val The value to set
*/
void _writeRawConstant(size_t physicalIndex, Real val, size_t count);
/** Write a single integer parameter to the program.
@note You can use these methods if you have already derived the physical
constant buffer location, for a slight speed improvement over using
the named / logical index versions.
@param physicalIndex The physical buffer index at which to place the parameter
@param val The value to set
*/
void _writeRawConstant(size_t physicalIndex, int val);
/** Write a 3-element floating-point parameter to the program via Vector3.
@note You can use these methods if you have already derived the physical
constant buffer location, for a slight speed improvement over using
the named / logical index versions.
@param physicalIndex The physical buffer index at which to place the parameter
@param vec The value to set
*/
void _writeRawConstant(size_t physicalIndex, const Vector3& vec);
/** Write a 2-element floating-point parameter to the program via Vector2.
@note You can use these methods if you have already derived the physical
constant buffer location, for a slight speed improvement over using
the named / logical index versions.
@param physicalIndex The physical buffer index at which to place the parameter
@param vec The value to set
*/
void _writeRawConstant(size_t physicalIndex, const Vector2& vec);
/** Write a Matrix4 parameter to the program.
@note You can use these methods if you have already derived the physical
constant buffer location, for a slight speed improvement over using
the named / logical index versions.
@param physicalIndex The physical buffer index at which to place the parameter
@param m The value to set
@param elementCount actual element count used with shader
*/
void _writeRawConstant(size_t physicalIndex, const Matrix4& m, size_t elementCount);
/** Write a list of Matrix4 parameters to the program.
@note You can use these methods if you have already derived the physical
constant buffer location, for a slight speed improvement over using
the named / logical index versions.
@param physicalIndex The physical buffer index at which to place the parameter
@param numEntries Number of Matrix4 entries
*/
void _writeRawConstant(size_t physicalIndex, const Matrix4* m, size_t numEntries);
/** Write a ColourValue parameter to the program.
@note You can use these methods if you have already derived the physical
constant buffer location, for a slight speed improvement over using
the named / logical index versions.
@param physicalIndex The physical buffer index at which to place the parameter
@param colour The value to set
@param count The number of floats to write; if for example
the uniform constant 'slot' is smaller than a Vector4
*/
void _writeRawConstant(size_t physicalIndex, const ColourValue& colour,
size_t count = 4);
/** Gets an iterator over the named GpuConstantDefinition instances as defined
by the program for which these parameters exist.
@note
Only available if this parameters object has named parameters.
*/
GpuConstantDefinitionIterator getConstantDefinitionIterator(void) const;
/** Get a specific GpuConstantDefinition for a named parameter.
@note
Only available if this parameters object has named parameters.
*/
const GpuConstantDefinition& getConstantDefinition(const String& name) const;
/** Get the full list of GpuConstantDefinition instances.
@note
Only available if this parameters object has named parameters.
*/
const GpuNamedConstants& getConstantDefinitions() const;
/** Get the current list of mappings from low-level logical param indexes
to physical buffer locations in the float buffer.
@note
Only applicable to low-level programs.
*/
const GpuLogicalBufferStructPtr& getFloatLogicalBufferStruct() const { return mFloatLogicalToPhysical; }
/** Retrieves the logical index relating to a physical index in the float
buffer, for programs which support that (low-level programs and
high-level programs which use logical parameter indexes).
@return std::numeric_limits<size_t>::max() if not found
*/
size_t getFloatLogicalIndexForPhysicalIndex(size_t physicalIndex);
/** Retrieves the logical index relating to a physical index in the int
buffer, for programs which support that (low-level programs and
high-level programs which use logical parameter indexes).
@return std::numeric_limits<size_t>::max() if not found
*/
/** Get the current list of mappings from low-level logical param indexes
to physical buffer locations in the double buffer.
@note
Only applicable to low-level programs.
