/usr/include/OGRE/OgreInstancedGeometry.h is in libogre-1.8-dev 1.8.1+dfsg-0ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 | /*
-----------------------------------------------------------------------------
This source file is part of OGRE
(Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/
Copyright (c) 2000-2012 Torus Knot Software Ltd
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef __InstancedGeometry_H__
#define __InstancedGeometry_H__
#include "OgrePrerequisites.h"
#include "OgreMovableObject.h"
#include "OgreSimpleRenderable.h"
#include "OgreSkeleton.h"
#include "OgreSkeletonInstance.h"
#include "OgreAnimationTrack.h"
#include "OgreBone.h"
#include "OgreIteratorWrappers.h"
#include "OgreMesh.h"
namespace Ogre {
/** \addtogroup Core
* @{
*/
/** \addtogroup Scene
* @{
*/
/** Pre-transforms and batches up meshes for efficient use as instanced geometry
in a scene
@remarks
Shader instancing allows to save both memory and draw calls. While
StaticGeometry stores 500 times the same object in a batch to display 500
objects, this shader instancing implementation stores only 80 times the object,
and then re-uses the vertex data with different shader parameter.
Although you save memory, you make more draw call. However, you still
make less draw calls than if you were rendering each object independently.
Plus, you can move the batched objects independently of one another which
you cannot do with StaticGeometry.
@par
Therefore it is important when you are rendering a lot of geometry to
batch things up into as few rendering calls as possible. This
class allows you to build a batched object from a series of entities
in order to benefit from this behaviour.
Batching has implications of it's own though:
@li Batched geometry cannot be subdivided; that means that the whole
group will be displayed, or none of it will. This obivously has
culling issues.
@li A single material must apply for each batch. In fact this class
allows you to use multiple materials, but you should be aware that
internally this means that there is one batch per material.
Therefore you won't gain as much benefit from the batching if you
use many different materials; try to keep the number down.
@par
The bounding box information is computed with object position only.
It doesn't take account of the object orientation.
@par
The LOD settings of both the Mesh and the Materials used in
constructing this instanced geometry will be respected. This means that
if you use meshes/materials which have LOD, batches in the distance
will have a lower polygon count or material detail to those in the
foreground. Since each mesh might have different LOD distances, during
build the furthest distance at each LOD level from all meshes
in that BatchInstance is used. This means all the LOD levels change at the
same time, but at the furthest distance of any of them (so quality is
not degraded). Be aware that using Mesh LOD in this class will
further increase the memory required. Only generated LOD
is supported for meshes.
@par
There are 2 ways you can add geometry to this class; you can add
Entity objects directly with predetermined positions, scales and
orientations, or you can add an entire SceneNode and it's subtree,
including all the objects attached to it. Once you've added everything
you need to, you have to call build() the fix the geometry in place.
@par
You should not construct instances of this class directly; instead, call
SceneManager::createInstancedGeometry, which gives the SceneManager the
option of providing you with a specialised version of this class if it
wishes, and also handles the memory management for you like other
classes.
@note
Warning: this class only works with indexed triangle lists at the moment, do not pass it triangle strips, fans or lines / points, or unindexed geometry.
*/
class _OgreExport InstancedGeometry : public BatchedGeometryAlloc
{
public:
/** Struct holding geometry optimised per SubMesh / lod level, ready
for copying to instances.
@remarks
Since we're going to be duplicating geometry lots of times, it's
far more important that we don't have redundant vertex data. If a
SubMesh uses shared geometry, or we're looking at a lower LOD, not
all the vertices are being referenced by faces on that submesh.
Therefore to duplicate them, potentially hundreds or even thousands
of times, would be extremely wasteful. Therefore, if a SubMesh at
a given LOD has wastage, we create an optimised version of it's
geometry which is ready for copying with no wastage.
