This file is indexed.

/usr/include/js-17.0/js/Vector.h is in libmozjs-17.0-dev 17.0.0-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sw=4 et tw=99 ft=cpp:
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef jsvector_h_
#define jsvector_h_

#include "mozilla/Attributes.h"

#include "TemplateLib.h"
#include "Utility.h"

/* Silence dire "bugs in previous versions of MSVC have been fixed" warnings */
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4345)
#endif

namespace js {

class TempAllocPolicy;

template <class T,
          size_t MinInlineCapacity = 0,
          class AllocPolicy = TempAllocPolicy>
class Vector;

/*
 * This template class provides a default implementation for vector operations
 * when the element type is not known to be a POD, as judged by IsPodType.
 */
template <class T, size_t N, class AP, bool IsPod>
struct VectorImpl
{
    /* Destroys constructed objects in the range [begin, end). */
    static inline void destroy(T *begin, T *end) {
        for (T *p = begin; p != end; ++p)
            p->~T();
    }

    /* Constructs objects in the uninitialized range [begin, end). */
    static inline void initialize(T *begin, T *end) {
        for (T *p = begin; p != end; ++p)
            new(p) T();
    }

    /*
     * Copy-constructs objects in the uninitialized range
     * [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend).
     */
    template <class U>
    static inline void copyConstruct(T *dst, const U *srcbeg, const U *srcend) {
        for (const U *p = srcbeg; p != srcend; ++p, ++dst)
            new(dst) T(*p);
    }

    /*
     * Move-constructs objects in the uninitialized range
     * [dst, dst+(srcend-srcbeg)) from the range [srcbeg, srcend).
     */
    template <class U>
    static inline void moveConstruct(T *dst, const U *srcbeg, const U *srcend) {
        for (const U *p = srcbeg; p != srcend; ++p, ++dst)
            new(dst) T(Move(*p));
    }

    /*
     * Copy-constructs objects in the uninitialized range [dst, dst+n) from the
     * same object u.
     */
    template <class U>
    static inline void copyConstructN(T *dst, size_t n, const U &u) {
        for (T *end = dst + n; dst != end; ++dst)
            new(dst) T(u);
    }

    /*
     * Grows the given buffer to have capacity newcap, preserving the objects
     * constructed in the range [begin, end) and updating v. Assumes that (1)
     * newcap has not overflowed, and (2) multiplying newcap by sizeof(T) will
     * not overflow.
     */
    static inline bool growTo(Vector<T,N,AP> &v, size_t newcap) {
        JS_ASSERT(!v.usingInlineStorage());
        T *newbuf = reinterpret_cast<T *>(v.malloc_(newcap * sizeof(T)));
        if (!newbuf)
            return false;
        for (T *dst = newbuf, *src = v.beginNoCheck(); src != v.endNoCheck(); ++dst, ++src)
            new(dst) T(Move(*src));
        VectorImpl::destroy(v.beginNoCheck(), v.endNoCheck());
        v.free_(v.mBegin);
        v.mBegin = newbuf;
        /* v.mLength is unchanged. */
        v.mCapacity = newcap;
        return true;
    }
};

/*
 * This partial template specialization provides a default implementation for
 * vector operations when the element type is known to be a POD, as judged by
 * IsPodType.
 */
template <class T, size_t N, class AP>
struct VectorImpl<T, N, AP, true>
{
    static inline void destroy(T *, T *) {}

    static inline void initialize(T *begin, T *end) {
        /*
         * You would think that memset would be a big win (or even break even)
         * when we know T is a POD. But currently it's not. This is probably
         * because |append| tends to be given small ranges and memset requires
         * a function call that doesn't get inlined.
         *
         * memset(begin, 0, sizeof(T) * (end-begin));
         */
        for (T *p = begin; p != end; ++p)
            new(p) T();
    }

    template <class U>
    static inline void copyConstruct(T *dst, const U *srcbeg, const U *srcend) {
        /*
         * See above memset comment. Also, notice that copyConstruct is
         * currently templated (T != U), so memcpy won't work without
         * requiring T == U.
         *
         * memcpy(dst, srcbeg, sizeof(T) * (srcend - srcbeg));
         */
        for (const U *p = srcbeg; p != srcend; ++p, ++dst)
            *dst = *p;
    }

