/usr/include/OGRE/OgreHardwareVertexBuffer.h is in libogre-1.8-dev 1.8.1+dfsg-0ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 | /*
-----------------------------------------------------------------------------
This source file is part of OGRE
(Object-oriented Graphics Rendering Engine)
For the latest info, see http://www.ogre3d.org/
Copyright (c) 2000-2012 Torus Knot Software Ltd
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
-----------------------------------------------------------------------------
*/
#ifndef __HardwareVertexBuffer__
#define __HardwareVertexBuffer__
// Precompiler options
#include "OgrePrerequisites.h"
#include "OgreHardwareBuffer.h"
#include "OgreSharedPtr.h"
#include "OgreColourValue.h"
namespace Ogre {
class HardwareBufferManagerBase;
/** \addtogroup Core
* @{
*/
/** \addtogroup RenderSystem
* @{
*/
/** Specialisation of HardwareBuffer for a vertex buffer. */
class _OgreExport HardwareVertexBuffer : public HardwareBuffer
{
protected:
HardwareBufferManagerBase* mMgr;
size_t mNumVertices;
size_t mVertexSize;
bool mIsInstanceData;
size_t mInstanceDataStepRate;
/// Checks if vertex instance data is supported by the render system
virtual bool checkIfVertexInstanceDataIsSupported();
public:
/// Should be called by HardwareBufferManager
HardwareVertexBuffer(HardwareBufferManagerBase* mgr, size_t vertexSize, size_t numVertices,
HardwareBuffer::Usage usage, bool useSystemMemory, bool useShadowBuffer);
~HardwareVertexBuffer();
/// Return the manager of this buffer, if any
HardwareBufferManagerBase* getManager() const { return mMgr; }
/// Gets the size in bytes of a single vertex in this buffer
size_t getVertexSize(void) const { return mVertexSize; }
/// Get the number of vertices in this buffer
size_t getNumVertices(void) const { return mNumVertices; }
/// Get if this vertex buffer is an "instance data" buffer (per instance)
bool getIsInstanceData() const { return mIsInstanceData; }
/// Set if this vertex buffer is an "instance data" buffer (per instance)
void setIsInstanceData(const bool val);
/// Get the number of instances to draw using the same per-instance data before advancing in the buffer by one element.
size_t getInstanceDataStepRate() const;
/// Set the number of instances to draw using the same per-instance data before advancing in the buffer by one element.
void setInstanceDataStepRate(const size_t val);
// NB subclasses should override lock, unlock, readData, writeData
};
/** Shared pointer implementation used to share index buffers. */
class _OgreExport HardwareVertexBufferSharedPtr : public SharedPtr<HardwareVertexBuffer>
{
public:
HardwareVertexBufferSharedPtr() : SharedPtr<HardwareVertexBuffer>() {}
explicit HardwareVertexBufferSharedPtr(HardwareVertexBuffer* buf);
};
/// Vertex element semantics, used to identify the meaning of vertex buffer contents
enum VertexElementSemantic {
/// Position, 3 reals per vertex
VES_POSITION = 1,
/// Blending weights
VES_BLEND_WEIGHTS = 2,
/// Blending indices
VES_BLEND_INDICES = 3,
/// Normal, 3 reals per vertex
VES_NORMAL = 4,
/// Diffuse colours
VES_DIFFUSE = 5,
/// Specular colours
VES_SPECULAR = 6,
/// Texture coordinates
VES_TEXTURE_COORDINATES = 7,
/// Binormal (Y axis if normal is Z)
VES_BINORMAL = 8,
/// Tangent (X axis if normal is Z)
VES_TANGENT = 9,
/// The number of VertexElementSemantic elements (note - the first value VES_POSITION is 1)
VES_COUNT = 9
};
/// Vertex element type, used to identify the base types of the vertex contents
enum VertexElementType
{
VET_FLOAT1 = 0,
VET_FLOAT2 = 1,
VET_FLOAT3 = 2,
VET_FLOAT4 = 3,
/// alias to more specific colour type - use the current rendersystem's colour packing
VET_COLOUR = 4,
VET_SHORT1 = 5,
VET_SHORT2 = 6,
VET_SHORT3 = 7,
VET_SHORT4 = 8,
VET_UBYTE4 = 9,
/// D3D style compact colour
VET_COLOUR_ARGB = 10,
/// GL style compact colour
VET_COLOUR_ABGR = 11
};
/** This class declares the usage of a single vertex buffer as a component
of a complete VertexDeclaration.