*/
class _OgrePrivate OptimisedSubMeshGeometry : public BatchedGeometryAlloc
{
public:
OptimisedSubMeshGeometry() :vertexData(0), indexData(0) {}
~OptimisedSubMeshGeometry()
{
delete vertexData;
delete indexData;
}
VertexData *vertexData;
IndexData *indexData;
};
typedef list<OptimisedSubMeshGeometry*>::type OptimisedSubMeshGeometryList;
/// Saved link between SubMesh at a LOD and vertex/index data
/// May point to original or optimised geometry
struct SubMeshLodGeometryLink
{
VertexData* vertexData;
IndexData* indexData;
};
typedef vector<SubMeshLodGeometryLink>::type SubMeshLodGeometryLinkList;
typedef map<SubMesh*, SubMeshLodGeometryLinkList*>::type SubMeshGeometryLookup;
/// Structure recording a queued submesh for the build
struct QueuedSubMesh : public BatchedGeometryAlloc
{
SubMesh* submesh;
/// Link to LOD list of geometry, potentially optimised
SubMeshLodGeometryLinkList* geometryLodList;
String materialName;
Vector3 position;
Quaternion orientation;
Vector3 scale;
/// Pre-transformed world AABB
AxisAlignedBox worldBounds;
unsigned int ID;
};
typedef vector<QueuedSubMesh*>::type QueuedSubMeshList;
typedef vector<String>::type QueuedSubMeshOriginList;
/// Structure recording a queued geometry for low level builds
struct QueuedGeometry : public BatchedGeometryAlloc
{
SubMeshLodGeometryLink* geometry;
Vector3 position;
Quaternion orientation;
Vector3 scale;
unsigned int ID;
};
typedef vector<QueuedGeometry*>::type QueuedGeometryList;
// forward declarations
class LODBucket;
class MaterialBucket;
class BatchInstance;
class InstancedObject;
/** A GeometryBucket is a the lowest level bucket where geometry with
the same vertex & index format is stored. It also acts as the
renderable.
*/
class _OgreExport GeometryBucket : public SimpleRenderable
{
protected:
/// Geometry which has been queued up pre-build (not for deallocation)
QueuedGeometryList mQueuedGeometry;
/// Pointer to the Batch
InstancedGeometry*mBatch;
/// Pointer to parent bucket
MaterialBucket* mParent;
/// String identifying the vertex / index format
String mFormatString;
/// Vertex information, includes current number of vertices
/// committed to be a part of this bucket
VertexData* mVertexData;
/// Index information, includes index type which limits the max
/// number of vertices which are allowed in one bucket
IndexData* mIndexData;
/// Size of indexes
HardwareIndexBuffer::IndexType mIndexType;
/// Maximum vertex indexable
size_t mMaxVertexIndex;
/// Index of the Texcoord where the index is stored
unsigned short mTexCoordIndex;
AxisAlignedBox mAABB;
template<typename T>
void copyIndexes(const T* src, T* dst, size_t count, size_t indexOffset)
{
if (indexOffset == 0)
{
memcpy(dst, src, sizeof(T) * count);
}
else
{
while(count--)
{
*dst++ = static_cast<T>(*src++ + indexOffset);
}
}
}
void _initGeometryBucket(const VertexData* vData, const IndexData* iData);
void _initGeometryBucket(GeometryBucket* bucket);
public:
GeometryBucket(MaterialBucket* parent, const String& formatString,
const VertexData* vData, const IndexData* iData);
GeometryBucket(const String& name, MaterialBucket* parent, const String& formatString,
const VertexData* vData, const IndexData* iData);
GeometryBucket(MaterialBucket* parent,const String& formatString,GeometryBucket*bucket);
GeometryBucket(const String& name, MaterialBucket* parent,const String& formatString,GeometryBucket*bucket);
virtual ~GeometryBucket();
MaterialBucket* getParent(void) { return mParent; }
Real getBoundingRadius(void) const;
/// Get the vertex data for this geometry
const VertexData* getVertexData(void) const { return mVertexData; }
/// Get the index data for this geometry
const IndexData* getIndexData(void) const { return mIndexData; }
/// @copydoc Renderable::getMaterial
const MaterialPtr& getMaterial(void) const;
Technique* getTechnique(void) const;
void getWorldTransforms(Matrix4* xform) const;
virtual unsigned short getNumWorldTransforms(void) const ;
Real getSquaredViewDepth(const Camera* cam) const;
const LightList& getLights(void) const;
bool getCastsShadows(void) const;
String getFormatString(void) const;
/** Try to assign geometry to this bucket.