*/
const GpuLogicalBufferStructPtr& getDoubleLogicalBufferStruct() const { return mDoubleLogicalToPhysical; }
/** Retrieves the logical index relating to a physical index in the double
buffer, for programs which support that (low-level programs and
high-level programs which use logical parameter indexes).
@return std::numeric_limits<size_t>::max() if not found
*/
size_t getDoubleLogicalIndexForPhysicalIndex(size_t physicalIndex);
/** Retrieves the logical index relating to a physical index in the int
buffer, for programs which support that (low-level programs and
high-level programs which use logical parameter indexes).
@return std::numeric_limits<size_t>::max() if not found
*/
size_t getIntLogicalIndexForPhysicalIndex(size_t physicalIndex);
/** Get the current list of mappings from low-level logical param indexes
to physical buffer locations in the integer buffer.
@note
Only applicable to low-level programs.
*/
const GpuLogicalBufferStructPtr& getIntLogicalBufferStruct() const { return mIntLogicalToPhysical; }
/// Get a reference to the list of float constants
const FloatConstantList& getFloatConstantList() const { return mFloatConstants; }
/// Get a pointer to the 'nth' item in the float buffer
float* getFloatPointer(size_t pos) { return &mFloatConstants[pos]; }
/// Get a pointer to the 'nth' item in the float buffer
const float* getFloatPointer(size_t pos) const { return &mFloatConstants[pos]; }
/// Get a reference to the list of double constants
const DoubleConstantList& getDoubleConstantList() const { return mDoubleConstants; }
/// Get a pointer to the 'nth' item in the double buffer
double* getDoublePointer(size_t pos) { return &mDoubleConstants[pos]; }
/// Get a pointer to the 'nth' item in the double buffer
const double* getDoublePointer(size_t pos) const { return &mDoubleConstants[pos]; }
/// Get a reference to the list of int constants
const IntConstantList& getIntConstantList() const { return mIntConstants; }
/// Get a pointer to the 'nth' item in the int buffer
int* getIntPointer(size_t pos) { return &mIntConstants[pos]; }
/// Get a pointer to the 'nth' item in the int buffer
const int* getIntPointer(size_t pos) const { return &mIntConstants[pos]; }
/// Get a reference to the list of auto constant bindings
const AutoConstantList& getAutoConstantList() const { return mAutoConstants; }
/** Sets up a constant which will automatically be updated by the system.
@remarks
Vertex and fragment programs often need parameters which are to do with the
current render state, or particular values which may very well change over time,
and often between objects which are being rendered. This feature allows you
to set up a certain number of predefined parameter mappings that are kept up to
date for you.
@param index The location in the constant list to place this updated constant every time
it is changed. Note that because of the nature of the types, we know how big the
parameter details will be so you don't need to set that like you do for manual constants.
@param acType The type of automatic constant to set
@param extraInfo If the constant type needs more information (like a light index) put it here.
*/
void setAutoConstant(size_t index, AutoConstantType acType, size_t extraInfo = 0);
void setAutoConstantReal(size_t index, AutoConstantType acType, Real rData);
/** Sets up a constant which will automatically be updated by the system.
@remarks
Vertex and fragment programs often need parameters which are to do with the
current render state, or particular values which may very well change over time,
and often between objects which are being rendered. This feature allows you
to set up a certain number of predefined parameter mappings that are kept up to
date for you.
@param index The location in the constant list to place this updated constant every time
it is changed. Note that because of the nature of the types, we know how big the
parameter details will be so you don't need to set that like you do for manual constants.
@param acType The type of automatic constant to set
@param extraInfo1 The first extra parameter required by the auto constant type
@param extraInfo2 The first extra parameter required by the auto constant type
*/
void setAutoConstant(size_t index, AutoConstantType acType, uint16 extraInfo1, uint16 extraInfo2);
/** As setAutoConstant, but sets up the auto constant directly against a
physical buffer index.
*/
void _setRawAutoConstant(size_t physicalIndex, AutoConstantType acType, size_t extraInfo,
uint16 variability, size_t elementSize = 4);
/** As setAutoConstantReal, but sets up the auto constant directly against a
physical buffer index.