@remarks
Several vertex buffers can be used to supply the input geometry for a
rendering operation, and in each case a vertex buffer can be used in
different ways for different operations; the buffer itself does not
define the semantics (position, normal etc), the VertexElement
class does.
*/
class _OgreExport VertexElement : public VertexDataAlloc
{
protected:
/// The source vertex buffer, as bound to an index using VertexBufferBinding
unsigned short mSource;
/// The offset in the buffer that this element starts at
size_t mOffset;
/// The type of element
VertexElementType mType;
/// The meaning of the element
VertexElementSemantic mSemantic;
/// Index of the item, only applicable for some elements like texture coords
unsigned short mIndex;
public:
/// Constructor, should not be called directly, only needed because of list
VertexElement() {}
/// Constructor, should not be called directly, call VertexDeclaration::addElement
VertexElement(unsigned short source, size_t offset, VertexElementType theType,
VertexElementSemantic semantic, unsigned short index = 0);
/// Gets the vertex buffer index from where this element draws it's values
unsigned short getSource(void) const { return mSource; }
/// Gets the offset into the buffer where this element starts
size_t getOffset(void) const { return mOffset; }
/// Gets the data format of this element
VertexElementType getType(void) const { return mType; }
/// Gets the meaning of this element
VertexElementSemantic getSemantic(void) const { return mSemantic; }
/// Gets the index of this element, only applicable for repeating elements
unsigned short getIndex(void) const { return mIndex; }
/// Gets the size of this element in bytes
size_t getSize(void) const;
/// Utility method for helping to calculate offsets
static size_t getTypeSize(VertexElementType etype);
/// Utility method which returns the count of values in a given type
static unsigned short getTypeCount(VertexElementType etype);
/** Simple converter function which will turn a single-value type into a
multi-value type based on a parameter.
*/
static VertexElementType multiplyTypeCount(VertexElementType baseType, unsigned short count);
/** Simple converter function which will a type into it's single-value
equivalent - makes switches on type easier.
*/
static VertexElementType getBaseType(VertexElementType multiType);
/** Utility method for converting colour from
one packed 32-bit colour type to another.
@param srcType The source type
@param dstType The destination type
@param ptr Read / write value to change
*/
static void convertColourValue(VertexElementType srcType,
VertexElementType dstType, uint32* ptr);
/** Utility method for converting colour to
a packed 32-bit colour type.
@param src source colour
@param dst The destination type
*/
static uint32 convertColourValue(const ColourValue& src,
VertexElementType dst);
/** Utility method to get the most appropriate packed colour vertex element format. */
static VertexElementType getBestColourVertexElementType(void);
inline bool operator== (const VertexElement& rhs) const
{
if (mType != rhs.mType ||
mIndex != rhs.mIndex ||
mOffset != rhs.mOffset ||
mSemantic != rhs.mSemantic ||
mSource != rhs.mSource)
return false;
else
return true;
}
/** Adjusts a pointer to the base of a vertex to point at this element.
@remarks
This variant is for void pointers, passed as a parameter because we can't
rely on covariant return types.
@param pBase Pointer to the start of a vertex in this buffer.
@param pElem Pointer to a pointer which will be set to the start of this element.
*/
inline void baseVertexPointerToElement(void* pBase, void** pElem) const
{
// The only way we can do this is to cast to char* in order to use byte offset
// then cast back to void*.
*pElem = static_cast<void*>(
static_cast<unsigned char*>(pBase) + mOffset);
}
/** Adjusts a pointer to the base of a vertex to point at this element.
@remarks
This variant is for float pointers, passed as a parameter because we can't
rely on covariant return types.
@param pBase Pointer to the start of a vertex in this buffer.
@param pElem Pointer to a pointer which will be set to the start of this element.
