/usr/include/nfft3.h is in libnfft3-dev 3.2.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 | /*
* Copyright (c) 2002, 2012 Jens Keiner, Stefan Kunis, Daniel Potts
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* $Id: nfft3.h 3896 2012-10-10 12:19:26Z tovo $ */
#ifndef __NFFT3_H__
#define __NFFT3_H__
/* module configuration */
#include "nfft3conf.h"
/* fftw_complex */
#include <fftw3.h>
#ifdef __cplusplus
extern "C"
{
#endif /* __cplusplus */
#define NFFT_CONCAT(prefix, name) prefix ## name
/* IMPORTANT: for Windows compilers, you should add a line
* #define FFTW_DLL
* here and in kernel/infft.h if you are compiling/using NFFT as a DLL, in order
* to do the proper importing/exporting, or alternatively compile with
* -DNFFT_DLL or the equivalent command-line flag. This is not necessary under
* MinGW/Cygwin, where libtool does the imports/exports automatically. */
#if defined(NFFT_DLL) && (defined(_WIN32) || defined(__WIN32__))
/* annoying Windows syntax for shared-library declarations */
# if defined(COMPILING_NFFT) /* defined in api.h when compiling NFFT */
# define NFFT_EXTERN extern __declspec(dllexport)
# else /* user is calling NFFT; import symbol */
# define NFFT_EXTERN extern __declspec(dllimport)
# endif
#else
# define NFFT_EXTERN extern
#endif
/* our own memory allocation and exit functions */
NFFT_EXTERN void *nfft_malloc(size_t n);
NFFT_EXTERN void nfft_free(void *p);
NFFT_EXTERN void nfft_die(char *s);
/* You can replace the hooks with your own, functions if necessary. We need this
* for the Matlab interfaces etc. */
typedef void *(*nfft_malloc_type_function) (size_t n);
typedef void (*nfft_free_type_function) (void *p);
typedef void (*nfft_die_type_function) (const char *errString);
NFFT_EXTERN nfft_malloc_type_function nfft_malloc_hook;
NFFT_EXTERN nfft_free_type_function nfft_free_hook;
NFFT_EXTERN nfft_die_type_function nfft_die_hook;
/* members inherited by all plans */
#define MACRO_MV_PLAN(RC) \
int N_total; /**< Total number of Fourier coefficients */\
int M_total; /**< Total number of samples */\
RC *f_hat; /**< Vector of Fourier coefficients, size is N_total * sizeof(RC) */\
RC *f; /**< Vector of samples, size is M_total * sizeof(RC) */\
void (*mv_trafo)(void*); /**< Pointer to the own transform */\
void (*mv_adjoint)(void*); /**< Pointer to the own adjoint */
/* nfft */
/* name mangling macros */
#define NFFT_MANGLE_DOUBLE(name) NFFT_CONCAT(nfft_, name)
#define NFFT_MANGLE_FLOAT(name) NFFT_CONCAT(nfftf_, name)
#define NFFT_MANGLE_LONG_DOUBLE(name) NFFT_CONCAT(nfftl_, name)
/* huge second-order macro that defines prototypes for all nfft API functions.
* We expand this macro for each supported precision.
* X: nfft name-mangling macro
* Y: fftw name-mangling macro
* R: real data type
* C: complex data type
*/
#define NFFT_DEFINE_API(X,Y,R,C) \
\
typedef struct \
{ \
MACRO_MV_PLAN(C) \
} X(mv_plan_complex); \
\
typedef struct \
{ \
MACRO_MV_PLAN(R) \
} X(mv_plan_double); \
\
typedef struct\
{\
MACRO_MV_PLAN(C)\
\
int d; /**< dimension aka rank */\
int *N; /**< multi-bandwidth */\
R *sigma; /**< oversampling-factor */\
int *n; /**< FFTW length, equal to sigma*N, default is the power of 2 such
that \f$2\le\sigma<4\f$ */\
int n_total; /**< Total size of FFTW */\
int m; /**< Cut-off parameter of the window function, default value is
6 (KAISER_BESSEL),
9 (SINC_POWER),
11 (B_SPLINE),
12 (GAUSSIAN) */\
R *b; /**< Shape parameter of the window function */\
int K; /**< Number of equispaced samples of the window function for \ref
PRE_LIN_PSI */\
\
unsigned nfft_flags; /**< Flags for precomputation, (de)allocation, and FFTW