*/
void _setRawAutoConstantReal(size_t physicalIndex, AutoConstantType acType, Real rData,
uint16 variability, size_t elementSize = 4);
/** Unbind an auto constant so that the constant is manually controlled again. */
void clearAutoConstant(size_t index);
/** Sets a named parameter up to track a derivation of the current time.
@param index The index of the parameter
@param factor The amount by which to scale the time value
*/
void setConstantFromTime(size_t index, Real factor);
/** Clears all the existing automatic constants. */
void clearAutoConstants(void);
typedef ConstVectorIterator<AutoConstantList> AutoConstantIterator;
/** Gets an iterator over the automatic constant bindings currently in place. */
AutoConstantIterator getAutoConstantIterator(void) const;
/// Gets the number of int constants that have been set
size_t getAutoConstantCount(void) const { return mAutoConstants.size(); }
/** Gets a specific Auto Constant entry if index is in valid range
otherwise returns a NULL
@param index which entry is to be retrieved
*/
AutoConstantEntry* getAutoConstantEntry(const size_t index);
/** Returns true if this instance has any automatic constants. */
bool hasAutoConstants(void) const { return !(mAutoConstants.empty()); }
/** Finds an auto constant that's affecting a given logical parameter
index for floating-point values.
@note Only applicable for low-level programs.
*/
const AutoConstantEntry* findFloatAutoConstantEntry(size_t logicalIndex);
/** Finds an auto constant that's affecting a given logical parameter
index for double-point values.
@note Only applicable for low-level programs.
*/
const AutoConstantEntry* findDoubleAutoConstantEntry(size_t logicalIndex);
/** Finds an auto constant that's affecting a given logical parameter
index for integer values.
@note Only applicable for low-level programs.
*/
const AutoConstantEntry* findIntAutoConstantEntry(size_t logicalIndex);
/** Finds an auto constant that's affecting a given named parameter index.
@note Only applicable to high-level programs.
*/
const AutoConstantEntry* findAutoConstantEntry(const String& paramName);
/** Finds an auto constant that's affecting a given physical position in
the floating-point buffer
*/
const AutoConstantEntry* _findRawAutoConstantEntryFloat(size_t physicalIndex);
/** Finds an auto constant that's affecting a given physical position in
the double-point buffer
*/
const AutoConstantEntry* _findRawAutoConstantEntryDouble(size_t physicalIndex);
/** Finds an auto constant that's affecting a given physical position in
the integer buffer
*/
const AutoConstantEntry* _findRawAutoConstantEntryInt(size_t physicalIndex);
/** Update automatic parameters.
@param source The source of the parameters
@param variabilityMask A mask of GpuParamVariability which identifies which autos will need updating
*/
void _updateAutoParams(const AutoParamDataSource* source, uint16 variabilityMask);
/** Tells the program whether to ignore missing parameters or not.
*/
void setIgnoreMissingParams(bool state) { mIgnoreMissingParams = state; }
/** Sets a single value constant floating-point parameter to the program.
@remarks
Different types of GPU programs support different types of constant parameters.
For example, it's relatively common to find that vertex programs only support
floating point constants, and that fragment programs only support integer (fixed point)
parameters. This can vary depending on the program version supported by the
graphics card being used. You should consult the documentation for the type of
low level program you are using, or alternatively use the methods
provided on RenderSystemCapabilities to determine the options.
@par
Another possible limitation is that some systems only allow constants to be set
on certain boundaries, e.g. in sets of 4 values for example. Again, see
RenderSystemCapabilities for full details.
@note
This named option will only work if you are using a parameters object created
from a high-level program (HighLevelGpuProgram).
@param name The name of the parameter
@param val The value to set
*/
void setNamedConstant(const String& name, Real val);
/** Sets a single value constant integer parameter to the program.
@remarks
Different types of GPU programs support different types of constant parameters.
