This file is indexed.

/usr/include/mia-2.0/mia/3d/matrix.hh is in libmia-2.0-dev 2.0.13-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
/* -*- mia-c++  -*-
 *
 * This file is part of MIA - a toolbox for medical image analysis 
 * Copyright (c) Leipzig, Madrid 1999-2013 Gert Wollny
 *
 * MIA is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with MIA; if not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef __mia_3d_matrix_hh
#define __mia_3d_matrix_hh

#include <mia/3d/vector.hh>
#include <mia/core/msgstream.hh>

NS_MIA_BEGIN

/**
   @ingroup basic 
   \brief a simple 3x3 matrix 
   
   This si a simple implementation of a 3x3 matrix that supports the evaluation of certain 
   properties and operations with vectors 

   \tparam T the data type of the elements of the matrix 
 */

template <typename T> 
struct T3DMatrix: public T3DVector< T3DVector<T> > {
	
	T3DMatrix() = default; 
	T3DMatrix(const T3DMatrix<T>& o) = default; 


	/**
	   Create a diagonal matrix 
	   \param value the value to set the diagonal elements to 
	   \returns a diagonal matrix with the gibe diagonal 
	*/
	static T3DMatrix<T> diagonal(T value); 

	/**
	   Create a diagonal matrix 
	   \param values the values to set the diagonal elements to a(0,0) = values.x, a(1,1) = values.y, ...
	   \returns a diagonal matrix with the gibe diagonal 
	*/
	static T3DMatrix<T> diagonal(const T3DVector<T>& values); 


	/**
	   Construct a matrix by copying from a differenty typed matrix 
	   \tparam I the element type of the original matrix 
	   \param o the matrix to be copied 
	 */
	template <typename I>
	T3DMatrix(const T3DMatrix<I>& o); 
	

	/**
	   Construct the matrix by giving a 3D vector of 3D vectors 
	   \remark This is needed to make transparent use of the T3DVector operators 
	   \param other  the input matrix 
	*/
	T3DMatrix(const T3DVector< T3DVector<T> >& other); 


	/**
	   Construct the matrix by giving the rows as 3D vectors 
	   \param x 1st row 
	   \param y 2st row 
	   \param z 3rd row 
	*/
	T3DMatrix(const T3DVector< T >& x, const T3DVector< T >& y, const T3DVector< T >& z ); 
	
	/**
	   inplace subtract 
	   \param other 
	   \returns 
	 */
	T3DMatrix<T>& operator -= (const T3DMatrix<T>& other);
	

	/**
	   print the matrix to an ostream 
	   \param os the output stream 
	*/
	void print( std::ostream& os) const; 


	/**
	   \returns the transposed of this matrix 
	 */
	T3DMatrix<T>  transposed()const; 


	/**
	   \returns the determinat of the matrix 
	 */
	T get_det()  const; 
	

	/**
	   \returns the rank of the matrix 
	 */
	int get_rank()const;
	
	/** calculated the eigenvalues of the matrix using the caracteristic polynome, and
	    Cardans formula 
	    \retval result stores the three eigenvalues, interprete dependend on returns
     
	    \returns 1 one real, two complex eigenvalues, real part = result->y, imaginary part = result->z
	             2 three real eigenvalues, at least two are equal
		     3 three distinct real eigenvalues
	*/	     

	int get_eigenvalues(C3DFVector& v)const; 

	/** Calculate the eigenvector to a given eigenvalues. If the eigenvalue is complex, the 
	    matrix has to be propagated to a complex one using the type converting copy constructor
	    \param[in] ev the eigenvalue
	    \param[out] v the estimated eigenvector 
	    \returns 0 eigenvector is valid
	             2 no eigenvector found
	 */
	int get_eigenvector(float ev, C3DFVector& v)const; 


	/// The unity matrix 
	static const T3DMatrix _1; 

	/// The zero matrix 
	static const T3DMatrix _0; 

}; 


/// a simple 3x3 matrix 
typedef T3DMatrix<float> C3DFMatrix; 


template <typename T> 
const T3DMatrix<T> T3DMatrix<T>::_1(T3DVector< T >(1,0,0), 
				 T3DVector< T >(0,1,0),
				 T3DVector< T >(0,0,1));

template <typename T> 
const T3DMatrix<T> T3DMatrix<T>::_0 = T3DMatrix<T>();


template <typename T> 
T3DMatrix<T> T3DMatrix<T>::diagonal(T v)
{
	return T3DMatrix<T>(T3DVector< T >(v,0,0), 
			    T3DVector< T >(0,v,0),
			    T3DVector< T >(0,0,v));
}

template <typename T> 
T3DMatrix<T> T3DMatrix<T>::diagonal(const T3DVector<T>& v)
{
	return T3DMatrix<T>(T3DVector< T >(v.x,0,0), 
			    T3DVector< T >(0,v.y,0),
			    T3DVector< T >(0,0,v.z));
}

template <typename T> 
template <typename I>
T3DMatrix<T>::T3DMatrix(const T3DMatrix<I>& o):
	T3DVector<T3DVector<T> >(o.x, o.y, o.z)
{
}

