This file is indexed.

/usr/bin/primes is in libmath-prime-util-perl 0.37-1.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
#!/usr/bin/env perl
use strict;
use warnings;
use Getopt::Long;
use Math::BigInt try => 'GMP';
use Math::Prime::Util qw/primes  prime_count  next_prime  prev_prime
                         is_prime  is_provable_prime  nth_prime
                         prime_count  primorial  pn_primorial/;
$| = 1;

# For many more types, see:
#   http://en.wikipedia.org/wiki/List_of_prime_numbers
#   http://mathworld.wolfram.com/IntegerSequencePrimes.html


# This program shouldn't contain any special knowledge about the series
# members other than perhaps the start.  It can know patterns, but don't
# include a static list of the members, for instance.  It should actually
# compute the entries in a range (though go ahead and be clever about it).
# Example:
#   DO     use knowledge that F_k is prime only if k <= 4 or k is prime.
#   DO     use knowledge that safe primes are <= 7 or congruent to 11 mod 12.
#   DO NOT use knowledge that fibprime(14) = 19134702400093278081449423917


# The various primorial primes are confusing.  Some things to consider:
#   1) there are two definitions of primorial: p# and p_n#
#   2) three sequences:
#         p where 1+p# is prime
#         n where 1+p_n# is prime
#         p_n#+1 where 1+p_n# is prime
#   3) intersections of sequences (e.g. p_n#+1 and p_n#-1)
#   4) other sequences like A057705: p where p+1 is an A002110 primorial
#      plus all the crazy primorial sequences (unlikely to be confused)
#
# A005234  p      where p#+1   prime
# A136351  p#     where p#+1   prime     2,6,30,210,2310,200560490130
# A014545  n      where p_n#+1 prime     1,2,3,4,5,11,75,171,172
# A018239  p_n#+1 where p_n#+1 prime
#
# A006794  p      where p#-1   prime     3,5,11,13,41,89,317,337
# A057704  n      where p_n#-1 prime     2,3,5,6,13,24,66,68,167
#
# As an aside, the 18th p#-1 is 15877, but the 19th is 843301.
# The p#+1's are a bit denser, with the 22nd at 392113.


# There are a few of these prime filters that Math::NumSeq supports, and in
# theory it will add them eventually since they are OEIS sequences.  Many are
# of the form "primes from ####" so aren't hard to work up.  Math::NumSeq is
# a really neat module for playing with OEIS sequences.
#
# Example: All Sophie Germain primes under 1M
#    primes.pl --sophie 1 1000000
#    perl -MMath::NumSeq::SophieGermainPrimes=:all -E 'my $seq = Math::NumSeq::SophieGermainPrimes->new; my $v = 0; while (1) { $v = ($seq->next)[1]; last if $v > $end; say $v; } BEGIN {our $end = 1000000}'
#
# Timing from 1 .. N for small N is going to be similar.  As N increases, the
# time difference grows rapidly.
#
#          primes.pl    Math::NumSeq::SophieGermainPrimes
#     1M     0.11s        0.18s
#    10M     0.38        3.89s
#   100M     2.98s     793s
#  1000M    27.7s       ? estimated >3 days
#
# If given a non-zero start value it spreads even more, as for most sequences
# primes.pl doesn't have to generate preceeding values, while NumSeq has to
# start at the beginning.  Additionally, Math::NumSeq may or may not deal with
# numbers larger than 2^32 (many sequences do, but it uses Math::Factor::XS
# for factoring and primality, which is limited to 32-bit).
#
# Here's an example of a combination.  Palindromic primes:
#    primes.pl --palin 1 1000000000
#    perl -MMath::Prime::Util=is_prime -MMath::NumSeq::Palindromes=:all -E 'my $seq = Math::NumSeq::Palindromes->new; my $v = 0; while (1) { $v = ($seq->next)[1]; last if $v > $end; say $v if is_prime($v); } BEGIN {our $end = 1000000000}'