For example, it's relatively common to find that vertex programs only support
floating point constants, and that fragment programs only support integer (fixed point)
parameters. This can vary depending on the program version supported by the
graphics card being used. You should consult the documentation for the type of
low level program you are using, or alternatively use the methods
provided on RenderSystemCapabilities to determine the options.
@par
Another possible limitation is that some systems only allow constants to be set
on certain boundaries, e.g. in sets of 4 values for example. Again, see
RenderSystemCapabilities for full details.
@note
This named option will only work if you are using a parameters object created
from a high-level program (HighLevelGpuProgram).
@param name The name of the parameter
@param val The value to set
*/
void setNamedConstant(const String& name, int val);
/** Sets a Vector4 parameter to the program.
@param name The name of the parameter
@param vec The value to set
*/
void setNamedConstant(const String& name, const Vector4& vec);
/** Sets a Vector3 parameter to the program.
@note
This named option will only work if you are using a parameters object created
from a high-level program (HighLevelGpuProgram).
@param name The name of the parameter
@param vec The value to set
*/
void setNamedConstant(const String& name, const Vector3& vec);
/** Sets a Vector2 parameter to the program.
@param name The name of the parameter
@param vec The value to set
*/
void setNamedConstant(const String& name, const Vector2& vec);
/** Sets a Matrix4 parameter to the program.
@param name The name of the parameter
@param m The value to set
*/
void setNamedConstant(const String& name, const Matrix4& m);
/** Sets a list of Matrix4 parameters to the program.
@param name The name of the parameter; this must be the first index of an array,
for examples 'matrices[0]'
NB since a Matrix4 is 16 floats long, so each entry will take up 4 indexes.
@param m Pointer to an array of matrices to set
@param numEntries Number of Matrix4 entries
*/
void setNamedConstant(const String& name, const Matrix4* m, size_t numEntries);
/** Sets a multiple value constant floating-point parameter to the program.
@par
Some systems only allow constants to be set on certain boundaries,
e.g. in sets of 4 values for example. The 'multiple' parameter allows
you to control that although you should only change it if you know
your chosen language supports that (at the time of writing, only
GLSL allows constants which are not a multiple of 4).
@note
This named option will only work if you are using a parameters object created
from a high-level program (HighLevelGpuProgram).
@param name The name of the parameter
@param val Pointer to the values to write
@param count The number of 'multiples' of floats to write
@param multiple The number of raw entries in each element to write,
the default is 4 so count = 1 would write 4 floats.
*/
void setNamedConstant(const String& name, const float *val, size_t count,
size_t multiple = 4);
/** Sets a multiple value constant floating-point parameter to the program.
@par
Some systems only allow constants to be set on certain boundaries,
e.g. in sets of 4 values for example. The 'multiple' parameter allows
you to control that although you should only change it if you know
your chosen language supports that (at the time of writing, only
GLSL allows constants which are not a multiple of 4).
@note
This named option will only work if you are using a parameters object created
from a high-level program (HighLevelGpuProgram).
@param name The name of the parameter
@param val Pointer to the values to write
@param count The number of 'multiples' of floats to write
@param multiple The number of raw entries in each element to write,
the default is 4 so count = 1 would write 4 floats.
*/
void setNamedConstant(const String& name, const double *val, size_t count,
size_t multiple = 4);
/** Sets a ColourValue parameter to the program.
@param name The name of the parameter
@param colour The value to set
*/
void setNamedConstant(const String& name, const ColourValue& colour);
/** Sets a multiple value constant floating-point parameter to the program.
@par
Some systems only allow constants to be set on certain boundaries,
e.g. in sets of 4 values for example. The 'multiple' parameter allows
you to control that although you should only change it if you know
your chosen language supports that (at the time of writing, only
GLSL allows constants which are not a multiple of 4).
@note
This named option will only work if you are using a parameters object created
from a high-level program (HighLevelGpuProgram).