template <typename T> 
T3DMatrix<T>::T3DMatrix(const T3DVector< T3DVector<T> >& other):
	T3DVector<T3DVector<T> >(other.x, other.y, other.z)
{
}

template <typename T> 
T3DMatrix<T>::T3DMatrix(const T3DVector< T >& x, const T3DVector< T >& y, const T3DVector< T >& z ):
	T3DVector<T3DVector<T> >(x, y, z)
{
}
template <typename T> 
void T3DMatrix<T>::print( std::ostream& os) const
{
	os << "<" << this->x << ", " << this->y << ", " << this->z << " >"; 
}

template <typename T> 
std::ostream& operator << (std::ostream& os, const T3DMatrix<T>& m) 
{
	m.print(os); 
	return os; 
}

template <typename T> 
T3DMatrix<T>& T3DMatrix<T>::operator -= (const T3DMatrix<T>& o)
{
	this->x -= o.x; 
	this->y -= o.y; 
	this->z -= o.z; 
	return *this; 
}

template <typename T> 
T3DMatrix<T>  T3DMatrix<T>::transposed()const
{
	return T3DMatrix<T>(T3DVector<T>(this->x.x, this->y.x, this->z.x), 
			    T3DVector<T>(this->x.y, this->y.y, this->z.y), 
			    T3DVector<T>(this->x.z, this->y.z, this->z.z)); 
}

template <typename T> 
T3DVector<T> operator * (const T3DVector<T>& x, const T3DMatrix<T>& m)
{
	return T3DVector<T>(dot(m.x, x), dot(m.y, x), dot(m.z, x)); 
}

template <typename T> 
T3DVector<T> operator * (const T3DMatrix<T>& m, const T3DVector<T>& x  )
{
	return T3DVector<T>(m.x.x * x.x + m.y.x * x.y + m.z.x * x.z, 
			    m.x.y * x.x + m.y.y * x.y + m.z.y * x.z,
			    m.x.z * x.x + m.y.z * x.y + m.z.z * x.z);
}

template <typename T> 
T3DMatrix<T> operator * (const T3DMatrix<T>& m, const T3DMatrix<T>& x  )
{
	return T3DMatrix<T>(T3DVector<T>(m.x.x * x.x.x + m.x.y * x.y.x + m.x.z * x.z.x, 
					 m.x.x * x.x.y + m.x.y * x.y.y + m.x.z * x.z.y, 
					 m.x.x * x.x.z + m.x.y * x.y.z + m.x.z * x.z.z), 
			    T3DVector<T>(m.y.x * x.x.x + m.y.y * x.y.x + m.y.z * x.z.x, 
					 m.y.x * x.x.y + m.y.y * x.y.y + m.y.z * x.z.y, 
					 m.y.x * x.x.z + m.y.y * x.y.z + m.y.z * x.z.z), 
			    T3DVector<T>(m.z.x * x.x.x + m.z.y * x.y.x + m.z.z * x.z.x, 
					 m.z.x * x.x.y + m.z.y * x.y.y + m.z.z * x.z.y, 
					 m.z.x * x.x.z + m.z.y * x.y.z + m.z.z * x.z.z));
}


template <typename T> 
int T3DMatrix<T>::get_rank()const
{
	C3DFVector ev; 
	this->get_eigenvalues(ev); 
	cvdebug()<< "Matrix = "<< *this <<", Rank: eigenvalues: " << ev << "\n"; 
	int rank = 0; 
	if (ev.x != 0.0)  
		rank++; 
	if (ev.y != 0.0)  
		rank++; 
	if (ev.z != 0.0)  
		rank++; 
	return rank; 
}

inline double cubrt(double a) 
{
	if ( a == 0.0 )
		return 0.0;
	return  a > 0.0 ? pow(a,1.0/3.0) : - pow(-a, 1.0/ 3.0); 
}


template <class T>
T T3DMatrix<T>::get_det()  const 
{
	return  dot(this->x,T3DVector<T>(this->y.y * this->z.z - this->z.y * this->y.z, 
					 this->y.z * this->z.x - this->y.x * this->z.z, 
					 this->y.x * this->z.y - this->y.y * this->z.x)); 
}


template <typename T> 
int T3DMatrix<T>::get_eigenvalues(C3DFVector& result)const
{
	int retval = 0; 
	
	double t = - get_det();
	double s =   this->x.x * this->y.y + this->z.z * this->y.y + this->x.x * this->z.z -
		this->x.y * this->y.x - this->x.z * this->z.x - this->y.z * this->z.y;
	
	double r =  - this->x.x - this->y.y - this->z.z;
	
