This file is indexed.

/usr/include/octave-3.8.1/octave/sparse-base-chol.cc is in liboctave-dev 3.8.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/*

Copyright (C) 2005-2013 David Bateman
Copyright (C) 1998-2005 Andy Adler

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "sparse-base-chol.h"
#include "sparse-util.h"
#include "lo-error.h"
#include "oct-sparse.h"
#include "oct-spparms.h"
#include "quit.h"
#include "MatrixType.h"

#ifdef HAVE_CHOLMOD
// Can't use CHOLMOD_NAME(drop)(0.0, S, cm). It doesn't treat complex matrices
template <class chol_type, class chol_elt, class p_type>
void
sparse_base_chol<chol_type, chol_elt, p_type>::sparse_base_chol_rep::drop_zeros
  (const cholmod_sparse* S)
{
  chol_elt sik;
  octave_idx_type *Sp, *Si;
  chol_elt *Sx;
  octave_idx_type pdest, k, ncol, p, pend;

  if (! S)
    return;

  Sp = static_cast<octave_idx_type *>(S->p);
  Si = static_cast<octave_idx_type *>(S->i);
  Sx = static_cast<chol_elt *>(S->x);
  pdest = 0;
  ncol = S->ncol;

  for (k = 0; k < ncol; k++)
    {
      p = Sp[k];
      pend = Sp[k+1];
      Sp[k] = pdest;
      for (; p < pend; p++)
        {
          sik = Sx[p];
          if (CHOLMOD_IS_NONZERO (sik))
            {
              if (p != pdest)
                {
                  Si[pdest] = Si[p];
                  Sx[pdest] = sik;
                }
              pdest++;
            }
        }
    }
  Sp[ncol] = pdest;
}
#endif

template <class chol_type, class chol_elt, class p_type>
octave_idx_type
sparse_base_chol<chol_type, chol_elt, p_type>::sparse_base_chol_rep::init
  (const chol_type& a, bool natural, bool force)
{
  volatile octave_idx_type info = 0;

#ifdef HAVE_CHOLMOD
  octave_idx_type a_nr = a.rows ();
  octave_idx_type a_nc = a.cols ();

  if (a_nr != a_nc)
    {
      (*current_liboctave_error_handler)
        ("SparseCHOL requires square matrix");
      return -1;
    }

  cholmod_common *cm = &Common;

  // Setup initial parameters
  CHOLMOD_NAME(start) (cm);
  cm->prefer_zomplex = false;

  double spu = octave_sparse_params::get_key ("spumoni");
  if (spu == 0.)
    {
      cm->print = -1;
      cm->print_function = 0;
    }
  else
    {
      cm->print = static_cast<int> (spu) + 2;
      cm->print_function =&SparseCholPrint;
    }

  cm->error_handler = &SparseCholError;
  cm->complex_divide = CHOLMOD_NAME(divcomplex);
  cm->hypotenuse = CHOLMOD_NAME(hypot);

  cm->final_asis = false;
  cm->final_super = false;
  cm->final_ll = true;
  cm->final_pack = true;
  cm->final_monotonic = true;
  cm->final_resymbol = false;

  cholmod_sparse A;
  cholmod_sparse *ac = &A;
  double dummy;
  ac->nrow = a_nr;
  ac->ncol = a_nc;

  ac->p = a.cidx ();
  ac->i = a.ridx ();
  ac->nzmax = a.nnz ();
  ac->packed = true;
  ac->sorted = true;
  ac->nz = 0;
#ifdef USE_64_BIT_IDX_T
  ac->itype = CHOLMOD_LONG;
#else
  ac->itype = CHOLMOD_INT;
#endif
  ac->dtype = CHOLMOD_DOUBLE;
  ac->stype = 1;
#ifdef OCTAVE_CHOLMOD_TYPE
  ac->xtype = OCTAVE_CHOLMOD_TYPE;
#else
  ac->xtype = CHOLMOD_REAL;
#endif

  if (a_nr < 1)
    ac->x = &dummy;
  else
    ac->x = a.data ();