@return false if there is no room left in this bucket
*/
bool assign(QueuedGeometry* qsm);
/// Build
void build();
/// Dump contents for diagnostics
void dump(std::ofstream& of) const;
/// Return the BoundingBox information. Useful when cloning the batch instance.
AxisAlignedBox & getAABB(void){return mAABB;}
/// @copydoc MovableObject::visitRenderables
void visitRenderables(Renderable::Visitor* visitor, bool debugRenderables);
};
class _OgreExport InstancedObject : public BatchedGeometryAlloc
{
friend class GeometryBucket;
public:
enum TransformSpace
{
/// Transform is relative to the local space
TS_LOCAL,
/// Transform is relative to the space of the parent node
TS_PARENT,
/// Transform is relative to world space
TS_WORLD
};
/// list of Geometry Buckets that contains the instanced object
typedef vector<GeometryBucket*>::type GeometryBucketList;
protected:
GeometryBucketList mGeometryBucketList;
unsigned short mIndex;
Matrix4 mTransformation;
Quaternion mOrientation;
Vector3 mScale;
Vector3 mPosition;
SkeletonInstance* mSkeletonInstance;
/// Cached bone matrices, including any world transform
Matrix4 *mBoneWorldMatrices;
/// Cached bone matrices in skeleton local space
Matrix4 *mBoneMatrices;
/// State of animation for animable meshes
AnimationStateSet* mAnimationState;
unsigned short mNumBoneMatrices;
/// Records the last frame in which animation was updated
unsigned long mFrameAnimationLastUpdated;
public:
InstancedObject(unsigned short index);
InstancedObject(unsigned short index,SkeletonInstance *skeleton,AnimationStateSet*animations);
~InstancedObject();
void setPosition( Vector3 position);
const Vector3& getPosition(void) const;
void yaw(const Radian& angle);
void pitch(const Radian& angle);
void roll(const Radian& angle);
void rotate(const Quaternion& q);
void setScale(const Vector3& scale);
const Vector3& getScale() const;
void setOrientation(const Quaternion& q);
void setPositionAndOrientation(Vector3 p, const Quaternion& q);
Quaternion & getOrientation(void);
void addBucketToList(GeometryBucket* bucket);
void needUpdate();
GeometryBucketList&getGeometryBucketList(void){return mGeometryBucketList;}
void translate(const Matrix3& axes, const Vector3& move);
void translate(const Vector3& d);
Matrix3 getLocalAxes(void) const;
void updateAnimation(void);
AnimationState* getAnimationState(const String& name) const;
SkeletonInstance*getSkeletonInstance(void){return mSkeletonInstance;}
};
/** A MaterialBucket is a collection of smaller buckets with the same
Material (and implicitly the same LOD). */
class _OgreExport MaterialBucket : public BatchedGeometryAlloc
{
public:
/// list of Geometry Buckets in this BatchInstance
typedef vector<GeometryBucket*>::type GeometryBucketList;
protected:
/// Pointer to parent LODBucket
LODBucket* mParent;
/// Material being used
String mMaterialName;
/// Pointer to material being used
MaterialPtr mMaterial;
/// Active technique
Technique* mTechnique;
int mLastIndex;
/// list of Geometry Buckets in this BatchInstance
GeometryBucketList mGeometryBucketList;
// index to current Geometry Buckets for a given geometry format
typedef map<String, GeometryBucket*>::type CurrentGeometryMap;
CurrentGeometryMap mCurrentGeometryMap;
/// Get a packed string identifying the geometry format
String getGeometryFormatString(SubMeshLodGeometryLink* geom);
public:
MaterialBucket(LODBucket* parent, const String& materialName);
virtual ~MaterialBucket();
LODBucket* getParent(void) { return mParent; }
/// Get the material name
const String& getMaterialName(void) const { return mMaterialName; }
/// Assign geometry to this bucket
void assign(QueuedGeometry* qsm);
/// Build
void build();
/// Add children to the render queue
void addRenderables(RenderQueue* queue, uint8 group,
Real lodValue);
/// Get the material for this bucket
const MaterialPtr& getMaterial(void) const { return mMaterial; }
/// Iterator over geometry
typedef VectorIterator<GeometryBucketList> GeometryIterator;
/// Get an iterator over the contained geometry
GeometryIterator getGeometryIterator(void);
/// Get the current Technique
Technique* getCurrentTechnique(void) const { return mTechnique; }
/// Dump contents for diagnostics
void dump(std::ofstream& of) const;
/// Return the geometry map
MaterialBucket::CurrentGeometryMap* getMaterialBucketMap(void) const;
/// Return the geometry list
MaterialBucket::GeometryBucketList*getGeometryBucketList(void) const;
/// fill in the map and the list
void updateContainers(GeometryBucket* bucket, const String &format);
void setLastIndex(int index){mLastIndex=index;}
int getLastIndex(){return mLastIndex;}
void setMaterial(const String & name);
void visitRenderables(Renderable::Visitor* visitor, bool debugRenderables);
};
/** A LODBucket is a collection of smaller buckets with the same LOD.