usage, default setting is
PRE_PHI_HUT | PRE_PSI | MALLOC_X | MALLOC_F_HAT |
MALLOC_F | FFTW_INIT | FFT_OUT_OF_PLACE */\
\
unsigned fftw_flags; /**< Flags for the FFTW, default is
FFTW_ESTIMATE | FFTW_DESTROY_INPUT */\
\
R *x; /**< Nodes in time/spatial domain, size is \f$dM\f$ doubles */\
\
double MEASURE_TIME_t[3]; /**< Measured time for each step if MEASURE_TIME is
set */\
\
/* internal use only */\
Y(plan) my_fftw_plan1; /**< Forward FFTW plan */\
Y(plan) my_fftw_plan2; /**< Backward FFTW plan */\
\
R **c_phi_inv; /**< Precomputed data for the diagonal matrix \f$D\f$, size \
is \f$N_0+\hdots+N_{d-1}\f$ doubles*/\
R *psi; /**< Precomputed data for the sparse matrix \f$B\f$, size depends
on precomputation scheme */\
int *psi_index_g; /**< Indices in source/target vector for \ref PRE_FULL_PSI */\
int *psi_index_f; /**< Indices in source/target vector for \ref PRE_FULL_PSI */\
\
C *g; /**< Oversampled vector of samples, size is \ref n_total double complex */\
C *g_hat; /**< Zero-padded vector of Fourier coefficients, size is \ref n_total fftw_complex */\
C *g1; /**< Input of fftw */\
C *g2; /**< Output of fftw */\
\
R *spline_coeffs; /**< Input for de Boor algorithm if B_SPLINE or SINC_POWER is defined */\
\
int *index_x; /**< Index array for nodes x used when flag \ref NFFT_SORT_NODES is set */\
} X(plan); \
\
NFFT_EXTERN void X(trafo_direct)(X(plan) *ths);\
NFFT_EXTERN void X(adjoint_direct)(X(plan) *ths);\
NFFT_EXTERN void X(trafo)(X(plan) *ths);\
NFFT_EXTERN void X(trafo_1d)(X(plan) *ths);\
NFFT_EXTERN void X(trafo_2d)(X(plan) *ths);\
NFFT_EXTERN void X(trafo_3d)(X(plan) *ths);\
NFFT_EXTERN void X(adjoint)(X(plan) *ths);\
NFFT_EXTERN void X(adjoint_1d)(X(plan) *ths);\
NFFT_EXTERN void X(adjoint_2d)(X(plan) *ths);\
NFFT_EXTERN void X(adjoint_3d)(X(plan) *ths);\
NFFT_EXTERN void X(init_1d)(X(plan) *ths, int N1, int M);\
NFFT_EXTERN void X(init_2d)(X(plan) *ths, int N1, int N2, int M);\
NFFT_EXTERN void X(init_3d)(X(plan) *ths, int N1, int N2, int N3, int M);\
NFFT_EXTERN void X(init)(X(plan) *ths, int d, int *N, int M);\
NFFT_EXTERN void X(init_guru)(X(plan) *ths, int d, int *N, int M, int *n, \
int m, unsigned nfft_flags, unsigned fftw_flags);\
NFFT_EXTERN void X(precompute_one_psi)(X(plan) *ths);\
NFFT_EXTERN void X(precompute_full_psi)(X(plan) *ths);\
NFFT_EXTERN void X(precompute_psi)(X(plan) *ths);\
NFFT_EXTERN void X(precompute_lin_psi)(X(plan) *ths);\
NFFT_EXTERN const char* X(check)(X(plan) *ths);\
NFFT_EXTERN void X(finalize)(X(plan) *ths);
/* nfft api */
NFFT_DEFINE_API(NFFT_MANGLE_FLOAT,FFTW_MANGLE_FLOAT,float,fftwf_complex)
NFFT_DEFINE_API(NFFT_MANGLE_DOUBLE,FFTW_MANGLE_DOUBLE,double,fftw_complex)
NFFT_DEFINE_API(NFFT_MANGLE_LONG_DOUBLE,FFTW_MANGLE_LONG_DOUBLE,long double,fftwl_complex)
/* flags for init */
#define PRE_PHI_HUT (1U<< 0)
#define FG_PSI (1U<< 1)
#define PRE_LIN_PSI (1U<< 2)
#define PRE_FG_PSI (1U<< 3)
#define PRE_PSI (1U<< 4)
#define PRE_FULL_PSI (1U<< 5)
#define MALLOC_X (1U<< 6)
#define MALLOC_F_HAT (1U<< 7)
#define MALLOC_F (1U<< 8)
#define FFT_OUT_OF_PLACE (1U<< 9)
#define FFTW_INIT (1U<< 10)
#define NFFT_SORT_NODES (1U<< 11)
#define NFFT_OMP_BLOCKWISE_ADJOINT (1U<<12)
#define PRE_ONE_PSI (PRE_LIN_PSI| PRE_FG_PSI| PRE_PSI| PRE_FULL_PSI)
/* nfct */
/* name mangling macros */
#define NFCT_MANGLE_DOUBLE(name) NFFT_CONCAT(nfct_, name)
#define NFCT_MANGLE_FLOAT(name) NFFT_CONCAT(nfctf_, name)
#define NFCT_MANGLE_LONG_DOUBLE(name) NFFT_CONCAT(nfctl_, name)
/* huge second-order macro that defines prototypes for all nfct API functions.
* We expand this macro for each supported precision.
