/usr/lib/ocaml/ocamlgraph/sig_pack.mli is in libocamlgraph-ocaml-dev 1.8.3-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 | (**************************************************************************)
(* *)
(* Ocamlgraph: a generic graph library for OCaml *)
(* Copyright (C) 2004-2010 *)
(* Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2.1, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
(* $Id: sig_pack.mli,v 1.23 2005-07-18 07:10:35 filliatr Exp $ *)
(** Immediate access to the library: contain a signature gathering an
imperative graph signature and all algorithms.
Vertices and edges are labeled with integers. *)
(** Signature gathering an imperative graph signature and all algorithms.
Vertices and edges are labeled with integers. *)
module type S = sig
(** {2 Graph structure} *)
(** abstract type of graphs *)
type t
(** Vertices *)
module V : sig
(** Vertices are [COMPARABLE] *)
type t
val compare : t -> t -> int
val hash : t -> int
val equal : t -> t -> bool
(** vertices are labeled with integers *)
type label = int
val create : label -> t
val label : t -> label
end
type vertex = V.t
(** Edges *)
module E : sig
(** Edges are [ORDERED]. *)
type t
val compare : t -> t -> int
(** Edges are directed. *)
val src : t -> V.t
val dst : t -> V.t
(** Edges are labeled with integers. *)
type label = int
val create : V.t -> label -> V.t -> t
(** [create v1 l v2] creates an edge from [v1] to [v2] with label [l] *)
val label : t -> label
type vertex = V.t
end
type edge = E.t
(** is this an implementation of directed graphs? *)
val is_directed : bool
(** {2 Graph constructors and destructors} *)
val create : ?size:int -> unit -> t
(** Return an empty graph. Optionally, a size can be
given, which should be on the order of the expected number of
vertices that will be in the graph (for hash tables-based
implementations). The graph grows as needed, so [size] is
just an initial guess. *)
val clear: t -> unit
(** Remove all vertices and edges from the given graph.
@since ocamlgraph 1.4 *)
val copy : t -> t
(** [copy g] returns a copy of [g]. Vertices and edges (and eventually
marks, see module [Mark]) are duplicated. *)
val add_vertex : t -> V.t -> unit
(** [add_vertex g v] adds the vertex [v] from the graph [g].
Do nothing if [v] is already in [g]. *)
val remove_vertex : t -> V.t -> unit
(** [remove g v] removes the vertex [v] from the graph [g]
(and all the edges going from [v] in [g]).
Do nothing if [v] is not in [g]. *)
val add_edge : t -> V.t -> V.t -> unit
(** [add_edge g v1 v2] adds an edge from the vertex [v1] to the vertex [v2]
in the graph [g].
Add also [v1] (resp. [v2]) in [g] if [v1] (resp. [v2]) is not in [g].
Do nothing if this edge is already in [g]. *)
val add_edge_e : t -> E.t -> unit
(** [add_edge_e g e] adds the edge [e] in the graph [g].
Add also [E.src e] (resp. [E.dst e]) in [g] if [E.src e] (resp. [E.dst
e]) is not in [g].
Do nothing if [e] is already in [g]. *)
val remove_edge : t -> V.t -> V.t -> unit
(** [remove_edge g v1 v2] removes the edge going from [v1] to [v2] from the
graph [g].
Do nothing if this edge is not in [g].
@raise Invalid_argument if [v1] or [v2] are not in [g]. *)
val remove_edge_e : t -> E.t -> unit
(** [remove_edge_e g e] removes the edge [e] from the graph [g].
Do nothing if [e] is not in [g].
@raise Invalid_argument if [E.src e] or [E.dst e] are not in [g]. *)
(** Vertices contains integers marks, which can be set or used by some
algorithms (see for instance module [Marking] below) *)
module Mark : sig
type graph = t
type vertex = V.t
val clear : t -> unit
(** [clear g] sets all marks to 0 from all the vertives of [g]. *)
val get : V.t -> int
val set : V.t -> int -> unit
end
(** {2 Size functions} *)
val is_empty : t -> bool
val nb_vertex : t -> int
val nb_edges : t -> int
(** Degree of a vertex *)
val out_degree : t -> V.t -> int
(** [out_degree g v] returns the out-degree of [v] in [g].
@raise Invalid_argument if [v] is not in [g]. *)
val in_degree : t -> V.t -> int
(** [in_degree g v] returns the in-degree of [v] in [g].