@remarks
LOD refers to Mesh LOD here. Material LOD can change separately
at the next bucket down from this.
*/
class _OgreExport LODBucket : public BatchedGeometryAlloc
{
public:
/// Lookup of Material Buckets in this BatchInstance
typedef map<String, MaterialBucket*>::type MaterialBucketMap;
protected:
/// Pointer to parent BatchInstance
BatchInstance* mParent;
/// LOD level (0 == full LOD)
unsigned short mLod;
/// lod value at which this LOD starts to apply (squared)
Real mLodValue;
/// Lookup of Material Buckets in this BatchInstance
MaterialBucketMap mMaterialBucketMap;
/// Geometry queued for a single LOD (deallocated here)
QueuedGeometryList mQueuedGeometryList;
public:
LODBucket(BatchInstance* parent, unsigned short lod, Real lodValue);
virtual ~LODBucket();
BatchInstance* getParent(void) { return mParent; }
/// Get the lod index
ushort getLod(void) const { return mLod; }
/// Get the lod value
Real getLodValue(void) const { return mLodValue; }
/// Assign a queued submesh to this bucket, using specified mesh LOD
void assign(QueuedSubMesh* qsm, ushort atLod);
/// Build
void build();
/// Add children to the render queue
void addRenderables(RenderQueue* queue, uint8 group,
Real lodValue);
/// Iterator over the materials in this LOD
typedef MapIterator<MaterialBucketMap> MaterialIterator;
/// Get an iterator over the materials in this LOD
MaterialIterator getMaterialIterator(void);
/// Dump contents for diagnostics
void dump(std::ofstream& of) const;
/// fill the map
void updateContainers(MaterialBucket* bucket, String& name );
void visitRenderables(Renderable::Visitor* visitor, bool debugRenderables);
};
/** The details of a topological BatchInstance which is the highest level of
partitioning for this class.
@remarks
The size & shape of BatchInstances entirely depends on the SceneManager
specific implementation. It is a MovableObject since it will be
attached to a node based on the local centre - in practice it
won't actually move (although in theory it could).