my %opts;
# Make Getopt not capture +
Getopt::Long::Configure(qw/no_getopt_compat/);
GetOptions(\%opts,
           'safe|A005385',
           'sophie|sg|A005384',
           'twin|A001359',
           'lucas|A005479',
           'fibonacci|A005478',
           'lucky|A031157',
           'triplet|A007529',
           'quadruplet|A007530',
           'cousin|A023200',
           'sexy|A023201',
           'mersenne|A000668',
           'palindromic|palindrome|palendrome|A002385',
           'pillai|A063980',
           'good|A028388',
           'cuban1|A002407',
           'cuban2|A002648',
           'pnp1|A005234',
           'pnm1|A006794',
           'euclid|A018239',
           'circular|A068652',
           'panaitopol|A027862',
           'provable',
           'nompugmp',   # turn off MPU::GMP for debugging
           'version',
           'help',
          ) || die_usage();
Math::Prime::Util::prime_set_config(gmp=>0) if exists $opts{'nompugmp'};
if (exists $opts{'version'}) {
  my $version_str =
   "primes.pl version 1.3 using Math::Prime::Util $Math::Prime::Util::VERSION";
  $version_str .= " and MPU::GMP $Math::Prime::Util::GMP::VERSION"
    if Math::Prime::Util::prime_get_config->{'gmp'};
  $version_str .= "\nWritten by Dana Jacobsen.\n";
  die "$version_str";
}
die_usage() if exists $opts{'help'};

# Get the start and end values.  Verify they're positive integers.
die_usage() unless @ARGV == 2;
my ($start, $end) = @ARGV;
# Allow some expression evaluation on the input, but don't just eval it.
$end = "($start)$end" if $end =~ /^\+/;
$start =~ s/\s*$//;  $start =~ s/^\s*//;
$end   =~ s/\s*$//;  $end   =~ s/^\s*//;
$start = eval_expr($start) unless $start =~ /^\d+$/;
$end   = eval_expr($end  ) unless $end   =~ /^\d+$/;
die "$start isn't a positive integer" if $start =~ tr/0123456789//c;
die "$end isn't a positive integer"   if $end   =~ tr/0123456789//c;

# Turn start and end into bigints if they're very large.
# Fun fact:  Math::BigInt->new("1") <= 10000000000000000000  is false.  Sigh.
if ( ($start >= 2**63) || ($end >= 2**63) ) {
  $start = Math::BigInt->new("$start") unless ref($start) eq 'Math::BigInt';
  $end = Math::BigInt->new("$end") unless ref($end) eq 'Math::BigInt';
}

my $segment_size = $start - $start + 30 * 128_000;   # 128kB

# Calculate the mod 210 pre-test.  This helps with the individual filters,
# but the real benefit is that it convolves the pretests, which can speed
# up even more.
my ($min_pass, %mod_pass) = find_mod210_restriction();
# Find out if they've filtered so much nothing passes (e.g. cousin quad)
if (scalar keys %mod_pass == 0) {
  $end = $min_pass if $end > $min_pass;
}

if ($start > $end) {
  # Do nothing
} elsif (   exists $opts{'lucas'}
         || exists $opts{'fibonacci'}
         || exists $opts{'euclid'}
         || exists $opts{'lucky'}
         || exists $opts{'mersenne'}
         || exists $opts{'cuban1'}
         || exists $opts{'cuban2'}
        ) {
  my $p = gen_and_filter($start, $end);
  print join("\n", @$p), "\n"  if scalar @$p > 0;
} else {
  while ($start <= $end) {

    # Adjust segment sizes for some cases
    $segment_size = 10000 if $start > ~0;   # small if doing bigints
    if (exists $opts{'pillai'}) {
      $segment_size = ($start < 10000) ? 100 : 1000;  # very small for Pillai
    }
    if (exists $opts{'pnp1'} || exists $opts{'pnm1'}) {
      $segment_size = 500;
    }
    if (exists $opts{'palindromic'}) {
      $segment_size = 10**length($start) - $start - 1; # all n-digit numbers
    }
    if (exists $opts{'panaitopol'}) {
      $segment_size = (~0 == 4294967295) ? 2147483648 : int(10**12);
    }

    my $seg_start = $start;
    my $seg_end = int($start + $segment_size);
    $seg_end = $end if $end < $seg_end;
    $start = $seg_end+1;

    my $p = gen_and_filter($seg_start, $seg_end);

    # print this segment
    print join("\n", @$p), "\n"  if scalar @$p > 0;
  }
}


# Fibonacci numbers
{
  my @fibs;
  sub fib {
    my $n = shift;
    return $n if $n < 2;
    if (!defined $fibs[$n]) {
      @fibs = (Math::BigInt->new(0), Math::BigInt->new(1)) if scalar @fibs == 0;
      my ($nm2, $nm1) = ($fibs[-2],$fibs[-1]);
      for (scalar @fibs .. $n) {
        ($nm2, $nm1) = ($nm1, $nm2 + $nm1);
        push @fibs, $nm1;
      }
    }
    return $fibs[$n];
  }
}