*/
inline void baseVertexPointerToElement(void* pBase, float** pElem) const
{
// The only way we can do this is to cast to char* in order to use byte offset
// then cast back to float*. However we have to go via void* because casting
// directly is not allowed
*pElem = static_cast<float*>(
static_cast<void*>(
static_cast<unsigned char*>(pBase) + mOffset));
}
/** Adjusts a pointer to the base of a vertex to point at this element.
@remarks
This variant is for RGBA pointers, passed as a parameter because we can't
rely on covariant return types.
@param pBase Pointer to the start of a vertex in this buffer.
@param pElem Pointer to a pointer which will be set to the start of this element.
*/
inline void baseVertexPointerToElement(void* pBase, RGBA** pElem) const
{
*pElem = static_cast<RGBA*>(
static_cast<void*>(
static_cast<unsigned char*>(pBase) + mOffset));
}
/** Adjusts a pointer to the base of a vertex to point at this element.
@remarks
This variant is for char pointers, passed as a parameter because we can't
rely on covariant return types.
@param pBase Pointer to the start of a vertex in this buffer.
@param pElem Pointer to a pointer which will be set to the start of this element.
*/
inline void baseVertexPointerToElement(void* pBase, unsigned char** pElem) const
{
*pElem = static_cast<unsigned char*>(pBase) + mOffset;
}
/** Adjusts a pointer to the base of a vertex to point at this element.
@remarks
This variant is for ushort pointers, passed as a parameter because we can't
rely on covariant return types.
@param pBase Pointer to the start of a vertex in this buffer.
@param pElem Pointer to a pointer which will be set to the start of this element.
*/
inline void baseVertexPointerToElement(void* pBase, unsigned short** pElem) const
{
*pElem = static_cast<unsigned short*>(
static_cast<void*>(
static_cast<unsigned char*>(pBase) + mOffset));
}
};
/** This class declares the format of a set of vertex inputs, which
can be issued to the rendering API through a RenderOperation.
@remarks
You should be aware that the ordering and structure of the
VertexDeclaration can be very important on DirectX with older
cards,so if you want to maintain maximum compatibility with
all render systems and all cards you should be careful to follow these
rules:<ol>
<li>VertexElements should be added in the following order, and the order of the
elements within a shared buffer should be as follows:
position, blending weights, normals, diffuse colours, specular colours,
texture coordinates (in order, with no gaps)</li>
<li>You must not have unused gaps in your buffers which are not referenced
by any VertexElement</li>
<li>You must not cause the buffer & offset settings of 2 VertexElements to overlap</li>
</ol>
Whilst GL and more modern graphics cards in D3D will allow you to defy these rules,
sticking to them will ensure that your buffers have the maximum compatibility.
@par
Like the other classes in this functional area, these declarations should be created and
destroyed using the HardwareBufferManager.
*/
class _OgreExport VertexDeclaration : public VertexDataAlloc
{
public:
/// Defines the list of vertex elements that makes up this declaration
typedef list<VertexElement>::type VertexElementList;
/// Sort routine for vertex elements
static bool vertexElementLess(const VertexElement& e1, const VertexElement& e2);
protected:
VertexElementList mElementList;
public:
/// Standard constructor, not you should use HardwareBufferManager::createVertexDeclaration
VertexDeclaration();
virtual ~VertexDeclaration();
/** Get the number of elements in the declaration. */
size_t getElementCount(void) const { return mElementList.size(); }
/** Gets read-only access to the list of vertex elements. */
const VertexElementList& getElements(void) const;
/** Get a single element. */
const VertexElement* getElement(unsigned short index) const;
/** Sorts the elements in this list to be compatible with the maximum
number of rendering APIs / graphics cards.
@remarks
Older graphics cards require vertex data to be presented in a more
rigid way, as defined in the main documentation for this class. As well
as the ordering being important, where shared source buffers are used, the
declaration must list all the elements for each source in turn.
*/
void sort(void);
/** Remove any gaps in the source buffer list used by this declaration.
@remarks
This is useful if you've modified a declaration and want to remove
any gaps in the list of buffers being used. Note, however, that if this
declaration is already being used with a VertexBufferBinding, you will
need to alter that too. This method is mainly useful when reorganising
buffers based on an altered declaration.