    template <class U>
    static inline void moveConstruct(T *dst, const U *srcbeg, const U *srcend) {
        copyConstruct(dst, srcbeg, srcend);
    }

    static inline void copyConstructN(T *dst, size_t n, const T &t) {
        for (T *p = dst, *end = dst + n; p != end; ++p)
            *p = t;
    }

    static inline bool growTo(Vector<T,N,AP> &v, size_t newcap) {
        JS_ASSERT(!v.usingInlineStorage());
        size_t bytes = sizeof(T) * newcap;
        size_t oldBytes = sizeof(T) * v.mCapacity;
        T *newbuf = reinterpret_cast<T *>(v.realloc_(v.mBegin, oldBytes, bytes));
        if (!newbuf)
            return false;
        v.mBegin = newbuf;
        /* v.mLength is unchanged. */
        v.mCapacity = newcap;
        return true;
    }
};

/*
 * JS-friendly, STL-like container providing a short-lived, dynamic buffer.
 * Vector calls the constructors/destructors of all elements stored in
 * its internal buffer, so non-PODs may be safely used. Additionally,
 * Vector will store the first N elements in-place before resorting to
 * dynamic allocation.
 *
 * T requirements:
 *  - default and copy constructible, assignable, destructible
 *  - operations do not throw
 * N requirements:
 *  - any value, however, N is clamped to min/max values
 * AllocPolicy:
 *  - see "Allocation policies" in jsalloc.h (default js::TempAllocPolicy)
 *
 * N.B: Vector is not reentrant: T member functions called during Vector member
 *      functions must not call back into the same object.
 */
template <class T, size_t N, class AllocPolicy>
class Vector : private AllocPolicy
{
    typedef typename tl::StaticAssert<tl::IsRelocatableHeapType<T>::result>::result _;

    /* utilities */

    static const bool sElemIsPod = tl::IsPodType<T>::result;
    typedef VectorImpl<T, N, AllocPolicy, sElemIsPod> Impl;
    friend struct VectorImpl<T, N, AllocPolicy, sElemIsPod>;

    bool calculateNewCapacity(size_t curLength, size_t lengthInc, size_t &newCap);
    bool growStorageBy(size_t lengthInc);
    bool growHeapStorageBy(size_t lengthInc);
    bool convertToHeapStorage(size_t lengthInc);

    template <bool InitNewElems> inline bool growByImpl(size_t inc);

    /* magic constants */

    static const int sMaxInlineBytes = 1024;

    /* compute constants */

    /*
     * Consider element size to be 1 for buffer sizing if there are
     * 0 inline elements. This allows us to compile when the definition
     * of the element type is not visible here.
     *
     * Explicit specialization is only allowed at namespace scope, so
     * in order to keep everything here, we use a dummy template
     * parameter with partial specialization.
     */
    template <int M, int Dummy>
    struct ElemSize {
        static const size_t result = sizeof(T);
    };
    template <int Dummy>
    struct ElemSize<0, Dummy> {
        static const size_t result = 1;
    };

    static const size_t sInlineCapacity =
        tl::Min<N, sMaxInlineBytes / ElemSize<N, 0>::result>::result;

    /* Calculate inline buffer size; avoid 0-sized array. */
    static const size_t sInlineBytes =
        tl::Max<1, sInlineCapacity * ElemSize<N, 0>::result>::result;

    /* member data */

    /*
     * Pointer to the buffer, be it inline or heap-allocated. Only [mBegin,
     * mBegin + mLength) hold valid constructed T objects. The range [mBegin +
     * mLength, mBegin + mCapacity) holds uninitialized memory. The range
     * [mBegin + mLength, mBegin + mReserved) also holds uninitialized memory
     * previously allocated by a call to reserve().
     */
    T *mBegin;
    size_t mLength;     /* Number of elements in the Vector. */
    size_t mCapacity;   /* Max number of elements storable in the Vector without resizing. */
#ifdef DEBUG
    size_t mReserved;   /* Max elements of reserved or used space in this vector. */
#endif

    AlignedStorage<sInlineBytes> storage;

#ifdef DEBUG
    friend class ReentrancyGuard;
    bool entered;
#endif

    Vector(const Vector &) MOZ_DELETE;
    Vector &operator=(const Vector &) MOZ_DELETE;