# This is OEIS A000032, Lucas numbers beginning at 2.
# Use identity:  L_n = F_n-1 + F_n+1.  Would be faster if calculated directly.
sub lucas_primes {
  my ($start, $end) = @_;
  my @lprimes;
  my $k = 0;
  my $Lk = 2;
  while ($Lk < $start) {
    $k++;
    $Lk = fib($k+1) + fib($k-1);
  }
  while ($Lk <= $end) {
    push @lprimes, $Lk if is_prime($Lk);
    $k++;
    $Lk = fib($k+1) + fib($k-1);
  }
  @lprimes;
}

sub fibonacci_primes {
  my ($start, $end) = @_;
  my @fprimes;
  my $k = 3;
  my $Fk = fib($k);
  while ($Fk < $start) {
    $Fk = fib(++$k);
  }
  while ($Fk <= $end) {
    push @fprimes, $Fk if is_prime($Fk);
    # For all but k=4, F_k is prime only when k is prime.
    $k = ($k <= 4)  ?  $k+1  :  next_prime($k);
    $Fk = fib($k);
  }
  @fprimes;
}

sub mersenne_primes {
  my ($start, $end) = @_;
  my @mprimes;
  my $p = 1;
  while (1) {
    $p = next_prime($p);  # Mp is not prime if p is not prime
    next if $p > 3 && ($p % 4) == 3 && is_prime(2*$p+1);
    my $Mp = Math::BigInt->bone->blsft($p)->bsub(1);
    last if $Mp > $end;
    # Lucas-Lehmer test would be faster
    push @mprimes, $Mp if $Mp >= $start && is_prime($Mp);
  }
  @mprimes;
}

sub euclid_primes {
  my ($start, $end, $add) = @_;
  my @eprimes;
  my $k = 0;
  while (1) {
    my $primorial = pn_primorial(Math::BigInt->new($k)) + $add;
    last if $primorial > $end;
    push @eprimes, $primorial if $primorial >= $start && is_prime($primorial);
    $k++;
  }
  @eprimes;
}

sub cuban_primes {
  my ($start, $end, $add) = @_;
  my @cprimes;
  my $psub = ($add == 1) ? sub { 3*$_[0]*$_[0] + 3*$_[0] + 1 }
                         : sub { 3*$_[0]*$_[0] + 6*$_[0] + 4 };
  # Determine first y via quadratic equation (under-estimate)
  my $y = ($start <= 2)  ?  0  :
          ($add == 1)
          ? int((-3 + sqrt(3*3 - 4*3*(1-$start))) / (2*3))
          : int((-6 + sqrt(6*6 - 4*3*(4-$start))) / (2*3));
  die "Incorrect start calculation" if $y > 0 && $psub->($y - 1) >= $start;

  # skip forward until p >= start
  $y++ while $psub->($y) < $start;

  my $p = $psub->($y);
  while ($p <= $end) {
    push @cprimes, $p if is_prime($p);
    $p = $psub->(++$y);
  }
  @cprimes;
}

sub panaitopol_primes {
  my ($start, $end) = @_;

  my @init;
  push @init,  5 if $start <=  5 && $end >=  5;
  push @init, 13 if $start <= 13 && $end >= 13;
  return @init if $end < 41;
  my $nbeg = ($start <= 41)  ?  4  :  int( sqrt( ($start-1)/2) );
  my $nend = int( sqrt(($end-1)/2) );
  $nbeg++ while (2*$nbeg*($nbeg+1)+1) < $start;
  $nend-- while (2*$nend*($nend+1)+1) > $end;
  # TODO: BigInts
  return @init,
         grep { is_prime($_) }
         grep { ($_%5) && ($_%13) && ($_%17) && ($_%29) && ($_%37) }
         map { 2*$_*($_+1)+1 }
         $nbeg .. $nend;
}