@raise Invalid_argument if [v] is not in [g]. *)
(** {2 Membership functions} *)
val mem_vertex : t -> V.t -> bool
val mem_edge : t -> V.t -> V.t -> bool
val mem_edge_e : t -> E.t -> bool
val find_edge : t -> V.t -> V.t -> E.t
val find_all_edges : t -> V.t -> V.t -> E.t list
(** {2 Successors and predecessors of a vertex} *)
val succ : t -> V.t -> V.t list
(** [succ g v] returns the successors of [v] in [g].
@raise Invalid_argument if [v] is not in [g]. *)
val pred : t -> V.t -> V.t list
(** [pred g v] returns the predecessors of [v] in [g].
@raise Invalid_argument if [v] is not in [g]. *)
(** Labeled edges going from/to a vertex *)
val succ_e : t -> V.t -> E.t list
(** [succ_e g v] returns the edges going from [v] in [g].
@raise Invalid_argument if [v] is not in [g]. *)
val pred_e : t -> V.t -> E.t list
(** [pred_e g v] returns the edges going to [v] in [g].
@raise Invalid_argument if [v] is not in [g]. *)
(** {2 Graph iterators} *)
(** iter/fold on all vertices/edges of a graph *)
val iter_vertex : (V.t -> unit) -> t -> unit
val iter_edges : (V.t -> V.t -> unit) -> t -> unit
val fold_vertex : (V.t -> 'a -> 'a) -> t -> 'a -> 'a
val fold_edges : (V.t -> V.t -> 'a -> 'a) -> t -> 'a -> 'a
(** map iterator on vertex *)
val map_vertex : (V.t -> V.t) -> t -> t
(** iter/fold on all labeled edges of a graph *)
val iter_edges_e : (E.t -> unit) -> t -> unit
val fold_edges_e : (E.t -> 'a -> 'a) -> t -> 'a -> 'a
(** {2 Vertex iterators}
Each iterator [iterator f v g] iters [f] to the successors/predecessors
of [v] in the graph [g] and raises [Invalid_argument] if [v] is not in
[g]. *)
(** iter/fold on all successors/predecessors of a vertex. *)
val iter_succ : (V.t -> unit) -> t -> V.t -> unit
val iter_pred : (V.t -> unit) -> t -> V.t -> unit
val fold_succ : (V.t -> 'a -> 'a) -> t -> V.t -> 'a -> 'a
val fold_pred : (V.t -> 'a -> 'a) -> t -> V.t -> 'a -> 'a
(** iter/fold on all edges going from/to a vertex. *)
val iter_succ_e : (E.t -> unit) -> t -> V.t -> unit
val fold_succ_e : (E.t -> 'a -> 'a) -> t -> V.t -> 'a -> 'a
val iter_pred_e : (E.t -> unit) -> t -> V.t -> unit
val fold_pred_e : (E.t -> 'a -> 'a) -> t -> V.t -> 'a -> 'a
(** {2 Basic operations} *)
val find_vertex : t -> int -> V.t
(** [vertex g i] returns a vertex of label [i] in [g]. The behaviour is
unspecified if [g] has several vertices with label [i].
Note: this function is inefficient (linear in the number of vertices);
you should better keep the vertices as long as you create them. *)
val transitive_closure : ?reflexive:bool -> t -> t
(** [transitive_closure ?reflexive g] returns the transitive closure
of [g] (as a new graph). Loops (i.e. edges from a vertex to itself)
are added only if [reflexive] is [true] (default is [false]). *)
val add_transitive_closure : ?reflexive:bool -> t -> t
(** [add_transitive_closure ?reflexive g] replaces [g] by its
transitive closure. Meaningless for persistent implementations
(then acts as [transitive_closure]). *)
val mirror : t -> t
(** [mirror g] returns a new graph which is the mirror image of [g]:
each edge from [u] to [v] has been replaced by an edge from [v] to [u].