@note
This will cause the vertex declaration to be re-sorted.
*/
void closeGapsInSource(void);
/** Generates a new VertexDeclaration for optimal usage based on the current
vertex declaration, which can be used with VertexData::reorganiseBuffers later
if you wish, or simply used as a template.
@remarks
Different buffer organisations and buffer usages will be returned
depending on the parameters passed to this method.
@param skeletalAnimation Whether this vertex data is going to be
skeletally animated
@param vertexAnimation Whether this vertex data is going to be vertex animated
@param vertexAnimationNormals Whether vertex data animation is going to include normals animation
*/
VertexDeclaration* getAutoOrganisedDeclaration(bool skeletalAnimation,
bool vertexAnimation, bool vertexAnimationNormals) const;
/** Gets the index of the highest source value referenced by this declaration. */
unsigned short getMaxSource(void) const;
/** Adds a new VertexElement to this declaration.
@remarks
This method adds a single element (positions, normals etc) to the end of the
vertex declaration. <b>Please read the information in VertexDeclaration about
the importance of ordering and structure for compatibility with older D3D drivers</b>.
@param source The binding index of HardwareVertexBuffer which will provide the source for this element.
See VertexBufferBinding for full information.
@param offset The offset in bytes where this element is located in the buffer
@param theType The data format of the element (3 floats, a colour etc)
@param semantic The meaning of the data (position, normal, diffuse colour etc)
@param index Optional index for multi-input elements like texture coordinates
@return A reference to the VertexElement added.
*/
virtual const VertexElement& addElement(unsigned short source, size_t offset, VertexElementType theType,
VertexElementSemantic semantic, unsigned short index = 0);
/** Inserts a new VertexElement at a given position in this declaration.
@remarks
This method adds a single element (positions, normals etc) at a given position in this
vertex declaration. <b>Please read the information in VertexDeclaration about
the importance of ordering and structure for compatibility with older D3D drivers</b>.
@param source The binding index of HardwareVertexBuffer which will provide the source for this element.
See VertexBufferBinding for full information.
@param offset The offset in bytes where this element is located in the buffer
@param theType The data format of the element (3 floats, a colour etc)
@param semantic The meaning of the data (position, normal, diffuse colour etc)
@param index Optional index for multi-input elements like texture coordinates
@return A reference to the VertexElement added.
*/
virtual const VertexElement& insertElement(unsigned short atPosition,
unsigned short source, size_t offset, VertexElementType theType,
VertexElementSemantic semantic, unsigned short index = 0);
/** Remove the element at the given index from this declaration. */
virtual void removeElement(unsigned short elem_index);
/** Remove the element with the given semantic and usage index.
@remarks
In this case 'index' means the usage index for repeating elements such
as texture coordinates. For other elements this will always be 0 and does
not refer to the index in the vector.
*/
virtual void removeElement(VertexElementSemantic semantic, unsigned short index = 0);
/** Remove all elements. */
virtual void removeAllElements(void);
/** Modify an element in-place, params as addElement.
@remarks
<b>Please read the information in VertexDeclaration about
the importance of ordering and structure for compatibility with older D3D drivers</b>.
*/
virtual void modifyElement(unsigned short elem_index, unsigned short source, size_t offset, VertexElementType theType,
VertexElementSemantic semantic, unsigned short index = 0);
/** Finds a VertexElement with the given semantic, and index if there is more than
one element with the same semantic.
@remarks
If the element is not found, this method returns null.
*/
virtual const VertexElement* findElementBySemantic(VertexElementSemantic sem, unsigned short index = 0) const;
/** Based on the current elements, gets the size of the vertex for a given buffer source.
@param source The buffer binding index for which to get the vertex size.
*/
/** Gets a list of elements which use a given source.
@remarks
Note that the list of elements is returned by value therefore is separate from
the declaration as soon as this method returns.
*/
virtual VertexElementList findElementsBySource(unsigned short source) const;
/** Gets the vertex size defined by this declaration for a given source. */
virtual size_t getVertexSize(unsigned short source) const;
/** Return the index of the next free texture coordinate set which may be added
to this declaration.