*/
class _OgreExport BatchInstance : public MovableObject
{
friend class MaterialBucket;
public:
/// list of LOD Buckets in this BatchInstance
typedef vector<LODBucket*>::type LODBucketList;
typedef map<unsigned short, InstancedObject*>::type ObjectsMap;
typedef MapIterator<ObjectsMap> InstancedObjectIterator;
protected:
/// Parent static geometry
InstancedGeometry* mParent;
/// Scene manager link
SceneManager* mSceneMgr;
/// Scene node
SceneNode* mNode;
/// Local list of queued meshes (not used for deallocation)
QueuedSubMeshList mQueuedSubMeshes;
/// Unique identifier for the BatchInstance
uint32 mBatchInstanceID;
ObjectsMap mInstancesMap;
public:
/// Lod values as built up - use the max at each level
Mesh::LodValueList mLodValues;
/// Local AABB relative to BatchInstance centre
AxisAlignedBox mAABB;
/// Local bounding radius
Real mBoundingRadius;
/// The current lod level, as determined from the last camera
ushort mCurrentLod;
/// Current lod value, passed on to do material lod later
Real mLodValue;
/// Current camera, passed on to do material lod later
Camera *mCamera;
/// Cached squared view depth value to avoid recalculation by GeometryBucket
Real mSquaredViewDepth;
protected:
/// List of LOD buckets
LODBucketList mLodBucketList;
/// Lod strategy reference
const LodStrategy *mLodStrategy;
public:
BatchInstance(InstancedGeometry* parent, const String& name, SceneManager* mgr,
uint32 BatchInstanceID);
virtual ~BatchInstance();
// more fields can be added in subclasses
InstancedGeometry* getParent(void) const { return mParent;}
/// Assign a queued mesh to this BatchInstance, read for final build
void assign(QueuedSubMesh* qmesh);
/// Build this BatchInstance
void build();
/// Get the BatchInstance ID of this BatchInstance
uint32 getID(void) const { return mBatchInstanceID; }
/// Get the centre point of the BatchInstance
// const Vector3& getCentre(void) const { return mCentre; }
const String& getMovableType(void) const;
void _notifyCurrentCamera(Camera* cam);
const AxisAlignedBox& getBoundingBox(void) const;
void setBoundingBox(AxisAlignedBox& box);
Real getBoundingRadius(void) const;
void _updateRenderQueue(RenderQueue* queue);
bool isVisible(void) const;
/// @copydoc MovableObject::visitRenderables
void visitRenderables(Renderable::Visitor* visitor,
bool debugRenderables = false);
// uint32 getTypeFlags(void) const;
typedef VectorIterator<LODBucketList> LODIterator;
/// Get an iterator over the LODs in this BatchInstance
LODIterator getLODIterator(void);
/// Shared set of lights for all GeometryBuckets
const LightList& getLights(void) const;
/// update the bounding box of the BatchInstance according to the positions of the objects
void updateBoundingBox();
/// Dump contents for diagnostics
void dump(std::ofstream& of) const;
/// fill in the list
void updateContainers(LODBucket* bucket );
/// attach the BatchInstance to the scene
void attachToScene();
void addInstancedObject(unsigned short index, InstancedObject* object);
InstancedObject* isInstancedObjectPresent(unsigned short index);
InstancedObjectIterator getObjectIterator();
SceneNode*getSceneNode(void){return mNode;}
ObjectsMap& getInstancesMap(void){return mInstancesMap;}
/// change the shader used to render the batch instance
};
/** Indexed BatchInstance map based on packed x/y/z BatchInstance index, 10 bits for
each axis.
*/
typedef map<uint32, BatchInstance*>::type BatchInstanceMap;
/** Simple vectors where are stored all the renderoperations of the Batch.
This vector is used when we want to delete the batch, in order to delete only one time each
render operation.
*/
typedef vector<RenderOperation*>::type RenderOperationVector;
protected:
// General state & settings
SceneManager* mOwner;
String mName;
bool mBuilt;
Real mUpperDistance;
Real mSquaredUpperDistance;
bool mCastShadows;
Vector3 mBatchInstanceDimensions;
Vector3 mHalfBatchInstanceDimensions;
Vector3 mOrigin;
bool mVisible;
/// Flags to indicate whether the World Transform Inverse matrices are passed to the shaders
bool mProvideWorldInverses;
/// The render queue to use when rendering this object
uint8 mRenderQueueID;
/// Flags whether the RenderQueue's default should be used.
