This file is indexed.

/usr/lib/ocaml/ocamlgraph/sig_pack.mli is in libocamlgraph-ocaml-dev 1.8.3-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
(**************************************************************************)
(*                                                                        *)
(*  Ocamlgraph: a generic graph library for OCaml                         *)
(*  Copyright (C) 2004-2010                                               *)
(*  Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles        *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

(* $Id: sig_pack.mli,v 1.23 2005-07-18 07:10:35 filliatr Exp $ *)

(** Immediate access to the library: contain a signature gathering an
    imperative graph signature and all algorithms.
    Vertices and edges are labeled with integers. *)

(** Signature gathering an imperative graph signature and all algorithms.
    Vertices and edges are labeled with integers. *)
module type S = sig

  (** {2 Graph structure} *)

  (** abstract type of graphs *)
  type t

  (** Vertices *)
  module V : sig
    (** Vertices are [COMPARABLE] *)

    type t
    val compare : t -> t -> int
    val hash : t -> int
    val equal : t -> t -> bool

    (** vertices are labeled with integers *)

    type label = int
    val create : label -> t
    val label : t -> label
  end

  type vertex = V.t

  (** Edges *)
  module E : sig
    (** Edges are [ORDERED]. *)

    type t
    val compare : t -> t -> int

    (** Edges are directed. *)

    val src : t -> V.t
    val dst : t -> V.t

    (** Edges are labeled with integers. *)

    type label = int
    val create : V.t -> label -> V.t -> t
      (** [create v1 l v2] creates an edge from [v1] to [v2] with label [l] *)
    val label : t -> label

    type vertex = V.t
  end

  type edge = E.t

  (** is this an implementation of directed graphs? *)
  val is_directed : bool

  (** {2 Graph constructors and destructors} *)

  val create : ?size:int -> unit -> t
    (** Return an empty graph. Optionally, a size can be
        given, which should be on the order of the expected number of
        vertices that will be in the graph (for hash tables-based
        implementations).  The graph grows as needed, so [size] is
        just an initial guess. *)

  val clear: t -> unit
    (** Remove all vertices and edges from the given graph.
	@since ocamlgraph 1.4 *)

  val copy : t -> t
    (** [copy g] returns a copy of [g]. Vertices and edges (and eventually
      marks, see module [Mark]) are duplicated. *)

  val add_vertex : t -> V.t -> unit
    (** [add_vertex g v] adds the vertex [v] from the graph [g].
      Do nothing if [v] is already in [g]. *)

  val remove_vertex : t -> V.t -> unit
    (** [remove g v] removes the vertex [v] from the graph [g]
      (and all the edges going from [v] in [g]).
      Do nothing if [v] is not in [g]. *)

  val add_edge : t -> V.t -> V.t -> unit
    (** [add_edge g v1 v2] adds an edge from the vertex [v1] to the vertex [v2]
      in the graph [g].
      Add also [v1] (resp. [v2]) in [g] if [v1] (resp. [v2]) is not in [g].
      Do nothing if this edge is already in [g]. *)

  val add_edge_e : t -> E.t -> unit
    (** [add_edge_e g e] adds the edge [e] in the graph [g].
      Add also [E.src e] (resp. [E.dst e]) in [g] if [E.src e] (resp. [E.dst
      e]) is not in [g].
      Do nothing if [e] is already in [g]. *)

  val remove_edge : t -> V.t -> V.t -> unit
    (** [remove_edge g v1 v2] removes the edge going from [v1] to [v2] from the
      graph [g].
      Do nothing if this edge is not in [g].
      @raise Invalid_argument if [v1] or [v2] are not in [g]. *)

  val remove_edge_e : t -> E.t -> unit
    (** [remove_edge_e g e] removes the edge [e] from the graph [g].
      Do nothing if [e] is not in [g].
      @raise Invalid_argument if [E.src e] or [E.dst e] are not in [g]. *)

  (** Vertices contains integers marks, which can be set or used by some
      algorithms (see for instance module [Marking] below) *)
  module Mark : sig
    type graph = t
    type vertex = V.t
    val clear : t -> unit
      (** [clear g] sets all marks to 0 from all the vertives of [g]. *)
    val get : V.t -> int
    val set : V.t -> int -> unit
  end

  (** {2 Size functions} *)

  val is_empty : t -> bool
  val nb_vertex : t -> int
  val nb_edges : t -> int

  (** Degree of a vertex *)

  val out_degree : t -> V.t -> int
    (** [out_degree g v] returns the out-degree of [v] in [g].
      @raise Invalid_argument if [v] is not in [g]. *)

  val in_degree : t -> V.t -> int
    (** [in_degree g v] returns the in-degree of [v] in [g].
      @raise Invalid_argument if [v] is not in [g]. *)