sub lucky_primes {
  my ($start, $end) = @_;
  # First do a (very basic) lucky number sieve to generate A000959.
  # Evens removed for k=1:
  #    my @lucky = map { $_*2+1 } (0 .. int(($end-1)/2));
  # Remove the 3rd elements for k=2:
  #     my @lucky = grep { my $m = $_ % 6; $m == 1 || $m == 3 } (0 .. $end);
  # Remove the 4th elements for k=3:
  #     my @lucky = grep { my $m = $_ % 21; $m != 18 && $m != 19 }
  #                 grep { my $m = $_ % 6; $m == 1 || $m == 3 }
  #                 map { $_*2+1 } (0 .. int(($end-1)/2));
  # This is the same k=3 sieve, but uses much less memory:
  my @lucky;
  my $n = 1;
  while ($n <= $end) {
    my $m21 = $n % 21;
    push @lucky, $n unless $m21 == 18 || $m21 == 19;
    push @lucky, $n+2 unless $m21 == 16 || $m21 == 17;
    $n += 6;
  }
  delete $lucky[-1] if $lucky[-1] > $end;

  for (my $k = 3; $k < scalar @lucky; $k++) {
    my $skip = $lucky[$k];
    my $index = $skip-1;
    last if $index > $#lucky;
    do {
      splice(@lucky, $index, 1);
      $index += $skip-1;
    } while ($index <= $#lucky);
  }
  # Then restrict to primes to get A031157.
  shift @lucky while $lucky[0] < $start;
  grep { is_prime($_) } @lucky;
}

# This is not a general palindromic digit function!
sub ndig_palindromes {
  my $digits = shift;
  return (2,3,5,7) if $digits == 1;
  return (11) if $digits == 2;
  return () if ($digits % 2) == 0;

  my $rhdig = int(($digits - 1) / 2);
  return grep { is_prime($_) }
         map { $_ . reverse substr($_,0,$rhdig) }
         map { $_ * int(10**$rhdig) .. ($_+1) * int(10**$rhdig) - 1 }
         1, 3, 7, 9;
}

# See: http://en.wikipedia.org/wiki/Pillai_prime
sub is_pillai {
  my $p = shift;
  return 0 if $p <= 2;
  my $half_word = (~0 == 4294967295) ? 65535 : 4294967295;
  if ($p <= $half_word) {
    my $nfac = 1;
    for (my $n = 2; $n < $p; $n++) {
      $nfac = ($nfac * $n) % $p;
      return 1 if $nfac == $p-1 && ($p % $n) != 1;
    }
  } else {
    # Must use bigints.  Very slow.
    my $n_factorial_mod_p = Math::BigInt->bone();
    for (my $n = Math::BigInt->new(2); $n < $p; $n++) {
      $n_factorial_mod_p->bmul($n)->bmod($p);
      return 1 if $n_factorial_mod_p == ($p-1) && ($p % $n) != 1;
    }
  }
  0;
}

# Not nearly as slow as Pillai, but not fast.
sub is_good_prime {
  my $p = shift;
  return 0 if $p <= 2; # 2 isn't a good prime
  my $lower = $p;
  my $upper = $p;
  while ($lower > 2) {
    $lower = prev_prime($lower);
    $upper = next_prime($upper);
    return 0 if ($p*$p) <= ($upper * $lower);
  }
  1;
}

# Assumes the input is prime.  Returns 1 if all digit rotations are prime.
sub is_circular_prime {
  my $p = shift;
  return 1 if $p < 10;
  return 0 if $p =~ tr/024568//;
  # TODO: BigInts
  foreach my $rot (1 .. length($p)-1) {
    return 0 unless is_prime( substr($p, $rot) . substr($p, 0, $rot) );
  }
  1;
}

sub merge_primes {
  my ($genref, $pref, $name, @primes) = @_;
  if (!defined $$genref) {
    @$pref = @primes;
    $$genref = $name;
  } else {
    my %f;
    undef @f{ @primes };
    @$pref = grep { exists $f{$_} } @$pref;
  }
}

# This is used for things that can generate a filtered list faster than
# searching through all primes in the range.
sub gen_and_filter {
  my ($start, $end) = @_;
  my $gen;
  my $p = [];
  $end-- if ($end % 2) == 0 && $end > 2;