bool mRenderQueueIDSet;
/// number of objects in the batch
unsigned int mObjectCount;
QueuedSubMeshList mQueuedSubMeshes;
BatchInstance*mInstancedGeometryInstance;
/**this is just a pointer to the base skeleton that will be used for each animated object in the batches
This pointer has a value only during the creation of the InstancedGeometry
*/
SkeletonPtr mBaseSkeleton;
SkeletonInstance *mSkeletonInstance;
/**This is the main animation state. All "objects" in the batch will use an instance of this animation
state
*/
AnimationStateSet* mAnimationState;
/// List of geometry which has been optimised for SubMesh use
/// This is the primary storage used for cleaning up later
OptimisedSubMeshGeometryList mOptimisedSubMeshGeometryList;
/** Cached links from SubMeshes to (potentially optimised) geometry
This is not used for deletion since the lookup may reference
original vertex data
*/
SubMeshGeometryLookup mSubMeshGeometryLookup;
/// Map of BatchInstances
BatchInstanceMap mBatchInstanceMap;
/** This vector stores all the renderOperation used in the batch.
See the type definition for more details.
*/
RenderOperationVector mRenderOps;
/** Virtual method for getting a BatchInstance most suitable for the
passed in bounds. Can be overridden by subclasses.
*/
virtual BatchInstance* getBatchInstance(const AxisAlignedBox& bounds, bool autoCreate);
/** Get the BatchInstance within which a point lies */
virtual BatchInstance* getBatchInstance(const Vector3& point, bool autoCreate);
/** Get the BatchInstance using indexes */
virtual BatchInstance* getBatchInstance(ushort x, ushort y, ushort z, bool autoCreate);
/** Get the BatchInstance using a packed index, returns null if it doesn't exist. */
virtual BatchInstance* getBatchInstance(uint32 index);
/** Get the BatchInstance indexes for a point.
*/
virtual void getBatchInstanceIndexes(const Vector3& point,
ushort& x, ushort& y, ushort& z);
/** get the first BatchInstance or create on if it does not exists.
*/
virtual BatchInstance* getInstancedGeometryInstance(void);
/** Pack 3 indexes into a single index value
*/
virtual uint32 packIndex(ushort x, ushort y, ushort z);
/** Get the volume intersection for an indexed BatchInstance with some bounds.
*/
virtual Real getVolumeIntersection(const AxisAlignedBox& box,
ushort x, ushort y, ushort z);
/** Get the bounds of an indexed BatchInstance.
*/
virtual AxisAlignedBox getBatchInstanceBounds(ushort x, ushort y, ushort z);
/** Get the centre of an indexed BatchInstance.
*/
virtual Vector3 getBatchInstanceCentre(ushort x, ushort y, ushort z);
/** Calculate world bounds from a set of vertex data. */
virtual AxisAlignedBox calculateBounds(VertexData* vertexData,
const Vector3& position, const Quaternion& orientation,
const Vector3& scale);
/** Look up or calculate the geometry data to use for this SubMesh */
SubMeshLodGeometryLinkList* determineGeometry(SubMesh* sm);
/** Split some shared geometry into dedicated geometry. */
void splitGeometry(VertexData* vd, IndexData* id,
SubMeshLodGeometryLink* targetGeomLink);
typedef map<size_t, size_t>::type IndexRemap;
/** Method for figuring out which vertices are used by an index buffer
and calculating a remap lookup for a vertex buffer just containing
those vertices.
*/
template <typename T>
void buildIndexRemap(T* pBuffer, size_t numIndexes, IndexRemap& remap)
{
remap.clear();
for (size_t i = 0; i < numIndexes; ++i)
{
// use insert since duplicates are silently discarded
remap.insert(IndexRemap::value_type(*pBuffer++, remap.size()));
// this will have mapped oldindex -> new index IF oldindex
// wasn't already there
}
}
/** Method for altering indexes based on a remap. */
template <typename T>
void remapIndexes(T* src, T* dst, const IndexRemap& remap,
size_t numIndexes)
{
for (size_t i = 0; i < numIndexes; ++i)
{
// look up original and map to target
IndexRemap::const_iterator ix = remap.find(*src++);
assert(ix != remap.end());
*dst++ = static_cast<T>(ix->second);
}
}
public:
/// Constructor; do not use directly (@see SceneManager::createInstancedGeometry)
InstancedGeometry(SceneManager* owner, const String& name);
/// Destructor
virtual ~InstancedGeometry();
/// Get the name of this object
const String& getName(void) const { return mName; }
/** Adds an Entity to the static geometry.