@param name The name of the parameter
@param val Pointer to the values to write
@param count The number of 'multiples' of floats to write
@param multiple The number of raw entries in each element to write,
the default is 4 so count = 1 would write 4 floats.
*/
void setNamedConstant(const String& name, const int *val, size_t count,
size_t multiple = 4);
/** Sets up a constant which will automatically be updated by the system.
@remarks
Vertex and fragment programs often need parameters which are to do with the
current render state, or particular values which may very well change over time,
and often between objects which are being rendered. This feature allows you
to set up a certain number of predefined parameter mappings that are kept up to
date for you.
@note
This named option will only work if you are using a parameters object created
from a high-level program (HighLevelGpuProgram).
@param name The name of the parameter
@param acType The type of automatic constant to set
@param extraInfo If the constant type needs more information (like a light index) put it here.
*/
void setNamedAutoConstant(const String& name, AutoConstantType acType, size_t extraInfo = 0);
void setNamedAutoConstantReal(const String& name, AutoConstantType acType, Real rData);
/** Sets up a constant which will automatically be updated by the system.
@remarks
Vertex and fragment programs often need parameters which are to do with the
current render state, or particular values which may very well change over time,
and often between objects which are being rendered. This feature allows you
to set up a certain number of predefined parameter mappings that are kept up to
date for you.
@note
This named option will only work if you are using a parameters object created
from a high-level program (HighLevelGpuProgram).
@param name The name of the parameter
@param acType The type of automatic constant to set
@param extraInfo1 The first extra info required by this auto constant type
@param extraInfo2 The first extra info required by this auto constant type
*/
void setNamedAutoConstant(const String& name, AutoConstantType acType, uint16 extraInfo1, uint16 extraInfo2);
/** Sets a named parameter up to track a derivation of the current time.
@note
This named option will only work if you are using a parameters object created
from a high-level program (HighLevelGpuProgram).
@param name The name of the parameter
@param factor The amount by which to scale the time value
*/
void setNamedConstantFromTime(const String& name, Real factor);
/** Unbind an auto constant so that the constant is manually controlled again. */
void clearNamedAutoConstant(const String& name);
/** Find a constant definition for a named parameter.
@remarks
This method returns null if the named parameter did not exist, unlike
getConstantDefinition which is more strict; unless you set the
last parameter to true.
@param name The name to look up
@param throwExceptionIfMissing If set to true, failure to find an entry
will throw an exception.
*/
const GpuConstantDefinition* _findNamedConstantDefinition(
const String& name, bool throwExceptionIfMissing = false) const;
/** Gets the physical buffer index associated with a logical float constant index.
@note Only applicable to low-level programs.
@param logicalIndex The logical parameter index
@param requestedSize The requested size - pass 0 to ignore missing entries
and return std::numeric_limits<size_t>::max()
*/
size_t _getFloatConstantPhysicalIndex(size_t logicalIndex, size_t requestedSize, uint16 variability);
/** Gets the physical buffer index associated with a logical double constant index.
@note Only applicable to low-level programs.
@param logicalIndex The logical parameter index
@param requestedSize The requested size - pass 0 to ignore missing entries
and return std::numeric_limits<size_t>::max()
*/
size_t _getDoubleConstantPhysicalIndex(size_t logicalIndex, size_t requestedSize, uint16 variability);
/** Gets the physical buffer index associated with a logical int constant index.
@note Only applicable to low-level programs.
@param logicalIndex The logical parameter index
@param requestedSize The requested size - pass 0 to ignore missing entries
and return std::numeric_limits<size_t>::max()
*/
size_t _getIntConstantPhysicalIndex(size_t logicalIndex, size_t requestedSize, uint16 variability);
/** Sets whether or not we need to transpose the matrices passed in from the rest of OGRE.
@remarks
D3D uses transposed matrices compared to GL and OGRE; this is not important when you
use programs which are written to process row-major matrices, such as those generated
by Cg, but if you use a program written to D3D's matrix layout you will need to enable
this flag.