    /* private accessors */

    bool usingInlineStorage() const {
        return mBegin == (T *)storage.addr();
    }

    T *beginNoCheck() const {
        return mBegin;
    }

    T *endNoCheck() {
        return mBegin + mLength;
    }

    const T *endNoCheck() const {
        return mBegin + mLength;
    }

#ifdef DEBUG
    size_t reserved() const {
        JS_ASSERT(mReserved <= mCapacity);
        JS_ASSERT(mLength <= mReserved);
        return mReserved;
    }
#endif

    /* Append operations guaranteed to succeed due to pre-reserved space. */
    template <class U> void internalAppend(U t);
    void internalAppendN(const T &t, size_t n);
    template <class U> void internalAppend(const U *begin, size_t length);
    template <class U, size_t O, class BP> void internalAppend(const Vector<U,O,BP> &other);

  public:
    static const size_t sMaxInlineStorage = N;

    typedef T ElementType;

    Vector(AllocPolicy = AllocPolicy());
    Vector(MoveRef<Vector>); /* Move constructor. */
    Vector &operator=(MoveRef<Vector>); /* Move assignment. */
    ~Vector();

    /* accessors */

    const AllocPolicy &allocPolicy() const {
        return *this;
    }

    AllocPolicy &allocPolicy() {
        return *this;
    }

    enum { InlineLength = N };

    size_t length() const {
        return mLength;
    }

    bool empty() const {
        return mLength == 0;
    }

    size_t capacity() const {
        return mCapacity;
    }

    T *begin() {
        JS_ASSERT(!entered);
        return mBegin;
    }

    const T *begin() const {
        JS_ASSERT(!entered);
        return mBegin;
    }

    T *end() {
        JS_ASSERT(!entered);
        return mBegin + mLength;
    }

    const T *end() const {
        JS_ASSERT(!entered);
        return mBegin + mLength;
    }

    T &operator[](size_t i) {
        JS_ASSERT(!entered && i < mLength);
        return begin()[i];
    }

    const T &operator[](size_t i) const {
        JS_ASSERT(!entered && i < mLength);
        return begin()[i];
    }

    T &back() {
        JS_ASSERT(!entered && !empty());
        return *(end() - 1);
    }

    const T &back() const {
        JS_ASSERT(!entered && !empty());
        return *(end() - 1);
    }

    class Range {
        friend class Vector;
        T *cur, *end;
        Range(T *cur, T *end) : cur(cur), end(end) {}
      public:
        Range() {}
        bool empty() const { return cur == end; }
        size_t remain() const { return end - cur; }
        T &front() const { return *cur; }
        void popFront() { JS_ASSERT(!empty()); ++cur; }
        T popCopyFront() { JS_ASSERT(!empty()); return *cur++; }
    };

    Range all() {
        return Range(begin(), end());
    }

    /* mutators */

    /* If reserve(length() + N) succeeds, the N next appends are guaranteed to succeed. */
    bool reserve(size_t capacity);

    /*
     * Destroy elements in the range [end() - incr, end()). Does not deallocate
     * or unreserve storage for those elements.
     */
    void shrinkBy(size_t incr);

    /* Grow the vector by incr elements. */
    bool growBy(size_t incr);

    /* Call shrinkBy or growBy based on whether newSize > length(). */
    bool resize(size_t newLength);

    /* Leave new elements as uninitialized memory. */
    bool growByUninitialized(size_t incr);
    bool resizeUninitialized(size_t newLength);

    /* Shorthand for shrinkBy(length()). */
    void clear();

    /* Clears and releases any heap-allocated storage. */
    void clearAndFree();

    /*
     * Potentially fallible append operations.
     *
     * The function templates that take an unspecified type U require a
     * const T & or a MoveRef<T>. The MoveRef<T> variants move their
     * operands into the vector, instead of copying them. If they fail, the
     * operand is left unmoved.
     */
    template <class U> bool append(U t);
    bool appendN(const T &t, size_t n);
    template <class U> bool append(const U *begin, const U *end);
    template <class U> bool append(const U *begin, size_t length);
    template <class U, size_t O, class BP> bool append(const Vector<U,O,BP> &other);