  (** {2 Membership functions} *)

  val mem_vertex : t -> V.t -> bool
  val mem_edge : t -> V.t -> V.t -> bool
  val mem_edge_e : t -> E.t -> bool
  val find_edge : t -> V.t -> V.t -> E.t
  val find_all_edges : t -> V.t -> V.t -> E.t list

  (** {2 Successors and predecessors of a vertex} *)

  val succ : t -> V.t -> V.t list
    (** [succ g v] returns the successors of [v] in [g].
        @raise Invalid_argument if [v] is not in [g]. *)

  val pred : t -> V.t -> V.t list
    (** [pred g v] returns the predecessors of [v] in [g].
        @raise Invalid_argument if [v] is not in [g]. *)

  (** Labeled edges going from/to a vertex *)

  val succ_e : t -> V.t -> E.t list
    (** [succ_e g v] returns the edges going from [v] in [g].
        @raise Invalid_argument if [v] is not in [g]. *)

  val pred_e : t -> V.t -> E.t list
    (** [pred_e g v] returns the edges going to [v] in [g].
        @raise Invalid_argument if [v] is not in [g]. *)

  (** {2 Graph iterators} *)

  (** iter/fold on all vertices/edges of a graph *)

  val iter_vertex : (V.t -> unit) -> t -> unit
  val iter_edges : (V.t -> V.t -> unit) -> t -> unit
  val fold_vertex : (V.t -> 'a -> 'a) -> t  -> 'a -> 'a
  val fold_edges : (V.t -> V.t -> 'a -> 'a) -> t -> 'a -> 'a

  (** map iterator on vertex *)
  val map_vertex : (V.t -> V.t) -> t -> t

  (** iter/fold on all labeled edges of a graph *)

  val iter_edges_e : (E.t -> unit) -> t -> unit
  val fold_edges_e : (E.t -> 'a -> 'a) -> t -> 'a -> 'a

  (** {2 Vertex iterators}

    Each iterator [iterator f v g] iters [f] to the successors/predecessors
    of [v] in the graph [g] and raises [Invalid_argument] if [v] is not in
    [g]. *)

  (** iter/fold on all successors/predecessors of a vertex. *)

  val iter_succ : (V.t -> unit) -> t -> V.t -> unit
  val iter_pred : (V.t -> unit) -> t -> V.t -> unit
  val fold_succ : (V.t -> 'a -> 'a) -> t -> V.t -> 'a -> 'a
  val fold_pred : (V.t -> 'a -> 'a) -> t -> V.t -> 'a -> 'a

  (** iter/fold on all edges going from/to a vertex. *)

  val iter_succ_e : (E.t -> unit) -> t -> V.t -> unit
  val fold_succ_e : (E.t -> 'a -> 'a) -> t -> V.t -> 'a -> 'a
  val iter_pred_e : (E.t -> unit) -> t -> V.t -> unit
  val fold_pred_e : (E.t -> 'a -> 'a) -> t -> V.t -> 'a -> 'a

  (** {2 Basic operations} *)

  val find_vertex : t -> int -> V.t
    (** [vertex g i] returns a vertex of label [i] in [g]. The behaviour is
      unspecified if [g] has several vertices with label [i].
      Note: this function is inefficient (linear in the number of vertices);
      you should better keep the vertices as long as you create them. *)

  val transitive_closure : ?reflexive:bool -> t -> t
    (** [transitive_closure ?reflexive g] returns the transitive closure
      of [g] (as a new graph). Loops (i.e. edges from a vertex to itself)
      are added only if [reflexive] is [true] (default is [false]). *)

  val add_transitive_closure : ?reflexive:bool -> t -> t
    (** [add_transitive_closure ?reflexive g] replaces [g] by its
      transitive closure. Meaningless for persistent implementations
      (then acts as [transitive_closure]). *)

  val mirror : t -> t
    (** [mirror g] returns a new graph which is the mirror image of [g]:
      each edge from [u] to [v] has been replaced by an edge from [v] to [u].
      For undirected graphs, it simply returns a copy of [g]. *)

  val complement : t -> t
    (** [complement g] builds a new graph which is the complement of [g]:
      each edge present in [g] is not present in the resulting graph and
      vice-versa. Edges of the returned graph are unlabeled. *)

  val intersect : t -> t -> t
    (** [intersect g1 g2] returns a new graph which is the intersection of [g1]
      and [g2]: each vertex and edge present in [g1] *and* [g2] is present
      in the resulting graph. *)

  val union : t -> t -> t
    (** [union g1 g2] returns a new graph which is the union of [g1] and [g2]:
      each vertex and edge present in [g1] *or* [g2] is present in the
      resulting graph. *)