* X: nfct name-mangling macro
* Y: fftw name-mangling macro
* R: real data type
* C: complex data type
*/
#define NFCT_DEFINE_API(X,Y,R,C) \
typedef struct\
{\
/* api */\
MACRO_MV_PLAN(R)\
\
int d; /**< dimension, rank */\
int *N; /**< cut-off-frequencies (kernel) */\
int *n; /**< length of DCT-I */\
R *sigma; /**< oversampling-factor */\
int m; /**< cut-off parameter in time-domain */\
\
R nfct_full_psi_eps;\
R *b; /**< shape parameters */\
\
unsigned nfct_flags; /**< flags for precomputation, malloc */\
unsigned fftw_flags; /**< flags for the fftw */\
\
R *x; /**< nodes (in time/spatial domain) */\
\
double MEASURE_TIME_t[3]; /**< measured time for each step */\
\
/* internal use only */\
Y(plan) my_fftw_r2r_plan; /**< fftw_plan */\
Y(r2r_kind) *r2r_kind; /**< r2r transform type (DCT-I) */\
\
R **c_phi_inv; /**< precomputed data, matrix D */\
R *psi; /**< precomputed data, matrix B */\
int size_psi; /**< only for thin B */\
int *psi_index_g; /**< only for thin B */\
int *psi_index_f; /**< only for thin B */\
\
R *g;\
R *g_hat;\
R *g1; /**< input of fftw */\
R *g2; /**< output of fftw */\
\
R *spline_coeffs; /**< input for de Boor algorithm, if B_SPLINE or SINC_2m is defined */\
} X(plan);\
\
NFFT_EXTERN void X(init_1d)(X(plan) *ths_plan, int N0, int M_total); \
NFFT_EXTERN void X(init_2d)(X(plan) *ths_plan, int N0, int N1, int M_total); \
NFFT_EXTERN void X(init_3d)(X(plan) *ths_plan, int N0, int N1, int N2, int M_total); \
NFFT_EXTERN void X(init)(X(plan) *ths_plan, int d, int *N, int M_total); \
NFFT_EXTERN void X(init_guru)(X(plan) *ths_plan, int d, int *N, int M_total, int *n, \
int m, unsigned nfct_flags, unsigned fftw_flags); \
NFFT_EXTERN void X(precompute_psi)(X(plan) *ths_plan); \
NFFT_EXTERN void X(trafo)(X(plan) *ths_plan); \
NFFT_EXTERN void X(trafo_direct)(X(plan) *ths_plan); \
NFFT_EXTERN void X(adjoint)(X(plan) *ths_plan); \
NFFT_EXTERN void X(adjoint_direct)(X(plan) *ths_plan); \
NFFT_EXTERN void X(finalize)(X(plan) *ths_plan); \
NFFT_EXTERN R X(phi_hut)(X(plan) *ths_plan, int k, int d); \
NFFT_EXTERN R X(phi)(X(plan) *ths_plan, R x, int d);
#if defined(HAVE_NFCT)
/* nfct api */
NFCT_DEFINE_API(NFCT_MANGLE_FLOAT,FFTW_MANGLE_FLOAT,float,fftwf_complex)
NFCT_DEFINE_API(NFCT_MANGLE_DOUBLE,FFTW_MANGLE_DOUBLE,double,fftw_complex)
NFCT_DEFINE_API(NFCT_MANGLE_LONG_DOUBLE,FFTW_MANGLE_LONG_DOUBLE,long double,fftwl_complex)
#endif
/* nfst */
/* name mangling macros */
#define NFST_MANGLE_DOUBLE(name) NFFT_CONCAT(nfst_, name)
#define NFST_MANGLE_FLOAT(name) NFFT_CONCAT(nfstf_, name)
#define NFST_MANGLE_LONG_DOUBLE(name) NFFT_CONCAT(nfstl_, name)
/* huge second-order macro that defines prototypes for all nfct API functions.
* We expand this macro for each supported precision.
* X: nfst name-mangling macro
* Y: fftw name-mangling macro
* R: real data type
* C: complex data type
*/
#define NFST_DEFINE_API(X,Y,R,C) \
typedef struct\
{\
/* api */\
MACRO_MV_PLAN(R)\
\
int d; /**< dimension, rank */\
int *N; /**< bandwidth */\
int *n; /**< length of DST-1 */\
R *sigma; /**< oversampling-factor */\
int m; /**< cut-off parameter in time-domain */\
\
R nfst_full_psi_eps;\
R *b; /**< shape parameters */\
\
unsigned nfst_flags; /**< flags for precomputation, malloc */\
unsigned fftw_flags; /**< flags for the fftw */\
\
R *x; /**< nodes (in time/spatial domain) */\
\
double MEASURE_TIME_t[3]; /**< measured time for each step */\
\
/* internal use only */\
Y(plan) my_fftw_r2r_plan; /**< fftw_plan forward */\
Y(r2r_kind) *r2r_kind; /**< r2r transform type (dct-i) */\
\
R **c_phi_inv; /**< precomputed data, matrix D */\
R *psi; /**< precomputed data, matrix B */\
int size_psi; /**< only for thin B */\
int *psi_index_g; /**< only for thin B */\
int *psi_index_f; /**< only for thin B */\
\
R *g;\
R *g_hat;\
R *g1; /**< input of fftw */\
R *g2; /**< output of fftw */\
\
R *spline_coeffs; /**< input for de Boor algorithm, if B_SPLINE or SINC_2m is defined */\
} X(plan);\
\
NFFT_EXTERN void X(init_1d)(X(plan) *ths_plan, int N0, int M_total); \
NFFT_EXTERN void X(init_2d)(X(plan) *ths_plan, int N0, int N1, int M_total); \
NFFT_EXTERN void X(init_3d)(X(plan) *ths_plan, int N0, int N1, int N2, int M_total); \
NFFT_EXTERN void X(init)(X(plan) *ths_plan, int d, int *N, int M_total); \
NFFT_EXTERN void X(init_m)(X(plan) *ths_plan, int d, int *N, int M_total, int m);\
NFFT_EXTERN void X(init_guru)(X(plan) *ths_plan, int d, int *N, int M_total, int *n, \
int m, unsigned nfst_flags, unsigned fftw_flags); \
NFFT_EXTERN void X(precompute_psi)(X(plan) *ths_plan); \
NFFT_EXTERN void X(trafo)(X(plan) *ths_plan); \
NFFT_EXTERN void X(trafo_direct)(X(plan) *ths_plan); \
NFFT_EXTERN void X(adjoint)(X(plan) *ths_plan); \
NFFT_EXTERN void X(adjoint_direct)(X(plan) *ths_plan); \
NFFT_EXTERN void X(finalize)(X(plan) *ths_plan); \
NFFT_EXTERN void X(full_psi)(X(plan) *ths_plan, R eps); \
NFFT_EXTERN R X(phi_hut)(X(plan) *ths_plan, int k, int d); \
NFFT_EXTERN R X(phi)(X(plan) *ths_plan, R x, int d); \
NFFT_EXTERN int X(fftw_2N)(int n); \
NFFT_EXTERN int X(fftw_2N_rev)(int n);
#ifdef HAVE_NFST
/* nfst api */
NFST_DEFINE_API(NFST_MANGLE_FLOAT,FFTW_MANGLE_FLOAT,float,fftwf_complex)
NFST_DEFINE_API(NFST_MANGLE_DOUBLE,FFTW_MANGLE_DOUBLE,double,fftw_complex)
NFST_DEFINE_API(NFST_MANGLE_LONG_DOUBLE,FFTW_MANGLE_LONG_DOUBLE,long double,fftwl_complex)
#endif
/* nnfft */
/* name mangling macros */
#define NNFFT_MANGLE_DOUBLE(name) NFFT_CONCAT(nnfft_, name)
#define NNFFT_MANGLE_FLOAT(name) NFFT_CONCAT(nnfftf_, name)
#define NNFFT_MANGLE_LONG_DOUBLE(name) NFFT_CONCAT(nnfftl_, name)
/* huge second-order macro that defines prototypes for all nfst API functions.