    /*
     * Guaranteed-infallible append operations for use upon vectors whose
     * memory has been pre-reserved.
     */
    void infallibleAppend(const T &t) {
        internalAppend(t);
    }
    void infallibleAppendN(const T &t, size_t n) {
        internalAppendN(t, n);
    }
    template <class U> void infallibleAppend(const U *begin, const U *end) {
        internalAppend(begin, PointerRangeSize(begin, end));
    }
    template <class U> void infallibleAppend(const U *begin, size_t length) {
        internalAppend(begin, length);
    }
    template <class U, size_t O, class BP> void infallibleAppend(const Vector<U,O,BP> &other) {
        internalAppend(other);
    }

    void popBack();

    T popCopy();

    /*
     * Transfers ownership of the internal buffer used by Vector to the caller.
     * After this call, the Vector is empty. Since the returned buffer may need
     * to be allocated (if the elements are currently stored in-place), the
     * call can fail, returning NULL.
     *
     * N.B. Although a T*, only the range [0, length()) is constructed.
     */
    T *extractRawBuffer();

    /*
     * Transfer ownership of an array of objects into the Vector.
     * N.B. This call assumes that there are no uninitialized elements in the
     *      passed array.
     */
    void replaceRawBuffer(T *p, size_t length);

    /*
     * Places |val| at position |p|, shifting existing elements
     * from |p| onward one position higher.
     */
    bool insert(T *p, const T &val);

    /*
     * Removes the element |t|, which must fall in the bounds [begin, end),
     * shifting existing elements from |t + 1| onward one position lower.
     */
    void erase(T *t);

    /*
     * Measure the size of the Vector's heap-allocated storage.
     */
    size_t sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const;

    /*
     * Like sizeOfExcludingThis, but also measures the size of the Vector
     * object (which must be heap-allocated) itself.
     */
    size_t sizeOfIncludingThis(JSMallocSizeOfFun mallocSizeOf) const;
};

/* This does the re-entrancy check plus several other sanity checks. */
#define REENTRANCY_GUARD_ET_AL \
    ReentrancyGuard g(*this); \
    JS_ASSERT_IF(usingInlineStorage(), mCapacity == sInlineCapacity); \
    JS_ASSERT(reserved() <= mCapacity); \
    JS_ASSERT(mLength <= reserved()); \
    JS_ASSERT(mLength <= mCapacity)

/* Vector Implementation */

template <class T, size_t N, class AllocPolicy>
JS_ALWAYS_INLINE
Vector<T,N,AllocPolicy>::Vector(AllocPolicy ap)
  : AllocPolicy(ap), mBegin((T *)storage.addr()), mLength(0),
    mCapacity(sInlineCapacity)
#ifdef DEBUG
  , mReserved(0), entered(false)
#endif
{}

/* Move constructor. */
template <class T, size_t N, class AllocPolicy>
JS_ALWAYS_INLINE
Vector<T, N, AllocPolicy>::Vector(MoveRef<Vector> rhs)
    : AllocPolicy(rhs)
{
    mLength = rhs->mLength;
    mCapacity = rhs->mCapacity;
#ifdef DEBUG
    mReserved = rhs->mReserved;
#endif

    if (rhs->usingInlineStorage()) {
        /* We can't move the buffer over in this case, so copy elements. */
        mBegin = (T *)storage.addr();
        Impl::moveConstruct(mBegin, rhs->beginNoCheck(), rhs->endNoCheck());
        /*
         * Leave rhs's mLength, mBegin, mCapacity, and mReserved as they are.
         * The elements in its in-line storage still need to be destroyed.
         */
    } else {
        /*
         * Take src's buffer, and turn src into an empty vector using
         * in-line storage.
         */
        mBegin = rhs->mBegin;
        rhs->mBegin = (T *) rhs->storage.addr();
        rhs->mCapacity = sInlineCapacity;
        rhs->mLength = 0;
#ifdef DEBUG
        rhs->mReserved = 0;
#endif
    }
}

/* Move assignment. */
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE
Vector<T, N, AP> &
Vector<T, N, AP>::operator=(MoveRef<Vector> rhs)
{
    this->~Vector();
    new(this) Vector(rhs);
    return *this;
}

template <class T, size_t N, class AP>
JS_ALWAYS_INLINE
Vector<T,N,AP>::~Vector()
{
    REENTRANCY_GUARD_ET_AL;
    Impl::destroy(beginNoCheck(), endNoCheck());
    if (!usingInlineStorage())
        this->free_(beginNoCheck());
}