  if (exists $opts{'lucas'}) {
    merge_primes(\$gen, $p, 'lucas', lucas_primes($start, $end));
  }
  if (exists $opts{'fibonacci'}) {
    merge_primes(\$gen, $p, 'fibonacci', fibonacci_primes($start, $end));
  }
  if (exists $opts{'mersenne'}) {
    merge_primes(\$gen, $p, 'mersenne', mersenne_primes($start, $end));
  }
  if (exists $opts{'euclid'}) {
    merge_primes(\$gen, $p, 'euclid', euclid_primes($start, $end, 1));
  }
  if (exists $opts{'lucky'}) {
    merge_primes(\$gen, $p, 'lucky', lucky_primes($start, $end));
  }
  if (exists $opts{'cuban1'}) {
    merge_primes(\$gen, $p, 'cuban1', cuban_primes($start, $end, 1));
  }
  if (exists $opts{'cuban2'}) {
    merge_primes(\$gen, $p, 'cuban2', cuban_primes($start, $end, 2));
  }
  if (exists $opts{'panaitopol'}) {
    merge_primes(\$gen, $p, 'panaitopol', panaitopol_primes($start, $end));
  }
  if (exists $opts{'palindromic'}) {
    if (!defined $gen) {
      foreach my $d (length($start) .. length($end)) {
        push @$p, grep { $_ >= $start && $_ <= $end }
                  ndig_palindromes($d);
      }
      $gen = 'palindromic';
    } else {
      @$p = grep { $_ eq reverse $_; } @$p;
    }
  }

  if (exists $opts{'twin'} && !defined $gen) {
    $p = primes($start, $end);
    push @$p, is_prime($p->[-1]+2) ? $p->[-1]+2 : 0;
    my @twin;
    my $prime = shift @$p;
    foreach my $next (@$p) {
      push @twin, $prime if $prime+2 == $next;
      $prime = $next;
    }
    $p = \@twin;
    $gen = 'twin';
  }

  if (!defined $gen) {
    $p = primes($start, $end);
    $gen = 'primes';
  }

  # Apply the mod 210 pretest
  if ($min_pass > 0) {
    @$p = grep { $_ <= $min_pass || exists $mod_pass{$_ % 210} } @$p;
  }

  if (exists $opts{'twin'} && $gen ne 'twin') {
    @$p = grep { is_prime( $_+2 ); } @$p;
  }

  if (exists $opts{'triplet'}) {
    @$p = grep { is_prime($_+6) && (is_prime($_+2) || is_prime($_+4)); } @$p;
  }

  if (exists $opts{'quadruplet'}) {
    @$p = grep { is_prime($_+2) && is_prime($_+6) && is_prime($_+8); } @$p;
  }

  if (exists $opts{'cousin'}) {
    @$p = grep { is_prime($_+4); } @$p;
  }

  if (exists $opts{'sexy'}) {
    @$p = grep { is_prime($_+6); } @$p;
  }

  if (exists $opts{'safe'}) {
    @$p = grep { is_prime( ($_-1) >> 1 ); }
          grep { ($_ <= 7) || ($_ % 12) == 11; }
          @$p;
  }
  if (exists $opts{'sophie'}) {
    @$p = grep { is_prime( 2*$_+1 ); } @$p;
  }
  #if (exists $opts{'cuban1'}) {
  #  @p = grep { my $n = sqrt((4*$_-1)/3); 4*$_ == int($n)*int($n)*3+1; } @p;
  #}
  #if (exists $opts{'cuban2'}) {
  #  @p = grep { my $n = sqrt(($_-1)/3); $_ == int($n)*int($n)*3+1; } @p;
  #}
  if (exists $opts{'pnm1'}) {
    @$p = grep { is_prime( primorial(Math::BigInt->new($_))-1 ) } @$p;
  }
  if (exists $opts{'pnp1'}) {
    @$p = grep { is_prime( primorial(Math::BigInt->new($_))+1 ) } @$p;
  }
  if (exists $opts{'circular'}) {
    @$p = grep { is_circular_prime($_) } @$p;
  }
  if (exists $opts{'pillai'}) {
    @$p = grep { is_pillai($_); } @$p;
  }
  if (exists $opts{'good'}) {
    @$p = grep { is_good_prime($_); } @$p;
  }
  if (exists $opts{'provable'}) {
    @$p = grep { is_provable_prime($_) == 2; } @$p;
  }
  $p;
}

sub find_mod210_restriction {
  my %mods_left;
  undef @mods_left{ grep { ($_%2) && ($_%3) && ($_%5) && ($_%7) } (0..209) };
  
