This file is indexed.

/usr/include/nfft3util.h is in libnfft3-dev 3.2.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/*
 * Copyright (c) 2002, 2012 Jens Keiner, Stefan Kunis, Daniel Potts
 *
 * This program is free software; you can redistribute it and/or modify it under
 * the terms of the GNU General Public License as published by the Free Software
 * Foundation; either version 2 of the License, or (at your option) any later
 * version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 51
 * Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/* $Id: nfft3util.h 3896 2012-10-10 12:19:26Z tovo $ */

/*! \file nfft3util.h
 *  \brief Header file for utility functions used by the nfft3 library.
 */
#ifndef __UTIL_H__
#define __UTIL_H__

/** Include header for FFTW3 library for its complex type. */
#include <fftw3.h>

#ifdef __cplusplus
extern "C"
{
#endif /* __cplusplus */

/*###########################################################################*/
/*###########################################################################*/
/*###########################################################################*/

/**
 * @defgroup nfftutil Util - Auxilliary functions
 * @{
 *
 * This module implements frequently used utility functions.
 * In particular, this includes simple measurement of resources, evaluation of
 * window functions, vector routines for basic linear algebra tasks, and
 * computation of weights for the inverse transforms.
 *
 */

/** Swapping of two vectors.
 */
#define NFFT_SWAP_complex(x,y) {fftw_complex* NFFT_SWAP_temp__; \
  NFFT_SWAP_temp__=(x); (x)=(y); (y)=NFFT_SWAP_temp__;}

/** Swapping of two vectors.
 */
#define NFFT_SWAP_double(x,y) {double* NFFT_SWAP_temp__; NFFT_SWAP_temp__=(x); \
  (x)=(y); (y)=NFFT_SWAP_temp__;}

/** Formerly known to be an irrational number.
 */
#define PI 3.141592653589793238462643383279502884197169399375105820974944592
#define PI2 6.283185307179586476925286766559005768394338798750211641949889185
#define PI4 12.56637061435917295385057353311801153678867759750042328389977837

/** Maximum of its two arguments.
 */
#define NFFT_MAX(a,b) ((a)>(b)? (a) : (b))

/** Mimimum of its two arguments.
 */
#define NFFT_MIN(a,b) ((a)<(b)? (a) : (b))

/* ######################################################################### */
/* ########## Window function related ###################################### */
/* ######################################################################### */

/** To test the new one
 */
double nfft_bspline_old(int k,double x,double *A);

/** Computes the B-spline \f$M_{k,0}\left(x\right)\f$,
    scratch is used for de Boor's scheme
 */
double nfft_bspline(int k, double x, double *scratch);

/* ######################################################################### */
/* ########## Vector routines ############################################## */
/* ######################################################################### */

/** Computes integer \f$\prod_{t=0}^{d-1} v_t\f$.
 */
int nfft_prod_int(int *vec, int d);

/** Computes integer \f$\prod_{t=0}^{d-1} v_t-a\f$.
 */
int nfst_prod_minus_a_int(int *vec, int a, int d);

/** Computes \f$\sum_{t=0}^{d-1} i_t \prod_{t'=t+1}^{d-1} N_{t'}\f$.
 */
int nfft_plain_loop(int *idx,int *N,int d);

/** Computes double \f$\prod_{t=0}^{d-1} v_t\f$.
 */
double nfft_prod_real(double *vec,int d);

/** Computes the inner/dot product \f$x^H x\f$.
 */
double nfft_dot_complex(fftw_complex* x, int n);

/** Computes the inner/dot product \f$x^H x\f$.
 */
double nfft_dot_double( double*  x, int n);

/** Computes the weighted inner/dot product \f$x^H (w \odot x)\f$.
 */
double nfft_dot_w_complex(fftw_complex* x, double* w, int n);

/** Computes the weighted inner/dot product \f$x^H (w \odot x)\f$.
 */
double nfft_dot_w_double( double*  x, double* w, int n);

/** Computes the weighted inner/dot product
    \f$x^H (w1\odot w2\odot w2 \odot x)\f$.
*/
double nfft_dot_w_w2_complex(fftw_complex* x, double* w, double* w2, int n);

/** Computes the weighted inner/dot product
    \f$x^H (w2\odot w2 \odot x)\f$.
 */
double nfft_dot_w2_complex(fftw_complex* x, double* w2, int n);

/** Copies \f$x \leftarrow y\f$.
 */
void nfft_cp_complex(fftw_complex* x, fftw_complex* y, int n);

/** Copies \f$x \leftarrow y\f$.
 */
void nfft_cp_double( double*  x, double*  y, int n);

/** Copies \f$x \leftarrow a y\f$.
 */
void nfft_cp_a_complex(fftw_complex* x, double a, fftw_complex* y, int n);