/*
 * Calculate a new capacity that is at least lengthInc greater than
 * curLength and check for overflow.
 */
template <class T, size_t N, class AP>
STATIC_POSTCONDITION(!return || newCap >= curLength + lengthInc)
#ifdef DEBUG
/* gcc (ARM, x86) compiler bug workaround - See bug 694694 */
JS_NEVER_INLINE bool
#else
inline bool
#endif
Vector<T,N,AP>::calculateNewCapacity(size_t curLength, size_t lengthInc,
                                     size_t &newCap)
{
    size_t newMinCap = curLength + lengthInc;

    /*
     * Check for overflow in the above addition, below CEILING_LOG2, and later
     * multiplication by sizeof(T).
     */
    if (newMinCap < curLength ||
        newMinCap & tl::MulOverflowMask<2 * sizeof(T)>::result) {
        this->reportAllocOverflow();
        return false;
    }

    /* Round up to next power of 2. */
    newCap = RoundUpPow2(newMinCap);

    /*
     * Do not allow a buffer large enough that the expression ((char *)end() -
     * (char *)begin()) overflows ptrdiff_t. See Bug 510319.
     */
    if (newCap & tl::UnsafeRangeSizeMask<T>::result) {
        this->reportAllocOverflow();
        return false;
    }
    return true;
}

/*
 * This function will grow the current heap capacity to have capacity
 * (mLength + lengthInc) and fail on OOM or integer overflow.
 */
template <class T, size_t N, class AP>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::growHeapStorageBy(size_t lengthInc)
{
    JS_ASSERT(!usingInlineStorage());
    size_t newCap;
    return calculateNewCapacity(mLength, lengthInc, newCap) &&
           Impl::growTo(*this, newCap);
}

/*
 * This function will create a new heap buffer with capacity (mLength +
 * lengthInc()), move all elements in the inline buffer to this new buffer,
 * and fail on OOM or integer overflow.
 */
template <class T, size_t N, class AP>
inline bool
Vector<T,N,AP>::convertToHeapStorage(size_t lengthInc)
{
    JS_ASSERT(usingInlineStorage());
    size_t newCap;
    if (!calculateNewCapacity(mLength, lengthInc, newCap))
        return false;

    /* Allocate buffer. */
    T *newBuf = reinterpret_cast<T *>(this->malloc_(newCap * sizeof(T)));
    if (!newBuf)
        return false;

    /* Copy inline elements into heap buffer. */
    Impl::moveConstruct(newBuf, beginNoCheck(), endNoCheck());
    Impl::destroy(beginNoCheck(), endNoCheck());

    /* Switch in heap buffer. */
    mBegin = newBuf;
    /* mLength is unchanged. */
    mCapacity = newCap;
    return true;
}

template <class T, size_t N, class AP>
JS_NEVER_INLINE bool
Vector<T,N,AP>::growStorageBy(size_t incr)
{
    JS_ASSERT(mLength + incr > mCapacity);
    return usingInlineStorage()
         ? convertToHeapStorage(incr)
         : growHeapStorageBy(incr);
}

template <class T, size_t N, class AP>
inline bool
Vector<T,N,AP>::reserve(size_t request)
{
    REENTRANCY_GUARD_ET_AL;
    if (request > mCapacity && !growStorageBy(request - mLength))
        return false;

#ifdef DEBUG
    if (request > mReserved)
        mReserved = request;
    JS_ASSERT(mLength <= mReserved);
    JS_ASSERT(mReserved <= mCapacity);
#endif
    return true;
}

template <class T, size_t N, class AP>
inline void
Vector<T,N,AP>::shrinkBy(size_t incr)
{
    REENTRANCY_GUARD_ET_AL;
    JS_ASSERT(incr <= mLength);
    Impl::destroy(endNoCheck() - incr, endNoCheck());
    mLength -= incr;
}

template <class T, size_t N, class AP>
template <bool InitNewElems>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::growByImpl(size_t incr)
{
    REENTRANCY_GUARD_ET_AL;
    if (incr > mCapacity - mLength && !growStorageBy(incr))
        return false;

