/usr/include/magics/MatrixHandler.h is in libmagics++-dev 2.18.15-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 | /******************************** LICENSE ********************************
Copyright 2007 European Centre for Medium-Range Weather Forecasts (ECMWF)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
******************************** LICENSE ********************************/
/*! \file MatrixHandler.h
\brief Definition of the Template class MatrixHandler.
Magics Team - ECMWF 2004
Started: Wed 18-Feb-2004
Changes:
*/
#ifndef MatrixHandler_H
#define MatrixHandler_H
#include "magics.h"
#include "Matrix.h"
#include "BasePointsHandler.h"
#include "Transformation.h"
#include "VectorOfPointers.h"
#include "Timer.h"
#include "Transformation.h"
namespace magics {
class MatrixHandler : public AbstractMatrix, public AbstractPoints
{
public :
MatrixHandler(const AbstractMatrix& matrix) : AbstractMatrix(),
AbstractPoints(),
matrix_(matrix), min_(INT_MAX), max_(-INT_MAX) {}
MatrixHandler(const MatrixHandler& matrix) :
AbstractMatrix(),
AbstractPoints(),
matrix_(matrix) , min_(INT_MAX), max_(-INT_MAX) {}
virtual ~MatrixHandler() {}
virtual double operator()(int i, int j) const { return matrix_(i, j); }
virtual int rowIndex(double r) const { return matrix_.rowIndex(r); }
virtual int columnIndex(double c) const { return matrix_.columnIndex(c); }
virtual bool akimaEnable() const { return matrix_.akimaEnable(); }
virtual void boundRow(double r,
double& row1, int& index1, double& row2, int& index2) const
{ return matrix_.boundRow(r, row1, index1, row2, index2); }
virtual void boundColumn(double r,
double& column1, int& index1, double& column2, int& index2) const
{ return matrix_.boundColumn(r, column1, index1, column2, index2); }
double left() const { return matrix_.left(); }
double bottom() const { return matrix_.bottom(); }
double right() const { return matrix_.right(); }
double top() const { return matrix_.top(); }
double x(double x, double y) const { return matrix_.x(x, y); }
double y(double x, double y) const { return matrix_.y(x, y); }
virtual double nearest(double row, double column, double &rowOut, double &columnOut) const
{
rowOut=-1;
columnOut=-1;
return nearest(row,column);
}
virtual double nearest(double row, double column) const
{
if ( columns() == 0 || rows() == 0)
return matrix_.missing();
if ( column < left() && !same(column, left()) )
return matrix_.missing();
if ( column > right() && !same(column, right()) )
return matrix_.missing();
if ( row < bottom() && !same(row, bottom()) )
return matrix_.missing();
if ( row > top() && !same(row, top()) )
return matrix_.missing();
int ri = rowIndex(row);
int ci = columnIndex(column);
if ( ri != -1 && ci != -1)
return (*this)(ri, ci);
double x1, x2;
double y1, y2;
int r1, r2, c1, c2;
vector<double> distances;
map<double, pair<pair<double, double>, pair<int, int> > > helper;
vector<pair<pair<double, double>, pair<int, int> > > coordinates;
if (ri != -1 ) {
boundColumn(column, x1, c1, x2, c2);
coordinates.push_back(make_pair(make_pair(row, x1), make_pair(ri, c1)));
coordinates.push_back(make_pair(make_pair(row, x2), make_pair(ri, c2)));
}
else if (ci != -1 ) {
boundRow(row, y1, r1, y2, r2);
coordinates.push_back(make_pair(make_pair(y1, column), make_pair(r1, ci)));
coordinates.push_back(make_pair(make_pair(y2, column), make_pair(r2, ci)));
}
else {
boundColumn(column, x1, c1, x2, c2);
boundRow(row, y1, r1, y2, r2);
// 4 points ...