@remarks
This method takes an existing Entity and adds its details to the
list of elements to include when building. Note that the Entity
itself is not copied or referenced in this method; an Entity is
passed simply so that you can change the materials of attached
SubEntity objects if you want. You can add the same Entity
instance multiple times with different material settings
completely safely, and destroy the Entity before destroying
this InstancedGeometry if you like. The Entity passed in is simply
used as a definition.
@note Must be called before 'build'.
@note All added entities must use the same lod strategy.
@param ent The Entity to use as a definition (the Mesh and Materials
referenced will be recorded for the build call).
@param position The world position at which to add this Entity
@param orientation The world orientation at which to add this Entity
@param scale The scale at which to add this entity
*/
virtual void addEntity(Entity* ent, const Vector3& position,
const Quaternion& orientation = Quaternion::IDENTITY,
const Vector3& scale = Vector3::UNIT_SCALE);
/** Adds all the Entity objects attached to a SceneNode and all it's
children to the static geometry.
@remarks
This method performs just like addEntity, except it adds all the
entities attached to an entire sub-tree to the geometry.
The position / orientation / scale parameters are taken from the
node structure instead of being specified manually.
@note
The SceneNode you pass in will not be automatically detached from
it's parent, so if you have this node already attached to the scene
graph, you will need to remove it if you wish to avoid the overhead
of rendering <i>both</i> the original objects and their new static
versions! We don't do this for you incase you are preparing this
in advance and so don't want the originals detached yet.
@note Must be called before 'build'.
@note All added entities must use the same lod strategy.
@param node Pointer to the node to use to provide a set of Entity
templates
*/
virtual void addSceneNode(const SceneNode* node);
/** Build the geometry.
@remarks
Based on all the entities which have been added, and the batching
options which have been set, this method constructs the batched
geometry structures required. The batches are added to the scene
and will be rendered unless you specifically hide them.
@note
Once you have called this method, you can no longer add any more
entities.
*/
virtual void build(void);
/** Add a new batch instance
@remarks
This method add a new instance of the whole batch, by creating a new
BatchInstance, containing new lod buckets, material buckets and geometry buckets.
The new geometry buckets will use the same buffers as the base bucket.
@note
no note
*/
void addBatchInstance(void);
/** Destroys all the built geometry state (reverse of build).
@remarks
You can call build() again after this and it will pick up all the
same entities / nodes you queued last time.
*/
virtual void destroy(void);
/** Clears any of the entities / nodes added to this geometry and
destroys anything which has already been built.
*/
virtual void reset(void);
/** Sets the distance at which batches are no longer rendered.
@remarks
This lets you turn off batches at a given distance. This can be
useful for things like detail meshes (grass, foliage etc) and could
be combined with a shader which fades the geometry out beforehand
to lessen the effect.
@param dist Distance beyond which the batches will not be rendered
(the default is 0, which means batches are always rendered).
*/
virtual void setRenderingDistance(Real dist) {
mUpperDistance = dist;
mSquaredUpperDistance = mUpperDistance * mUpperDistance;
}
/** Gets the distance at which batches are no longer rendered. */
virtual Real getRenderingDistance(void) const { return mUpperDistance; }
/** Gets the squared distance at which batches are no longer rendered. */
virtual Real getSquaredRenderingDistance(void) const
{ return mSquaredUpperDistance; }
/** Hides or shows all the batches. */
virtual void setVisible(bool visible);
/** Are the batches visible? */
virtual bool isVisible(void) const { return mVisible; }
/** Sets whether this geometry should cast shadows.
@remarks
No matter what the settings on the original entities,
the InstancedGeometry class defaults to not casting shadows.
This is because, being static, unless you have moving lights
you'd be better to use precalculated shadows of some sort.
However, if you need them, you can enable them using this
method. If the SceneManager is set up to use stencil shadows,
edge lists will be copied from the underlying meshes on build.
It is essential that all meshes support stencil shadows in this
case.
@note If you intend to use stencil shadows, you must set this to
true before calling 'build' as well as making sure you set the
scene's shadow type (that should always be the first thing you do
anyway). You can turn shadows off temporarily but they can never
be turned on if they were not at the time of the build.