    JS_ASSERT(mLength + incr <= mCapacity);
    T *newend = endNoCheck() + incr;
    if (InitNewElems)
        Impl::initialize(endNoCheck(), newend);
    mLength += incr;
#ifdef DEBUG
    if (mLength > mReserved)
        mReserved = mLength;
#endif
    return true;
}

template <class T, size_t N, class AP>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::growBy(size_t incr)
{
    return growByImpl<true>(incr);
}

template <class T, size_t N, class AP>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::growByUninitialized(size_t incr)
{
    return growByImpl<false>(incr);
}

template <class T, size_t N, class AP>
STATIC_POSTCONDITION(!return || ubound(this->begin()) >= newLength)
inline bool
Vector<T,N,AP>::resize(size_t newLength)
{
    size_t curLength = mLength;
    if (newLength > curLength)
        return growBy(newLength - curLength);
    shrinkBy(curLength - newLength);
    return true;
}

template <class T, size_t N, class AP>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::resizeUninitialized(size_t newLength)
{
    size_t curLength = mLength;
    if (newLength > curLength)
        return growByUninitialized(newLength - curLength);
    shrinkBy(curLength - newLength);
    return true;
}

template <class T, size_t N, class AP>
inline void
Vector<T,N,AP>::clear()
{
    REENTRANCY_GUARD_ET_AL;
    Impl::destroy(beginNoCheck(), endNoCheck());
    mLength = 0;
}

template <class T, size_t N, class AP>
inline void
Vector<T,N,AP>::clearAndFree()
{
    clear();

    if (usingInlineStorage())
        return;

    this->free_(beginNoCheck());
    mBegin = (T *)storage.addr();
    mCapacity = sInlineCapacity;
#ifdef DEBUG
    mReserved = 0;
#endif
}

template <class T, size_t N, class AP>
template <class U>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::append(U t)
{
    REENTRANCY_GUARD_ET_AL;
    if (mLength == mCapacity && !growStorageBy(1))
        return false;

#ifdef DEBUG
    if (mLength + 1 > mReserved)
        mReserved = mLength + 1;
#endif
    internalAppend(t);
    return true;
}

template <class T, size_t N, class AP>
template <class U>
JS_ALWAYS_INLINE void
Vector<T,N,AP>::internalAppend(U t)
{
    JS_ASSERT(mLength + 1 <= mReserved);
    JS_ASSERT(mReserved <= mCapacity);
    new(endNoCheck()) T(t);
    ++mLength;
}

template <class T, size_t N, class AP>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::appendN(const T &t, size_t needed)
{
    REENTRANCY_GUARD_ET_AL;
    if (mLength + needed > mCapacity && !growStorageBy(needed))
        return false;

#ifdef DEBUG
    if (mLength + needed > mReserved)
        mReserved = mLength + needed;
#endif
    internalAppendN(t, needed);
    return true;
}

template <class T, size_t N, class AP>
JS_ALWAYS_INLINE void
Vector<T,N,AP>::internalAppendN(const T &t, size_t needed)
{
    JS_ASSERT(mLength + needed <= mReserved);
    JS_ASSERT(mReserved <= mCapacity);
    Impl::copyConstructN(endNoCheck(), needed, t);
    mLength += needed;
}

template <class T, size_t N, class AP>
inline bool
Vector<T,N,AP>::insert(T *p, const T &val)
{
    JS_ASSERT(begin() <= p && p <= end());
    size_t pos = p - begin();
    JS_ASSERT(pos <= mLength);
    size_t oldLength = mLength;
    if (pos == oldLength)
        return append(val);
    {
        T oldBack = back();
        if (!append(oldBack)) /* Dup the last element. */
            return false;
    }
    for (size_t i = oldLength; i > pos; --i)
        (*this)[i] = (*this)[i - 1];
    (*this)[pos] = val;
    return true;
}

template<typename T, size_t N, class AP>
inline void
Vector<T,N,AP>::erase(T *it)
{
    JS_ASSERT(begin() <= it && it < end());
    while (it + 1 != end()) {
        *it = *(it + 1);
        ++it;
    }
    popBack();
}

template <class T, size_t N, class AP>
template <class U>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::append(const U *insBegin, const U *insEnd)
{
    REENTRANCY_GUARD_ET_AL;
    size_t needed = PointerRangeSize(insBegin, insEnd);
    if (mLength + needed > mCapacity && !growStorageBy(needed))
        return false;