* We expand this macro for each supported precision.
* X: nnfft name-mangling macro
* Y: fftw name-mangling macro
* Z: nfft name mangling macro
* R: real data type
* C: complex data type
*/
#define NNFFT_DEFINE_API(X,Y,Z,R,C) \
typedef struct\
{\
/* api */\
MACRO_MV_PLAN(C)\
\
int d; /**< dimension, rank */\
R *sigma; /**< oversampling-factor */\
R *a; /**< 1 + 2*m/N1 */\
int *N; /**< cut-off-frequencies */\
int *N1; /**< sigma*N */\
int *aN1; /**< sigma*a*N */\
int m; /**< cut-off parameter in time-domain*/\
R *b; /**< shape parameters */\
int K; /**< number of precomp. uniform psi */\
int aN1_total; /**< aN1_total=aN1[0]* ... *aN1[d-1] */\
Z(plan) *direct_plan; /**< plan for the nfft */\
unsigned nnfft_flags; /**< flags for precomputation, malloc*/\
int *n; /**< n=N1, for the window function */\
R *x; /**< nodes (in time/spatial domain) */\
R *v; /**< nodes (in fourier domain) */\
R *c_phi_inv; /**< precomputed data, matrix D */\
R *psi; /**< precomputed data, matrix B */\
int size_psi; /**< only for thin B */\
int *psi_index_g; /**< only for thin B */\
int *psi_index_f; /**< only for thin B */\
C *F;\
R *spline_coeffs; /**< input for de Boor algorithm, if B_SPLINE or SINC_2m is defined */\
} X(plan);\
\
NFFT_EXTERN void X(init)(X(plan) *ths_plan, int d, int N_total, int M_total, int *N); \
NFFT_EXTERN void X(init_guru)(X(plan) *ths_plan, int d, int N_total, int M_total, \
int *N, int *N1, int m, unsigned nnfft_flags); \
NFFT_EXTERN void X(trafo_direct)(X(plan) *ths_plan); \
NFFT_EXTERN void X(adjoint_direct)(X(plan) *ths_plan); \
NFFT_EXTERN void X(trafo)(X(plan) *ths_plan); \
NFFT_EXTERN void X(adjoint)(X(plan) *ths_plan); \
NFFT_EXTERN void X(precompute_lin_psi)(X(plan) *ths_plan); \
NFFT_EXTERN void X(precompute_psi)(X(plan) *ths_plan); \
NFFT_EXTERN void X(precompute_full_psi)(X(plan) *ths_plan); \
NFFT_EXTERN void X(precompute_phi_hut)(X(plan) *ths_plan); \
NFFT_EXTERN void X(finalize)(X(plan) *ths_plan);
#ifdef HAVE_NNFFT
/* nnfft api */
NNFFT_DEFINE_API(NNFFT_MANGLE_FLOAT,FFTW_MANGLE_FLOAT,NFFT_MANGLE_FLOAT,float,fftwf_complex)
NNFFT_DEFINE_API(NNFFT_MANGLE_DOUBLE,FFTW_MANGLE_DOUBLE,NFFT_MANGLE_DOUBLE,double,fftw_complex)
NNFFT_DEFINE_API(NNFFT_MANGLE_LONG_DOUBLE,FFTW_MANGLE_LONG_DOUBLE,NFFT_MANGLE_LONG_DOUBLE,long double,fftwl_complex)
#endif
/* additional init flags */
#define MALLOC_V (1U<< 11)
/* nsfft */
#define NSFFT_MANGLE_DOUBLE(name) NFFT_CONCAT(nsfft_, name)
#define NSFFT_MANGLE_FLOAT(name) NFFT_CONCAT(nsfftf_, name)
#define NSFFT_MANGLE_LONG_DOUBLE(name) NFFT_CONCAT(nsfftl_, name)
/* huge second-order macro that defines prototypes for all nnfft API functions.
* We expand this macro for each supported precision.