For undirected graphs, it simply returns a copy of [g]. *)
val complement : t -> t
(** [complement g] builds a new graph which is the complement of [g]:
each edge present in [g] is not present in the resulting graph and
vice-versa. Edges of the returned graph are unlabeled. *)
val intersect : t -> t -> t
(** [intersect g1 g2] returns a new graph which is the intersection of [g1]
and [g2]: each vertex and edge present in [g1] *and* [g2] is present
in the resulting graph. *)
val union : t -> t -> t
(** [union g1 g2] returns a new graph which is the union of [g1] and [g2]:
each vertex and edge present in [g1] *or* [g2] is present in the
resulting graph. *)
(** {2 Traversal} *)
(** Depth-first search *)
module Dfs : sig
val iter : ?pre:(V.t -> unit) ->
?post:(V.t -> unit) -> t -> unit
(** [iter pre post g] visits all nodes of [g] in depth-first search,
applying [pre] to each visited node before its successors,
and [post] after them. Each node is visited exactly once. *)
val prefix : (V.t -> unit) -> t -> unit
(** applies only a prefix function *)
val postfix : (V.t -> unit) -> t -> unit
(** applies only a postfix function *)
(** Same thing, but for a single connected component *)
val iter_component :
?pre:(V.t -> unit) ->
?post:(V.t -> unit) -> t -> V.t -> unit
val prefix_component : (V.t -> unit) -> t -> V.t -> unit
val postfix_component : (V.t -> unit) -> t -> V.t -> unit
val has_cycle : t -> bool
end
(** Breadth-first search *)
module Bfs : sig
val iter : (V.t -> unit) -> t -> unit
val iter_component : (V.t -> unit) -> t -> V.t -> unit
end
(** Graph traversal with marking *)
module Marking : sig
val dfs : t -> unit
val has_cycle : t -> bool
end
(** {2 Graph generators} *)
(** Classic graphs *)
module Classic : sig
val divisors : int -> t
(** [divisors n] builds the graph of divisors.
Vertices are integers from [2] to [n]. [i] is connected to [j] if
and only if [i] divides [j].
@raise Invalid_argument is [n < 2]. *)
val de_bruijn : int -> t
(** [de_bruijn n] builds the de Bruijn graph of order [n].
Vertices are bit sequences of length [n] (encoded as their
interpretation as binary integers). The sequence [xw] is connected
to the sequence [wy] for any bits [x] and [y] and any bit sequence
[w] of length [n-1].
@raise Invalid_argument is [n < 1] or [n > Sys.word_size-1]. *)
val vertex_only : int -> t
(** [vertex_only n] builds a graph with [n] vertices and no edge. *)
val full : ?self:bool -> int -> t
(** [full n] builds a graph with [n] vertices and all possible edges.
The optional argument [self] indicates if loop edges should be added
(default value is [true]). *)
end
(** Random graphs *)
module Rand : sig
val graph : ?loops:bool -> v:int -> e:int -> unit -> t
(** [random v e] generates a random with [v] vertices and [e] edges. *)
val labeled :
(V.t -> V.t -> E.label) ->
?loops:bool -> v:int -> e:int -> unit -> t
(** [random_labeled f] is similar to [random] except that edges are
labeled using function [f] *)
end
(** Strongly connected components *)
module Components : sig
val scc : t -> int*(V.t -> int)
(** strongly connected components *)
val scc_array : t -> V.t list array
val scc_list : t -> V.t list list
end
(** {2 Classical algorithms} *)
val shortest_path : t -> V.t -> V.t -> E.t list * int
(** Dijkstra's shortest path algorithm. Weights are the labels. *)
val ford_fulkerson : t -> V.t -> V.t -> (E.t -> int) * int
(** Ford Fulkerson maximum flow algorithm *)
val goldberg : t -> V.t -> V.t -> (E.t -> int) * int
(** Goldberg maximum flow algorithm *)
val bellman_ford : t -> V.t -> E.t list
(** [bellman_ford g v] finds a negative cycle from [v], and returns it,
or raises [Not_found] if there is no such cycle *)
(** Path checking *)
module PathCheck : sig
type path_checker
val create : t -> path_checker
val check_path : path_checker -> V.t -> V.t -> bool
end
(** Topological order *)
module Topological : sig
val fold : (V.t -> 'a -> 'a) -> t -> 'a -> 'a
val iter : (V.t -> unit) -> t -> unit
val fold_stable : (V.t -> 'a -> 'a) -> t -> 'a -> 'a
val iter_stable : (V.t -> unit) -> t -> unit
end
val spanningtree : t -> E.t list
(** Kruskal algorithm *)
(** {2 Input / Output} *)
val dot_output : t -> string -> unit
(** DOT output in a file *)
val display_with_gv : t -> unit
(** Displays the given graph using the external tools "dot" and "gv"
and returns when gv's window is closed *)
val parse_gml_file : string -> t
val parse_dot_file : string -> t
val print_gml : Format.formatter -> t -> unit
val print_gml_file : t -> string -> unit
(* val print_graphml : Format.formatter -> t -> unit *)
end
|