  my %mod210_restrict = (
    cuban1     => {min=> 7, mod=>[1,19,37,61,79,121,127,169,187]},
    cuban2     => {min=> 2, mod=>[1,13,43,109,139,151,169,181,193]},
    twin       => {min=> 5, mod=>[11,17,29,41,59,71,101,107,137,149,167,179,191,197,209]},
    triplet    => {min=> 7, mod=>[11,13,17,37,41,67,97,101,103,107,137,163,167,187,191,193]},
    quadruplet => {min=> 5, mod=>[11,101,191]},
    cousin     => {min=> 7, mod=>[13,19,37,43,67,79,97,103,109,127,139,163,169,187,193]},
    sexy       => {min=> 7, mod=>[11,13,17,23,31,37,41,47,53,61,67,73,83,97,101,103,107,121,131,137,143,151,157,163,167,173,181,187,191,193]},
    safe       => {min=>11, mod=>[17,23,47,53,59,83,89,107,137,143,149,167,173,179,209]},
    sophie     => {min=> 5, mod=>[11,23,29,41,53,71,83,89,113,131,149,173,179,191,209]},
    panaitopol => {min=> 5, mod=>[1,11,13,41,43,53,61,71,83,103,113,131,151,173,181,193]},
    # Nothing for good, pillai, palindromic, fib, lucas, mersenne, primorials
  );

  my $min = 0;
  while (my($filter,$data) = each %mod210_restrict) {
    next unless exists $opts{$filter};
    $min = $data->{min} if $min < $data->{min};
    my %thismod;
    undef @thismod{ @{$data->{mod}} };
    foreach my $m (keys %mods_left) {
      delete $mods_left{$m} unless exists $thismod{$m};
    }
  }
  return ($min, %mods_left);
}

# This is rather braindead.  We're going to eval their input so they can give
# arbitrary expressions.  But we only want to allow math-like strings.
sub eval_expr {
  my $expr = shift;
  die "$expr cannot be evaluated" if $expr =~ /:/;  # Use : for escape
  $expr =~ s/nth_prime\(/:1(/g;
  $expr =~ s/log\(/:2(/g;
  die "$expr cannot be evaluated" if $expr =~ tr|-0123456789+*/() :||c;
  $expr =~ s/:1/nth_prime/g;
  $expr =~ s/:2/log/g;
  $expr =~ s/(\d+)/ Math::BigInt->new($1) /g;
  my $res = eval $expr; ## no critic
  die "Cannot eval: $expr\n" if !defined $res;
  $res = int($res->bstr) if ref($res) eq 'Math::BigInt' && $res <= ~0;
  $res;
}


sub die_usage {
  die <<EOU;
Usage: $0 [options]  START  END

Displays all primes between the positive integers START and END, inclusive.
The START and END values must be integers or simple expressions.  This allows
inputs like "10**500+100" or "2**64-1000" or "2 * nth_prime(560)".
Additionally, if END starts with '+' then it is assumed to add to START.

General options:

  --help       displays this help message

Filter options, which will cause the list of primes to be further filtered
to only those primes additionally meeting these conditions:

  --twin       Twin             p+2 is prime
  --triplet    Triplet          p+6 and (p+2 or p+4) are prime
  --quadruplet Quadruplet       p+2, p+6, and p+8 are prime
  --cousin     Cousin           p+4 is prime
  --sexy       Sexy             p+6 is prime
  --safe       Safe             (p-1)/2 is also prime
  --sophie     Sophie Germain   2p+1 is also prime
  --lucas      Lucas            L_p is prime
  --fibonacci  Fibonacci        F_p is prime
  --mersenne   Mersenne         M_p = 2^p-1 is prime
  --lucky      Lucky            p is a lucky number
  --palindr    Palindromic      p is equal to p with its base-10 digits reversed
  --pillai     Pillai           n! % p = p-1 and p % n != 1 for some n
  --good       Good             p_n^2 > p_{n-i}*p_{n+i} for all i in (1..n-1)
  --cuban1     Cuban (y+1)      p = (x^3 - y^3)/(x-y), x=y+1
  --cuban2     Cuban (y+2)      p = (x^3 - y^3)/(x-y), x=y+2
  --pnp1       Primorial+1      p#+1 is prime
  --pnm1       Primorial-1      p#-1 is prime
  --euclid     Euclid           pn#+1 is prime
  --circular   Circular         all digit rotations of p are prime
  --panaitopol Panaitopol       p = (x^4-y^4)/(x^3+y^3) for some x,y
  --provable                    Ensure all primes are provably prime

Note that options can be combined, e.g. display only safe twin primes.
In all cases involving multiples (twin, triplet, etc.), the value returned
is p -- the least value of the set.

EOU
}