* X: nnfft name-mangling macro
* Y: fftw name-mangling macro
* Z: nfft name mangling macro
* R: real data type
* C: complex data type
*/
#define NSFFT_DEFINE_API(X,Y,Z,R,C) \
typedef struct\
{\
MACRO_MV_PLAN(C)\
\
int d; /**< dimension, rank; d = 2, 3 */\
int J; /**< problem size, i.e.,
d=2: N_total=(J+4) 2^(J+1)
d=3: N_total=2^J 6(2^((J+1)/2+1)-1)+2^(3(J/2+1)) */\
int sigma; /**< oversampling-factor */\
unsigned flags; /**< flags for precomputation, malloc*/\
int *index_sparse_to_full; /**< index conversation, overflow for d=3, J=9! */\
int r_act_nfft_plan; /**< index of current nfft block */\
Z(plan) *act_nfft_plan; /**< current nfft block */\
Z(plan) *center_nfft_plan; /**< central nfft block */\
Y(plan) *set_fftw_plan1; /**< fftw plan for the nfft blocks */\
Y(plan) *set_fftw_plan2; /**< fftw plan for the nfft blocks */\
Z(plan) *set_nfft_plan_1d; /**< nfft plans for short nffts */\
Z(plan) *set_nfft_plan_2d; /**< nfft plans for short nffts */\
R *x_transposed; /**< coordinate exchanged nodes, d = 2 */\
R *x_102,*x_201,*x_120,*x_021; /**< coordinate exchanged nodes, d=3 */\
} X(plan);\
\
NFFT_EXTERN void X(trafo_direct)(X(plan) *ths); \
NFFT_EXTERN void X(adjoint_direct)(X(plan) *ths); \
NFFT_EXTERN void X(trafo)(X(plan) *ths); \
NFFT_EXTERN void X(adjoint)(X(plan) *ths); \
NFFT_EXTERN void X(cp)(X(plan) *ths, Z(plan) *ths_nfft); \
NFFT_EXTERN void X(init_random_nodes_coeffs)(X(plan) *ths); \
NFFT_EXTERN void X(init)(X(plan) *ths, int d, int J, int M, int m, unsigned flags); \
NFFT_EXTERN void X(finalize)(X(plan) *ths);
#ifdef HAVE_NSFFT
/* nsfft api */
NSFFT_DEFINE_API(NSFFT_MANGLE_FLOAT,FFTW_MANGLE_FLOAT,NFFT_MANGLE_FLOAT,float,fftwf_complex)
NSFFT_DEFINE_API(NSFFT_MANGLE_DOUBLE,FFTW_MANGLE_DOUBLE,NFFT_MANGLE_DOUBLE,double,fftw_complex)
NSFFT_DEFINE_API(NSFFT_MANGLE_LONG_DOUBLE,FFTW_MANGLE_LONG_DOUBLE,NFFT_MANGLE_LONG_DOUBLE,long double,fftwl_complex)
#endif
/* additional init flags */
#define NSDFT (1U<< 12)
/* mri */
/* name mangling macros */
#define MRI_MANGLE_DOUBLE(name) NFFT_CONCAT(mri_, name)
#define MRI_MANGLE_FLOAT(name) NFFT_CONCAT(mrif_, name)
#define MRI_MANGLE_LONG_DOUBLE(name) NFFT_CONCAT(mril_, name)
/* huge second-order macro that defines prototypes for all mri API functions.
* We expand this macro for each supported precision.
* X: mri name-mangling macro
* Z: nfft name mangling macro
* R: real data type
* C: complex data type
*/
#define MRI_DEFINE_API(X,Z,R,C) \
typedef struct\
{\
MACRO_MV_PLAN(C)\
Z(plan) plan;\
int N3;\
R sigma3;\
R *t;\
R *w;\
} X(inh_2d1d_plan);\
\
typedef struct\
{\
MACRO_MV_PLAN(C)\
Z(plan) plan;\
int N3;\
R sigma3;\
R *t;\
R *w;\
} X(inh_3d_plan);\
\
void X(inh_2d1d_trafo)(X(inh_2d1d_plan) *ths); \
void X(inh_2d1d_adjoint)(X(inh_2d1d_plan) *ths); \
void X(inh_2d1d_init_guru)(X(inh_2d1d_plan) *ths, int *N, int M, int *n, \
int m, R sigma, unsigned nfft_flags, unsigned fftw_flags); \
void X(inh_2d1d_finalize)(X(inh_2d1d_plan) *ths); \
void X(inh_3d_trafo)(X(inh_3d_plan) *ths); \
void X(inh_3d_adjoint)(X(inh_3d_plan) *ths); \
void X(inh_3d_init_guru)(X(inh_3d_plan) *ths, int *N, int M, int *n, \
int m, R sigma, unsigned nfft_flags, unsigned fftw_flags); \
void X(inh_3d_finalize)(X(inh_3d_plan) *ths);
#ifdef HAVE_MRI
/* mri api */
MRI_DEFINE_API(MRI_MANGLE_FLOAT,NFFT_MANGLE_FLOAT,float,fftwf_complex)
MRI_DEFINE_API(MRI_MANGLE_DOUBLE,NFFT_MANGLE_DOUBLE,double,fftw_complex)
MRI_DEFINE_API(MRI_MANGLE_LONG_DOUBLE,NFFT_MANGLE_LONG_DOUBLE,long double,fftwl_complex)
#endif
/* nfsft */
/* name mangling macros */
#define NFSFT_MANGLE_DOUBLE(name) NFFT_CONCAT(nfsft_, name)
#define NFSFT_MANGLE_FLOAT(name) NFFT_CONCAT(nfsftf_, name)
#define NFSFT_MANGLE_LONG_DOUBLE(name) NFFT_CONCAT(nfsftl_, name)
/* huge second-order macro that defines prototypes for all nfsft API functions.
* We expand this macro for each supported precision.