#ifdef DEBUG
    if (mLength + needed > mReserved)
        mReserved = mLength + needed;
#endif
    internalAppend(insBegin, needed);
    return true;
}

template <class T, size_t N, class AP>
template <class U>
JS_ALWAYS_INLINE void
Vector<T,N,AP>::internalAppend(const U *insBegin, size_t length)
{
    JS_ASSERT(mLength + length <= mReserved);
    JS_ASSERT(mReserved <= mCapacity);
    Impl::copyConstruct(endNoCheck(), insBegin, insBegin + length);
    mLength += length;
}

template <class T, size_t N, class AP>
template <class U, size_t O, class BP>
inline bool
Vector<T,N,AP>::append(const Vector<U,O,BP> &other)
{
    return append(other.begin(), other.end());
}

template <class T, size_t N, class AP>
template <class U, size_t O, class BP>
inline void
Vector<T,N,AP>::internalAppend(const Vector<U,O,BP> &other)
{
    internalAppend(other.begin(), other.length());
}

template <class T, size_t N, class AP>
template <class U>
JS_ALWAYS_INLINE bool
Vector<T,N,AP>::append(const U *insBegin, size_t length)
{
    return this->append(insBegin, insBegin + length);
}

template <class T, size_t N, class AP>
JS_ALWAYS_INLINE void
Vector<T,N,AP>::popBack()
{
    REENTRANCY_GUARD_ET_AL;
    JS_ASSERT(!empty());
    --mLength;
    endNoCheck()->~T();
}

template <class T, size_t N, class AP>
JS_ALWAYS_INLINE T
Vector<T,N,AP>::popCopy()
{
    T ret = back();
    popBack();
    return ret;
}

template <class T, size_t N, class AP>
inline T *
Vector<T,N,AP>::extractRawBuffer()
{
    T *ret;
    if (usingInlineStorage()) {
        ret = reinterpret_cast<T *>(this->malloc_(mLength * sizeof(T)));
        if (!ret)
            return NULL;
        Impl::copyConstruct(ret, beginNoCheck(), endNoCheck());
        Impl::destroy(beginNoCheck(), endNoCheck());
        /* mBegin, mCapacity are unchanged. */
        mLength = 0;
    } else {
        ret = mBegin;
        mBegin = (T *)storage.addr();
        mLength = 0;
        mCapacity = sInlineCapacity;
#ifdef DEBUG
        mReserved = 0;
#endif
    }
    return ret;
}

template <class T, size_t N, class AP>
inline void
Vector<T,N,AP>::replaceRawBuffer(T *p, size_t length)
{
    REENTRANCY_GUARD_ET_AL;

    /* Destroy what we have. */
    Impl::destroy(beginNoCheck(), endNoCheck());
    if (!usingInlineStorage())
        this->free_(beginNoCheck());

    /* Take in the new buffer. */
    if (length <= sInlineCapacity) {
        /*
         * We convert to inline storage if possible, even though p might
         * otherwise be acceptable.  Maybe this behaviour should be
         * specifiable with an argument to this function.
         */
        mBegin = (T *)storage.addr();
        mLength = length;
        mCapacity = sInlineCapacity;
        Impl::moveConstruct(mBegin, p, p + length);
        Impl::destroy(p, p + length);
        this->free_(p);
    } else {
        mBegin = p;
        mLength = length;
        mCapacity = length;
    }
#ifdef DEBUG
    mReserved = length;
#endif
}

template <class T, size_t N, class AP>
inline size_t
Vector<T,N,AP>::sizeOfExcludingThis(JSMallocSizeOfFun mallocSizeOf) const
{
    return usingInlineStorage() ? 0 : mallocSizeOf(beginNoCheck());
}

template <class T, size_t N, class AP>
inline size_t
Vector<T,N,AP>::sizeOfIncludingThis(JSMallocSizeOfFun mallocSizeOf) const
{
    return mallocSizeOf(this) + sizeOfExcludingThis(mallocSizeOf);
}

}  /* namespace js */

#ifdef _MSC_VER
#pragma warning(pop)
#endif

#endif /* jsvector_h_ */