  (** {2 Traversal} *)

  (** Depth-first search *)
  module Dfs : sig
    val iter : ?pre:(V.t -> unit) ->
               ?post:(V.t -> unit) -> t -> unit
      (** [iter pre post g] visits all nodes of [g] in depth-first search,
	  applying [pre] to each visited node before its successors,
	  and [post] after them. Each node is visited exactly once. *)
    val prefix : (V.t -> unit) -> t -> unit
      (** applies only a prefix function *)
    val postfix : (V.t -> unit) -> t -> unit
      (** applies only a postfix function *)

    (** Same thing, but for a single connected component *)

    val iter_component :
               ?pre:(V.t -> unit) ->
               ?post:(V.t -> unit) -> t -> V.t -> unit
    val prefix_component : (V.t -> unit) -> t -> V.t -> unit
    val postfix_component : (V.t -> unit) -> t -> V.t -> unit

    val has_cycle : t -> bool
  end

  (** Breadth-first search *)
  module Bfs : sig
    val iter : (V.t -> unit) -> t -> unit
    val iter_component : (V.t -> unit) -> t -> V.t -> unit
  end

  (** Graph traversal with marking *)
  module Marking : sig
    val dfs : t -> unit
    val has_cycle : t -> bool
  end

  (** {2 Graph generators} *)

  (** Classic graphs *)
  module Classic : sig
    val divisors : int -> t
      (** [divisors n] builds the graph of divisors.
	Vertices are integers from [2] to [n]. [i] is connected to [j] if
        and only if [i] divides [j].
	@raise Invalid_argument is [n < 2]. *)

    val de_bruijn : int -> t
      (** [de_bruijn n] builds the de Bruijn graph of order [n].
	Vertices are bit sequences of length [n] (encoded as their
	interpretation as binary integers). The sequence [xw] is connected
	to the sequence [wy] for any bits [x] and [y] and any bit sequence
        [w] of length [n-1].
	@raise Invalid_argument is [n < 1] or [n > Sys.word_size-1]. *)

    val vertex_only : int -> t
      (** [vertex_only n] builds a graph with [n] vertices and no edge. *)

    val full : ?self:bool -> int -> t
      (** [full n] builds a graph with [n] vertices and all possible edges.
	The optional argument [self] indicates if loop edges should be added
        (default value is [true]). *)
  end

  (** Random graphs *)
  module Rand : sig
    val graph : ?loops:bool -> v:int -> e:int -> unit -> t
      (** [random v e] generates a random with [v] vertices and [e] edges. *)

    val labeled :
      (V.t -> V.t -> E.label) ->
	?loops:bool -> v:int -> e:int -> unit -> t
	  (** [random_labeled f] is similar to [random] except that edges are
            labeled using function [f] *)
  end

  (** Strongly connected components *)
  module Components : sig
    val scc : t -> int*(V.t -> int)
	(** strongly connected components *)
    val scc_array : t -> V.t list array
    val scc_list : t -> V.t list list
  end

  (** {2 Classical algorithms} *)

  val shortest_path : t -> V.t -> V.t -> E.t list * int
    (** Dijkstra's shortest path algorithm. Weights are the labels. *)

  val ford_fulkerson : t -> V.t -> V.t -> (E.t -> int) * int
    (** Ford Fulkerson maximum flow algorithm *)

  val goldberg : t -> V.t -> V.t -> (E.t -> int) * int
    (** Goldberg maximum flow algorithm *)

  val bellman_ford : t -> V.t -> E.t list
    (** [bellman_ford g v] finds a negative cycle from [v], and returns it,
        or raises [Not_found] if there is no such cycle *)

  (** Path checking *)
  module PathCheck : sig
    type path_checker
    val create : t -> path_checker
    val check_path : path_checker -> V.t -> V.t -> bool
  end

  (** Topological order *)
  module Topological : sig
    val fold : (V.t -> 'a -> 'a) -> t -> 'a -> 'a
    val iter : (V.t -> unit) -> t -> unit

    val fold_stable : (V.t -> 'a -> 'a) -> t -> 'a -> 'a
    val iter_stable : (V.t -> unit) -> t -> unit
  end

  val spanningtree : t -> E.t list
    (** Kruskal algorithm *)

  (** {2 Input / Output} *)

  val dot_output : t -> string -> unit
    (** DOT output in a file *)

  val display_with_gv : t -> unit
    (** Displays the given graph using the external tools "dot" and "gv"
        and returns when gv's window is closed *)

  val parse_gml_file : string -> t
  val parse_dot_file : string -> t

  val print_gml : Format.formatter -> t -> unit
  val print_gml_file : t -> string -> unit
  (* val print_graphml : Format.formatter -> t -> unit *)

end