* X: nfsft name-mangling macro
* Z: nfft name mangling macro
* R: real data type
* C: complex data type
*/
#define NFSFT_DEFINE_API(X,Z,R,C) \
typedef struct\
{\
MACRO_MV_PLAN(C)\
int N; /**< the bandwidth \f$N\f$ */\
R *x; /**< the nodes \f$\mathbf{x}(m) = \left(x_1,x_2\right) \in
[-\frac{1}{2},\frac{1}{2}) \times [0,\frac{1}{2}]\f$ for \f$m=0,\ldots,
M-1\f$,\f$M \in \mathbb{N},\f$ */\
/* internal use only */\
int t; /**< the logarithm of NPT with respect to the basis 2 */\
unsigned int flags; /**< the planner flags */\
Z(plan) plan_nfft; /**< the internal NFFT plan */\
C *f_hat_intern; /**< Internally used pointer to spherical Fourier
coefficients */\
double MEASURE_TIME_t[3]; /**< Measured time for each step if MEASURE_TIME is
set */\
} X(plan);\
\
NFFT_EXTERN void X(init)(X(plan) *plan, int N, int M); \
NFFT_EXTERN void X(init_advanced)(X(plan)* plan, int N, int M, unsigned int \
nfsft_flags); \
NFFT_EXTERN void X(init_guru)(X(plan) *plan, int N, int M, \
unsigned int nfsft_flags, unsigned int nfft_flags, int nfft_cutoff); \
NFFT_EXTERN void X(precompute)(int N, R kappa, unsigned int nfsft_flags, \
unsigned int fpt_flags); \
NFFT_EXTERN void X(forget)(void); \
NFFT_EXTERN void X(trafo_direct)(X(plan)* plan); \
NFFT_EXTERN void X(adjoint_direct)(X(plan)* plan); \
NFFT_EXTERN void X(trafo)(X(plan)* plan); \
NFFT_EXTERN void X(adjoint)(X(plan)* plan); \
NFFT_EXTERN void X(finalize)(X(plan) *plan); \
NFFT_EXTERN void X(precompute_x)(X(plan) *plan);
#ifdef HAVE_NFSFT
/* nfsft api */
NFSFT_DEFINE_API(NFSFT_MANGLE_FLOAT,NFFT_MANGLE_FLOAT,float,fftwf_complex)
NFSFT_DEFINE_API(NFSFT_MANGLE_DOUBLE,NFFT_MANGLE_DOUBLE,double,fftw_complex)
NFSFT_DEFINE_API(NFSFT_MANGLE_LONG_DOUBLE,NFFT_MANGLE_LONG_DOUBLE,long double,fftwl_complex)
#endif
/* init flags */
#define NFSFT_NORMALIZED (1U << 0)
#define NFSFT_USE_NDFT (1U << 1)
#define NFSFT_USE_DPT (1U << 2)
#define NFSFT_MALLOC_X (1U << 3)
#define NFSFT_MALLOC_F_HAT (1U << 5)
#define NFSFT_MALLOC_F (1U << 6)
#define NFSFT_PRESERVE_F_HAT (1U << 7)
#define NFSFT_PRESERVE_X (1U << 8)
#define NFSFT_PRESERVE_F (1U << 9)
#define NFSFT_DESTROY_F_HAT (1U << 10)
#define NFSFT_DESTROY_X (1U << 11)
#define NFSFT_DESTROY_F (1U << 12)
/* precompute flags */
#define NFSFT_NO_DIRECT_ALGORITHM (1U << 13)
#define NFSFT_NO_FAST_ALGORITHM (1U << 14)
#define NFSFT_ZERO_F_HAT (1U << 16)
/* helper macros */
#define NFSFT_INDEX(k,n,plan) ((2*(plan)->N+2)*((plan)->N-n+1)+(plan)->N+k+1)
#define NFSFT_F_HAT_SIZE(N) ((2*N+2)*(2*N+2))
/* fpt */
/* name mangling macros */
#define FPT_MANGLE_DOUBLE(name) NFFT_CONCAT(fpt_, name)
#define FPT_MANGLE_FLOAT(name) NFFT_CONCAT(fptf_, name)
#define FPT_MANGLE_LONG_DOUBLE(name) NFFT_CONCAT(fptl_, name)
/* huge second-order macro that defines prototypes for all fpt API functions.
* We expand this macro for each supported precision.