*/
virtual void setCastShadows(bool castShadows);
/// Will the geometry from this object cast shadows?
virtual bool getCastShadows(void) { return mCastShadows; }
/** Sets the size of a single BatchInstance of geometry.
@remarks
This method allows you to configure the physical world size of
each BatchInstance, so you can balance culling against batch size. Entities
will be fitted within the batch they most closely fit, and the
eventual bounds of each batch may well be slightly larger than this
if they overlap a little. The default is Vector3(1000, 1000, 1000).
@note Must be called before 'build'.
@param size Vector3 expressing the 3D size of each BatchInstance.
*/
virtual void setBatchInstanceDimensions(const Vector3& size) {
mBatchInstanceDimensions = size;
mHalfBatchInstanceDimensions = size * 0.5;
}
/** Gets the size of a single batch of geometry. */
virtual const Vector3& getBatchInstanceDimensions(void) const { return mBatchInstanceDimensions; }
/** Sets the origin of the geometry.
@remarks
This method allows you to configure the world centre of the geometry,
thus the place which all BatchInstances surround. You probably don't need
to mess with this unless you have a seriously large world, since the
default set up can handle an area 1024 * mBatchInstanceDimensions, and
the sparseness of population is no issue when it comes to rendering.
The default is Vector3(0,0,0).
@note Must be called before 'build'.
@param size Vector3 expressing the 3D origin of the geometry.
*/
virtual void setOrigin(const Vector3& origin) { mOrigin = origin; }
/** Gets the origin of this geometry. */
virtual const Vector3& getOrigin(void) const { return mOrigin; }
/** Sets the render queue group this object will be rendered through.
@remarks
Render queues are grouped to allow you to more tightly control the ordering
of rendered objects. If you do not call this method, all objects default
to the default queue (RenderQueue::getDefaultQueueGroup), which is fine for
most objects. You may want to alter this if you want to perform more complex
rendering.
@par
See RenderQueue for more details.
@param queueID Enumerated value of the queue group to use.
*/
virtual void setRenderQueueGroup(uint8 queueID);
/** Gets the queue group for this entity, see setRenderQueueGroup for full details. */
virtual uint8 getRenderQueueGroup(void) const;
/// Iterator for iterating over contained BatchInstances
typedef MapIterator<BatchInstanceMap> BatchInstanceIterator;
/// Get an iterator over the BatchInstances in this geometry
BatchInstanceIterator getBatchInstanceIterator(void);
/// get the mRenderOps vector.
RenderOperationVector& getRenderOperationVector(){return mRenderOps;}
/// @copydoc MovableObject::visitRenderables
void visitRenderables(Renderable::Visitor* visitor,
bool debugRenderables = false);
/** Dump the contents of this InstancedGeometry to a file for diagnostic
purposes.
*/
virtual void dump(const String& filename) const;
/**
@remarks
Return the skeletonInstance that will be used
*/
SkeletonInstance *getBaseSkeletonInstance(void){return mSkeletonInstance;}
/**
@remarks
Return the skeleton that is shared by all instanced objects.
*/
SkeletonPtr getBaseSkeleton(void){return mBaseSkeleton;}
/**
@remarks
Return the animation state that will be cloned each time an InstancedObject is made
*/
AnimationStateSet* getBaseAnimationState(void){return mAnimationState;}
/**
@remarks
return the total number of object that are in all the batches
*/
unsigned int getObjectCount(void){return mObjectCount;}
/**
@remarks
Allows World Transform Inverse matrices to be passed as shader constants along with the world
transform matrix list. Reduces the number of usable geometries in an instance to 40 instead of 80.
The inverse matrices are interleaved with the world matrices at n+1.
*/
virtual void setProvideWorldInverses(bool flag);
/**
@remarks
Returns the toggle state indicating whether the World Transform INVERSE matrices would
be passed to the shaders.
*/
virtual bool getProvideWorldInverses(void) const { return mProvideWorldInverses; }
};
/** @} */
/** @} */
}
#endif
|