	//	 a = 1; 
	
	double p = s - r * r / 3.0; 
	double q = ( 27.0 * t - 9.0 * r * s + 2.0 * r * r * r ) / 27.0;
	
	double diskr = q *q / 4.0 + p * p * p / 27.0;
	
	cvdebug() << "discr =" << diskr << "\n"; 
	if ( diskr > 1e-6 ) {
		// complex solution
		double sqrt_discr = sqrt(diskr);
		double u = cubrt( - q/2.0 + sqrt_discr );
		double v = cubrt( - q/2.0 - sqrt_discr );
		result.x = u + v - r / 3.0;
		result.y = -(u + v) / 2.0 - r / 3.0; // real part 
		result.z = (u - v)/2.0 * sqrt(3.0f);    // imag part
		return 1;
		
	}

	std::vector<double> res(3); 
	if ( diskr < -1e-6) {
		double rho = sqrt(-p*p*p/ 27.0); 
		double cphi = - q / ( 2.0 * rho); 
		double phi = acos(cphi)/3.0;
		double sqrt_p = 2 * cubrt(rho);
		res[0] = sqrt_p * cos(phi)- r/3.;
		res[1] = sqrt_p * cos(phi + M_PI * 2.0 / 3.0) - r/3.; 
		res[2] = sqrt_p * cos(phi + M_PI * 4.0 / 3.0) - r/3.; 
		retval = 3;		
	} else  { // at least two values are equal, all real  
		double u = cubrt( - q/2.0 );
		res[0] = 2.0 * u - r / 3.0;
		res[1] =  - u - r / 3.0; 
		res[2] = res[1]; 
		retval = 2; 
	}
	
	std::sort(res.begin(), res.end(),  [](double x, double y){ return std::fabs(x) > std::fabs(y);}); 
	
	for_each(res.begin(), res.end(), [](double& x){ if (std::fabs(x) < 1e-12) x = 0.0;}); 

	result.x = res[0]; 
	result.y = res[1]; 
	result.z = res[2];
	return retval;

}

/** solve a 2x2 system of equations 
      a11 * x1 + a12 * x2 = b1
      a21 * x1 + a22 * x2 = b2
    \param a11
    \param a12
    \param b1
    \param a21
    \param a22
    \param b2    
    \param x1
    \param x2
    \returns true if system was solved, false otherwise
*/
template<class T> 
bool solve_2x2(T a11, T a12,T b1,T a21, T a22,T b2,T *x1,T *x2)
{
	T h1 = a11 * a22 - a12 * a21; 
	if (h1 == T())
		return false;
	
	*x1 = (b1 * a22 - b2 * a12) / h1; 
	*x2 = (b2 * a11 - b1 * a21) / h1; 
	return true;
}

/** some struct to help solving the 3x3 Matrix eigenvalue problem */
struct solve_lines_t {
	int a,b; 
};


template <typename T> 
int T3DMatrix<T>::get_eigenvector(float ev, C3DFVector& v)const
{
	const solve_lines_t l[3] = { {0,1}, {1,2}, {2,0}};
	//	T b1,b2,a11,a12,a21,a22; 
	if (ev == 0.0) {
		return 1;
	}
	
	T3DMatrix<T> M = *this - T3DMatrix<T>::diagonal(ev);

	float x = std::abs(M.x.x)+std::abs(M.y.x)+std::abs(M.z.x);
	float y = std::abs(M.x.y)+std::abs(M.y.y)+std::abs(M.z.y);
	float z = std::abs(M.x.z)+std::abs(M.y.z)+std::abs(M.z.z);
	
	if (x+y+z == 0.0) {
		v = T3DVector<T>(1,0,0);
		return 0;
	}

	T3DVector<int> col;
	T *rx;
	T *ry;

	// thats tricky: 
	// 1st col index is 1st column in solver 
	// 2nd col index is 2nd column in solver
	// 3th col index is right side 
	// the respective result value is 0=x,1=y,2=z
	// the right side presenting value of result is preset with 1.0
	// the others get a pointer
	
	if (x < y) {
		if (x < z){
			col = T3DVector<int>(1,2,0);
			rx = &v.y;
			ry = &v.z;
			v.x = 1.0;
		}else{
			col = T3DVector<int>(0,1,2);
			rx = &v.x;
			ry = &v.y;
			v.z = 1.0; 
		}
	}else{
		if (y < z){
			col = T3DVector<int>(0,2,1);
			rx = &v.x;
			ry = &v.z;
			v.y = 1.0; 

		}else{
			col = T3DVector<int>(0,1,2);			
			rx = &v.x;
			ry = &v.y;
			v.z= 1.0;
		}
	}
	
	bool good = false; 
	for (int i = 0; i < 3 && !good; i++) {
		good = solve_2x2(M[l[i].a][col.x],M[l[i].a][col.y],-M[l[i].a][col.z],
				 M[l[i].b][col.x],M[l[i].b][col.y],-M[l[i].b][col.z],
				 rx,ry); 
	}
	// seems there is no solution
	if (!good) 
		return 2; 
	
	
	if ((M * v).norm2() > 1e-5) {
		
		// a solution for only two rows is not a solution
		// but there is no better
		fprintf(stderr,"WARNING: rank of A-ev*I\n numerical > 2");
		return 0;
	}
	v /= v.norm();	
	return 0;
}




NS_MIA_END

#endif