* X: fpt name-mangling macro
* R: real data type
* C: complex data type
*/
#define FPT_DEFINE_API(X,Y,R,C) \
typedef struct X(set_s_) *X(set); /**< A set of precomputed data for a set of
DPT transforms of equal maximum length. */\
\
NFFT_EXTERN X(set) X(init)(const int M, const int t, const unsigned int flags); \
NFFT_EXTERN void X(precompute)(X(set) set, const int m, R *alpha, R *beta, \
R *gam, int k_start, const R threshold); \
NFFT_EXTERN void X(trafo_direct)(X(set) set, const int m, const C *x, C *y, \
const int k_end, const unsigned int flags); \
NFFT_EXTERN void X(trafo)(X(set) set, const int m, const C *x, C *y, \
const int k_end, const unsigned int flags); \
NFFT_EXTERN void X(transposed_direct)(X(set) set, const int m, C *x, \
C *y, const int k_end, const unsigned int flags); \
NFFT_EXTERN void X(transposed)(X(set) set, const int m, C *x, \
C *y, const int k_end, const unsigned int flags); \
NFFT_EXTERN void X(finalize)(X(set) set);
#ifdef HAVE_FPT
/* fpt api */
FPT_DEFINE_API(FPT_MANGLE_FLOAT,FFTW_MANGLE_FLOAT,float,fftwf_complex)
FPT_DEFINE_API(FPT_MANGLE_DOUBLE,FFTW_MANGLE_DOUBLE,double,fftw_complex)
FPT_DEFINE_API(FPT_MANGLE_LONG_DOUBLE,FFTW_MANGLE_LONG_DOUBLE,long double,fftwl_complex)
/* init flags */
#define FPT_NO_STABILIZATION (1U << 0)
#define FPT_NO_FAST_ALGORITHM (1U << 2)
#define FPT_NO_DIRECT_ALGORITHM (1U << 3)
#define FPT_PERSISTENT_DATA (1U << 4)
/* transform flags */
#define FPT_FUNCTION_VALUES (1U << 5)
#define FPT_AL_SYMMETRY (1U << 6)
#endif
/* nfsoft*/
/* name mangling macros */
#define NFSOFT_MANGLE_DOUBLE(name) NFFT_CONCAT(nfsoft_, name)
#define NFSOFT_MANGLE_FLOAT(name) NFFT_CONCAT(nfsoftf_, name)
#define NFSOFT_MANGLE_LONG_DOUBLE(name) NFFT_CONCAT(nfsoftl_, name)
/* huge second-order macro that defines prototypes for all nfsoft API functions.
* We expand this macro for each supported precision.
* X: nfsoft name-mangling macro
* Y: nfft name-mangling macro
* Z: fpt name-mangling macro
* R: real data type
* C: complex data type
*/
#define NFSOFT_DEFINE_API(X,Y,Z,R,C) \
typedef struct X(plan_)\
{\
MACRO_MV_PLAN(C) \
R *x; /**< input nodes */\
C *wig_coeffs; /**< contains a set of SO(3) Fourier coefficients for fixed
orders m and n*/\
C *cheby; /**< contains a set of Chebychev coefficients for fixed orders m
and n*/\
C *aux; /**< used when converting Chebychev to Fourier coeffcients*/\
/* internal use only */\
int t; /**< the logaritm of NPT with respect to the basis 2 */\
unsigned int flags; /**< the planner flags */\
Y(plan) p_nfft; /**< the internal NFFT plan */\
Z(set) internal_fpt_set; /**< the internal FPT plan */\
int fpt_kappa; /**a parameter controlling the accuracy of the FPT*/\
} X(plan);\
\
NFFT_EXTERN void X(precompute)(X(plan) *plan); \
NFFT_EXTERN Z(set) X(SO3_single_fpt_init)(int l, int k, int m, unsigned int flags, int kappa); \
NFFT_EXTERN void X(SO3_fpt)(C *coeffs, Z(set) set, int l, int k, int m, unsigned int nfsoft_flags); \
NFFT_EXTERN void X(SO3_fpt_transposed)(C *coeffs, Z(set) set,int l, int k, int m,unsigned int nfsoft_flags); \
NFFT_EXTERN void X(init)(X(plan) *plan, int N, int M); \
NFFT_EXTERN void X(init_advanced)(X(plan) *plan, int N, int M,unsigned int nfsoft_flags); \
NFFT_EXTERN void X(init_guru)(X(plan) *plan, int N, int M,unsigned int nfsoft_flags,unsigned int nfft_flags,int nfft_cutoff,int fpt_kappa); \
NFFT_EXTERN void X(trafo)(X(plan) *plan_nfsoft); \
NFFT_EXTERN void X(adjoint)(X(plan) *plan_nfsoft); \
NFFT_EXTERN void X(finalize)(X(plan) *plan); \
NFFT_EXTERN int X(posN)(int n,int m, int B);
#ifdef HAVE_NFSOFT
/* nfsoft api */
NFSOFT_DEFINE_API(NFSOFT_MANGLE_FLOAT,NFFT_MANGLE_FLOAT,FPT_MANGLE_FLOAT,float,fftwf_complex)
NFSOFT_DEFINE_API(NFSOFT_MANGLE_DOUBLE,NFFT_MANGLE_DOUBLE,FPT_MANGLE_DOUBLE,double,fftw_complex)
NFSOFT_DEFINE_API(NFSOFT_MANGLE_LONG_DOUBLE,NFFT_MANGLE_LONG_DOUBLE,FPT_MANGLE_LONG_DOUBLE,long double,fftwl_complex)
/* init flags */
#define NFSOFT_NORMALIZED (1U << 0)
#define NFSOFT_USE_NDFT (1U << 1)
#define NFSOFT_USE_DPT (1U << 2)
#define NFSOFT_MALLOC_X (1U << 3)
#define NFSOFT_REPRESENT (1U << 4)
#define NFSOFT_MALLOC_F_HAT (1U << 5)
#define NFSOFT_MALLOC_F (1U << 6)
#define NFSOFT_PRESERVE_F_HAT (1U << 7)
#define NFSOFT_PRESERVE_X (1U << 8)
#define NFSOFT_PRESERVE_F (1U << 9)
#define NFSOFT_DESTROY_F_HAT (1U << 10)
#define NFSOFT_DESTROY_X (1U << 11)
#define NFSOFT_DESTROY_F (1U << 12)
/* precompute flags */
#define NFSOFT_NO_STABILIZATION (1U << 13)
#define NFSOFT_CHOOSE_DPT (1U << 14)
#define NFSOFT_SOFT (1U << 15)
#define NFSOFT_ZERO_F_HAT (1U << 16)
/* helper macros */
#define NFSOFT_INDEX(m,n,l,B) (((l)+((B)+1))+(2*(B)+2)*(((n)+((B)+1))+(2*(B)+2)*((m)+((B)+1))))
#define NFSOFT_INDEX_TWO(m,n,l,B) ((B+1)*(B+1)+(B+1)*(B+1)*(m+B)-((m-1)*m*(2*m-1)+(B+1)*(B+2)*(2*B+3))/6)+(posN(n,m,B))+(l-MAX(ABS(m),ABS(n)))
#define NFSOFT_F_HAT_SIZE(B) (((B)+1)*(4*((B)+1)*((B)+1)-1)/3)
#endif
/*solver */
/* name mangling macros */
#define SOLVER_MANGLE_DOUBLE(name) NFFT_CONCAT(solver_, name)
#define SOLVER_MANGLE_FLOAT(name) NFFT_CONCAT(solverf_, name)
#define SOLVER_MANGLE_LONG_DOUBLE(name) NFFT_CONCAT(solverl_, name)
/* huge second-order macro that defines prototypes for all nfsoft API functions.