*/
void setTransposeMatrices(bool val) { mTransposeMatrices = val; }
/// Gets whether or not matrices are to be transposed when set
bool getTransposeMatrices(void) const { return mTransposeMatrices; }
/** Copies the values of all constants (including auto constants) from another
GpuProgramParameters object.
@note This copes the internal storage of the paarameters object and therefore
can only be used for parameters objects created from the same GpuProgram.
To merge parameters that match from different programs, use copyMatchingNamedConstantsFrom.
*/
void copyConstantsFrom(const GpuProgramParameters& source);
/** Copies the values of all matching named constants (including auto constants) from
another GpuProgramParameters object.
@remarks
This method iterates over the named constants in another parameters object
and copies across the values where they match. This method is safe to
use when the 2 parameters objects came from different programs, but only
works for named parameters.
*/
void copyMatchingNamedConstantsFrom(const GpuProgramParameters& source);
/** gets the auto constant definition associated with name if found else returns NULL
@param name The name of the auto constant
*/
static const AutoConstantDefinition* getAutoConstantDefinition(const String& name);
/** gets the auto constant definition using an index into the auto constant definition array.
If the index is out of bounds then NULL is returned;
@param idx The auto constant index
*/
static const AutoConstantDefinition* getAutoConstantDefinition(const size_t idx);
/** Returns the number of auto constant definitions
*/
static size_t getNumAutoConstantDefinitions(void);
/** increments the multipass number entry by 1 if it exists
*/
void incPassIterationNumber(void);
/** Does this parameters object have a pass iteration number constant? */
bool hasPassIterationNumber() const
{ return mActivePassIterationIndex != (std::numeric_limits<size_t>::max)(); }
/** Get the physical buffer index of the pass iteration number constant */
size_t getPassIterationNumberIndex() const
{ return mActivePassIterationIndex; }
/** Use a set of shared parameters in this parameters object.
@remarks
Allows you to use a set of shared parameters to automatically update
this parameter set.
*/
void addSharedParameters(GpuSharedParametersPtr sharedParams);
/** Use a set of shared parameters in this parameters object.
@remarks
Allows you to use a set of shared parameters to automatically update
this parameter set.
@param sharedParamsName The name of a shared parameter set as defined in
GpuProgramManager
*/
void addSharedParameters(const String& sharedParamsName);
/** Returns whether this parameter set is using the named shared parameter set. */
bool isUsingSharedParameters(const String& sharedParamsName) const;
/** Stop using the named shared parameter set. */
void removeSharedParameters(const String& sharedParamsName);
/** Stop using all shared parameter sets. */
void removeAllSharedParameters();
/** Get the list of shared parameter sets. */
const GpuSharedParamUsageList& getSharedParameters() const;
/** Internal method that the RenderSystem might use to store optional data. */
void _setRenderSystemData(const Any& data) const { mRenderSystemData = data; }
/** Internal method that the RenderSystem might use to store optional data. */
const Any& _getRenderSystemData() const { return mRenderSystemData; }
/** Update the parameters by copying the data from the shared
parameters.
@note This method may not actually be called if the RenderSystem
supports using shared parameters directly in their own shared buffer; in
which case the values should not be copied out of the shared area
into the individual parameter set, but bound separately.
*/
void _copySharedParams();
size_t calculateSize(void) const;
/** Set subroutine name by slot name
*/
void setNamedSubroutine(const String& subroutineSlot, const String& subroutine);
/** Set subroutine name by slot index
*/
void setSubroutine(size_t index, const String& subroutine);
/** Get map with
*/
const SubroutineMap& getSubroutineMap() const { return mSubroutineMap; }
};
/// Shared pointer used to hold references to GpuProgramParameters instances
typedef SharedPtr<GpuProgramParameters> GpuProgramParametersSharedPtr;
/** @} */
/** @} */
}
#include "OgreHeaderSuffix.h"
#endif
|