  // use natural ordering if no q output parameter
  if (natural)
    {
      cm->nmethods = 1 ;
      cm->method[0].ordering = CHOLMOD_NATURAL ;
      cm->postorder = false ;
    }

  cholmod_factor *Lfactor;
  BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
  Lfactor = CHOLMOD_NAME(analyze) (ac, cm);
  CHOLMOD_NAME(factorize) (ac, Lfactor, cm);
  END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

  is_pd = cm->status == CHOLMOD_OK;
  info = (is_pd ? 0 : cm->status);

  if (is_pd || force)
    {
      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
      cond = CHOLMOD_NAME(rcond) (Lfactor, cm);
      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

      minor_p = Lfactor->minor;

      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
      Lsparse = CHOLMOD_NAME(factor_to_sparse) (Lfactor, cm);
      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

      if (minor_p > 0 && minor_p < a_nr)
        {
          size_t n1 = a_nr + 1;
          Lsparse->p = CHOLMOD_NAME(realloc) (minor_p+1,
                                              sizeof(octave_idx_type),
                                              Lsparse->p, &n1, cm);
          BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          CHOLMOD_NAME(reallocate_sparse)
            (static_cast<octave_idx_type *>(Lsparse->p)[minor_p], Lsparse, cm);
          END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
          Lsparse->ncol = minor_p;
        }

      drop_zeros (Lsparse);

      if (! natural)
        {
          perms.resize (a_nr);
          for (octave_idx_type i = 0; i < a_nr; i++)
            perms(i) = static_cast<octave_idx_type *>(Lfactor->Perm)[i];
        }

      static char tmp[] = " ";

      BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
      CHOLMOD_NAME(free_factor) (&Lfactor, cm);
      CHOLMOD_NAME(finish) (cm);
      CHOLMOD_NAME(print_common) (tmp, cm);
      END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
    }
#else
  (*current_liboctave_error_handler)
    ("Missing CHOLMOD. Sparse cholesky factorization disabled");
#endif
  return info;
}

template <class chol_type, class chol_elt, class p_type>
chol_type
sparse_base_chol<chol_type, chol_elt, p_type>::L (void) const
{
#ifdef HAVE_CHOLMOD
  cholmod_sparse *m = rep->L ();
  octave_idx_type nc = m->ncol;
  octave_idx_type nnz = m->nzmax;
  chol_type ret (m->nrow, nc, nnz);
  for (octave_idx_type j = 0; j < nc+1; j++)
    ret.xcidx (j) = static_cast<octave_idx_type *>(m->p)[j];
  for (octave_idx_type i = 0; i < nnz; i++)
    {
      ret.xridx (i) = static_cast<octave_idx_type *>(m->i)[i];
      ret.xdata (i) = static_cast<chol_elt *>(m->x)[i];
    }
  return ret;
#else
  return chol_type ();
#endif
}

template <class chol_type, class chol_elt, class p_type>
p_type
sparse_base_chol<chol_type, chol_elt, p_type>::
sparse_base_chol_rep::Q (void) const
{
#ifdef HAVE_CHOLMOD
  octave_idx_type n = Lsparse->nrow;
  p_type p (n, n, n);

  for (octave_idx_type i = 0; i < n; i++)
    {
      p.xcidx (i) = i;
      p.xridx (i) = static_cast<octave_idx_type>(perms (i));
      p.xdata (i) = 1;
    }
  p.xcidx (n) = n;

  return p;
#else
  return p_type ();
#endif
}

template <class chol_type, class chol_elt, class p_type>
chol_type
sparse_base_chol<chol_type, chol_elt, p_type>::inverse (void) const
{
  chol_type retval;
#ifdef HAVE_CHOLMOD
  cholmod_sparse *m = rep->L ();
  octave_idx_type n = m->ncol;
  ColumnVector perms = rep->perm ();
  chol_type ret;
  double rcond2;
  octave_idx_type info;
  MatrixType mattype (MatrixType::Upper);
  chol_type linv = L ().hermitian ().inverse (mattype, info, rcond2, 1, 0);

  if (perms.length () == n)
    {
      p_type Qc = Q ();
      retval = Qc * linv * linv.hermitian () * Qc.transpose ();
    }
  else
    retval = linv * linv.hermitian ();
#endif
  return retval;
}