* We expand this macro for each supported precision.
* X: nfsoft name-mangling macro
* Y: nfft name-mangling macro
* R: real data type
* C: complex data type
*/
#define SOLVER_DEFINE_API(X,Y,R,C)\
typedef struct\
{\
Y(mv_plan_complex) *mv; /**< matrix vector multiplication */\
unsigned flags; /**< iteration type */\
R *w; /**< weighting factors */\
R *w_hat; /**< damping factors */\
C *y; /**< right hand side, samples */\
C *f_hat_iter; /**< iterative solution */\
C *r_iter; /**< iterated residual vector */\
C *z_hat_iter; /**< residual of normal equation of first kind */\
C *p_hat_iter; /**< search direction */\
C *v_iter; /**< residual vector update */\
R alpha_iter; /**< step size for search direction */\
R beta_iter; /**< step size for search correction*/\
R dot_r_iter; /**< weighted dotproduct of r_iter */\
R dot_r_iter_old; /**< previous dot_r_iter */\
R dot_z_hat_iter; /**< weighted dotproduct of z_hat_iter */\
R dot_z_hat_iter_old; /**< previous dot_z_hat_iter */\
R dot_p_hat_iter; /**< weighted dotproduct of p_hat_iter */\
R dot_v_iter; /**< weighted dotproduct of v_iter */\
} X(plan_complex);\
\
NFFT_EXTERN void X(init_advanced_complex)(X(plan_complex)* ths, Y(mv_plan_complex) *mv, unsigned flags);\
NFFT_EXTERN void X(init_complex)(X(plan_complex)* ths, Y(mv_plan_complex) *mv);\
NFFT_EXTERN void X(before_loop_complex)(X(plan_complex)* ths);\
NFFT_EXTERN void X(loop_one_step_complex)(X(plan_complex) *ths);\
NFFT_EXTERN void X(finalize_complex)(X(plan_complex) *ths);\
\
typedef struct\
{\
Y(mv_plan_double) *mv; /**< matrix vector multiplication */\
unsigned flags; /**< iteration type */\
R *w; /**< weighting factors */\
R *w_hat; /**< damping factors */\
R *y; /**< right hand side, samples */\
R *f_hat_iter; /**< iterative solution */\
R *r_iter; /**< iterated residual vector */\
R *z_hat_iter; /**< residual of normal equation of first kind */\
R *p_hat_iter; /**< search direction */\
R *v_iter; /**< residual vector update */\
R alpha_iter; /**< step size for search direction */\
R beta_iter; /**< step size for search correction */\
R dot_r_iter; /**< weighted dotproduct of r_iter */\
R dot_r_iter_old; /**< previous dot_r_iter */\
R dot_z_hat_iter; /**< weighted dotproduct of z_hat_iter */\
R dot_z_hat_iter_old; /**< previous dot_z_hat_iter */\
R dot_p_hat_iter; /**< weighted dotproduct of p_hat_iter */\
R dot_v_iter; /**< weighted dotproduct of v_iter */\
} X(plan_double);\
\
NFFT_EXTERN void X(init_advanced_double)(X(plan_double)* ths, Y(mv_plan_double) *mv, unsigned flags);\
NFFT_EXTERN void X(solver_init_double)(X(plan_double)* ths, Y(mv_plan_double) *mv);\
NFFT_EXTERN void X(solver_before_loop_double)(X(plan_double)* ths);\
NFFT_EXTERN void X(solver_loop_one_step_double)(X(plan_double) *ths);\
NFFT_EXTERN void X(solver_finalize_double)(X(plan_double) *ths);
/* solver api */
SOLVER_DEFINE_API(SOLVER_MANGLE_FLOAT,NFFT_MANGLE_FLOAT,float,fftwf_complex)
SOLVER_DEFINE_API(SOLVER_MANGLE_DOUBLE,NFFT_MANGLE_DOUBLE,double,fftw_complex)
SOLVER_DEFINE_API(SOLVER_MANGLE_LONG_DOUBLE,NFFT_MANGLE_LONG_DOUBLE,long double,fftwl_complex)
/* init flags */
#define LANDWEBER (1U<< 0)
#define STEEPEST_DESCENT (1U<< 1)
#define CGNR (1U<< 2)
#define CGNE (1U<< 3)
#define NORMS_FOR_LANDWEBER (1U<< 4)
#define PRECOMPUTE_WEIGHT (1U<< 5)
#define PRECOMPUTE_DAMP (1U<< 6)
#ifdef __cplusplus
} /* extern "C" */
#endif /* __cplusplus */
#endif /* defined(__NFFT3_H__) */
|