/** Copies \f$x \leftarrow a y\f$.
 */
void nfft_cp_a_double(double *x, double a, double *y, int n);

/** Copies \f$x \leftarrow w\odot y\f$.
 */
void nfft_cp_w_complex(fftw_complex* x, double* w, fftw_complex* y, int n);

/** Copies \f$x \leftarrow w\odot y\f$.
 */
void nfft_cp_w_double( double*  x, double* w, double*  y, int n);

/** Updates \f$x \leftarrow a x + y\f$.
 */
void nfft_upd_axpy_complex(fftw_complex* x, double a, fftw_complex* y, int n);

/** Updates \f$x \leftarrow a x + y\f$.
 */
void nfft_upd_axpy_double( double*  x, double a, double*  y, int n);

/** Updates \f$x \leftarrow x + a y\f$.
 */
void nfft_upd_xpay_complex(fftw_complex* x, double a, fftw_complex* y, int n);

/** Updates \f$x \leftarrow x + a y\f$.
 */
void nfft_upd_xpay_double( double*  x, double a, double*  y, int n);

/** Updates \f$x \leftarrow a x + b y\f$.
 */
void nfft_upd_axpby_complex(fftw_complex* x, double a, fftw_complex* y, double b, int n);

/** Updates \f$x \leftarrow a x + b y\f$.
 */
void nfft_upd_axpby_double(  double* x, double a, double*  y, double b, int n);

/** Updates \f$x \leftarrow x + a w\odot y\f$.
 */
void nfft_upd_xpawy_complex(fftw_complex* x, double a, double* w, fftw_complex* y, int n);

/** Updates \f$x \leftarrow x + a w\odot y\f$.
 */
void nfft_upd_xpawy_double( double*  x, double a, double* w, double*  y, int n);

/** Updates \f$x \leftarrow a x +  w\odot y\f$.
 */
void nfft_upd_axpwy_complex(fftw_complex* x, double a, double* w, fftw_complex* y, int n);

/** Updates \f$x \leftarrow a x +  w\odot y\f$.
 */
void nfft_upd_axpwy_double( double*  x, double a, double* w, double*  y, int n);

/** Swaps each half over N[d]/2.
 */
void nfft_fftshift_complex(fftw_complex *x, int d, int* N);

/** Prints a vector of integer numbers.
 */
void nfft_vpr_int(int *x, int n, char *text);

/** Prints a vector of doubles numbers.
 */
void nfft_vpr_double(double *x, int n, const char *text);

/** Prints a vector of complex numbers.
 */
void nfft_vpr_complex(fftw_complex *x, int n, const char *text);

/** Inits a vector of random complex numbers in \f$[0,1]\times[0,1]{\rm i}\f$.
 */
void nfft_vrand_unit_complex(fftw_complex *x, int n);

/** Inits a vector of random double numbers in \f$[-1/2,1/2]\f$.
 */
void nfft_vrand_shifted_unit_double(double *x, int n);

/* ######################################################################### */
/* ########## Helpers for inverse transforms ############################### */
/* ######################################################################### */

/** Computes non periodic voronoi weights, assumes ordered nodes \f$x_j\f$ */
void nfft_voronoi_weights_1d(double *w, double *x, int M);

/** Computes voronoi weights for nodes on the sphere S^2. */
void nfft_voronoi_weights_S2(double *w, double *xi, int M);

/** Computes the damping factor for the modified Fejer kernel, ie
    \f$\frac{2}{N}\left(1-\frac{\left|2k+1\right|}{N}\right)\f$
 */
double nfft_modified_fejer(int N,int kk);

/** Computes the damping factor for the modified Jackson kernel.
 */
double nfft_modified_jackson2(int N,int kk);

/** Computes the damping factor for the modified generalised Jackson kernel.
 */
double nfft_modified_jackson4(int N,int kk);

/** Computes the damping factor for the modified Sobolev kernel.
 */
double nfft_modified_sobolev(double mu,int kk);

/** Computes the damping factor for the modified multiquadric kernel.
 */
double nfft_modified_multiquadric(double mu,double c,int kk);

int nfft_smbi(const double x, const double alpha, const int nb, const int ize,
  double *b);

double nfft_drand48(void);

void nfft_srand48(long int seed);

/** Radix sort for node indices.
 */
void nfft_sort_node_indices_radix_lsdf(int n, int *keys0, int *keys1, int rhigh);

/** Radix sort for node indices.
 */
void nfft_sort_node_indices_radix_msdf(int n, int *keys0, int *keys1, int rhigh);

int nfft_get_num_threads(void);

#ifdef _OPENMP
int nfft_get_omp_num_threads(void);
#endif

#ifdef __cplusplus
}  /* extern "C" */
#endif /* __cplusplus */

/** @}
 */
#endif