*/
virtual unsigned short getNextFreeTextureCoordinate() const;
/** Clones this declaration.
@param mgr Optional HardwareBufferManager to use for creating the clone
(if null, use the current default).
*/
virtual VertexDeclaration* clone(HardwareBufferManagerBase* mgr = 0) const;
inline bool operator== (const VertexDeclaration& rhs) const
{
if (mElementList.size() != rhs.mElementList.size())
return false;
VertexElementList::const_iterator i, iend, rhsi, rhsiend;
iend = mElementList.end();
rhsiend = rhs.mElementList.end();
rhsi = rhs.mElementList.begin();
for (i = mElementList.begin(); i != iend && rhsi != rhsiend; ++i, ++rhsi)
{
if ( !(*i == *rhsi) )
return false;
}
return true;
}
inline bool operator!= (const VertexDeclaration& rhs) const
{
return !(*this == rhs);
}
};
/** Records the state of all the vertex buffer bindings required to provide a vertex declaration
with the input data it needs for the vertex elements.
@remarks
Why do we have this binding list rather than just have VertexElement referring to the
vertex buffers direct? Well, in the underlying APIs, binding the vertex buffers to an
index (or 'stream') is the way that vertex data is linked, so this structure better
reflects the realities of that. In addition, by separating the vertex declaration from
the list of vertex buffer bindings, it becomes possible to reuse bindings between declarations
and vice versa, giving opportunities to reduce the state changes required to perform rendering.
@par
Like the other classes in this functional area, these binding maps should be created and
destroyed using the HardwareBufferManager.
*/
class _OgreExport VertexBufferBinding : public VertexDataAlloc
{
public:
/// Defines the vertex buffer bindings used as source for vertex declarations
typedef map<unsigned short, HardwareVertexBufferSharedPtr>::type VertexBufferBindingMap;
protected:
VertexBufferBindingMap mBindingMap;
mutable unsigned short mHighIndex;
public:
/// Constructor, should not be called direct, use HardwareBufferManager::createVertexBufferBinding
VertexBufferBinding();
virtual ~VertexBufferBinding();
/** Set a binding, associating a vertex buffer with a given index.
@remarks
If the index is already associated with a vertex buffer,
the association will be replaced. This may cause the old buffer
to be destroyed if nothing else is referring to it.
You should assign bindings from 0 and not leave gaps, although you can
bind them in any order.
*/
virtual void setBinding(unsigned short index, const HardwareVertexBufferSharedPtr& buffer);
/** Removes an existing binding. */
virtual void unsetBinding(unsigned short index);
/** Removes all the bindings. */
virtual void unsetAllBindings(void);
/// Gets a read-only version of the buffer bindings
virtual const VertexBufferBindingMap& getBindings(void) const;
/// Gets the buffer bound to the given source index
virtual const HardwareVertexBufferSharedPtr& getBuffer(unsigned short index) const;
/// Gets whether a buffer is bound to the given source index
virtual bool isBufferBound(unsigned short index) const;
virtual size_t getBufferCount(void) const { return mBindingMap.size(); }
/** Gets the highest index which has already been set, plus 1.
@remarks
This is to assist in binding the vertex buffers such that there are
not gaps in the list.
*/
virtual unsigned short getNextIndex(void) const { return mHighIndex++; }
/** Gets the last bound index.
*/
virtual unsigned short getLastBoundIndex(void) const;
typedef map<ushort, ushort>::type BindingIndexMap;
/** Check whether any gaps in the bindings.
*/
virtual bool hasGaps(void) const;
/** Remove any gaps in the bindings.
@remarks
This is useful if you've removed vertex buffer from this vertex buffer
bindings and want to remove any gaps in the bindings. Note, however,
that if this bindings is already being used with a VertexDeclaration,
you will need to alter that too. This method is mainly useful when
reorganising buffers manually.
@param
bindingIndexMap To be retrieve the binding index map that used to
translation old index to new index; will be cleared by this method
before fill-in.
*/
virtual void closeGaps(BindingIndexMap& bindingIndexMap);
/// returns true if has an element that is instance data
virtual bool getHasInstanceData() const;
};
/** @} */
/** @} */
}
#endif
|