// x1, y1 - x2, y1 - x1, y2 - x2, y2
// find the nearest...
coordinates.push_back(make_pair(make_pair(y1, x1), make_pair(r1, c1)));
coordinates.push_back(make_pair(make_pair(y1, x2), make_pair(r1, c2)));
coordinates.push_back(make_pair(make_pair(y2, x1), make_pair(r2, c1)));
coordinates.push_back(make_pair(make_pair(y2, x2), make_pair(r2, c2)));
}
for (vector< pair<pair<double, double>, pair<int, int> > >::iterator coord = coordinates.begin(); coord != coordinates.end(); ++coord) {
double distance = (row- coord->first.first)*(row-coord->first.first) + (column - coord->first.second)*(column - coord->first.second);
//cout << distance << " [ " << coord->first.first << ", " << coord->first.second << "]" << endl;
distances.push_back(distance);
helper.insert(make_pair(distance, *coord));
}
if ( distances.empty() )
return matrix_.missing();
double min = *std::min_element(distances.begin(), distances.end());
map<double, pair<pair<double, double>, pair<int, int> > >::iterator near = helper.find(min);
if ( near == helper.end() )
return matrix_.missing();
return (*this)(near->second.second.first, near->second.second.second);
}
virtual double interpolate(double i, double j) const
{
if ( columns() == 0 || rows() == 0)
return matrix_.missing();
if ( j < left() && !same(j, left()) )
return matrix_.missing();
if ( j > right() && !same(j, right()) )
return matrix_.missing();
if ( i < bottom() && !same(i, bottom()) )
return matrix_.missing();
if ( i > top() && !same(i, top()) )
return matrix_.missing();
int ii = rowIndex(i);
if (ii == -1) {
// interpolate between 2 rows.
double v1, v2;
int i1, i2;
boundRow(i, v1, i1, v2, i2);
if (i1 == -1) return missing();
double a = (*this).interpolate(v1, j);
double b = (*this).interpolate(v2, j);
if ( same(a, missing()) || same(b, missing()) ) return missing();
double da = (v2-i)/(v2-v1);
double db = (i-v1)/(v2-v1);
double val = (a*da) + (b*db);
return val;
}
int jj = columnIndex(j);
if (jj == -1) {
double v1, v2;
int i1, i2;
boundColumn(j, v1, i1, v2, i2);
if (i1 == -1) return missing();
double a = (*this)(ii, i1);
double b = (*this)(ii, i2);
if ( same(a, missing()) || same(b, missing()) ) return missing();
double da = (v2-j)/(v2-v1);
double db = (j-v1)/(v2-v1);
double val = (a*da) + (b*db);
return val;
}
return (*this)(ii, jj);
}
virtual int rows() const { return matrix_.rows(); }
virtual int columns() const { return matrix_.columns(); }
virtual int lowerRow(double v) const { return matrix_.lowerRow(v); }
virtual int lowerColumn(double v) const { return matrix_.lowerColumn(v); }
virtual double XResolution() const { return matrix_.XResolution(); }
virtual double YResolution() const { return matrix_.YResolution(); }
virtual double width() const { return matrix_.width(); }
virtual double height() const { return matrix_.height(); }
virtual const AbstractMatrix& original() const { return matrix_.original(); }
virtual int firstRow() const { return matrix_.firstRow(); }
virtual int nextRow(int i, int f) const { return matrix_.nextRow(i, f); }
virtual int firstColumn() const { return matrix_.firstColumn(); }
virtual int nextColumn(int j, int f) const { return matrix_.nextColumn(j, f); }
void setMinMax() const {
int nb_rows = rows();
int nb_columns = columns();
double missing = matrix_.missing();
for (int r = 0; r < nb_rows; r++) {
for (int c = 0; c < nb_columns; c++) {
double val = (*this)(r, c);
if ( val == missing ) continue;
if ( val < min_ ) min_ = val;
if ( val > max_ ) max_ = val;
}
}
}
double min() const {
if ( min_ != INT_MAX)
return min_;
setMinMax();
return min_;
}
double max() const {
if ( max_ != -INT_MAX)
return max_;
setMinMax();
return max_;
}
virtual double minX() const { return matrix_.minX(); }
virtual double maxX() const { return matrix_.maxX(); }
virtual double minY() const { return matrix_.minY(); }
virtual double maxY() const { return matrix_.maxY(); }
// Implements the AbstractPoints interface
virtual void setToFirst() {
if (points_.empty()) {
int nb_rows = rows();
int nb_columns = columns();
points_.reserve(nb_rows * nb_columns);
for (int r = 0; r < nb_rows; r++) {
for (int c = 0; c < nb_columns; c++) {
if ( matrix_.accept(column(r, c), row(r, c)) )
if ( !same((*this)(r, c), matrix_.missing() ) )
points_.push_back(new UserPoint(column(r,c), row(r,c), (*this)(r, c)));
}
}
}
current_ = points_.begin();
}
//! Method to test the end of collection.
virtual bool more() {
return current_ != points_.end();
}
virtual bool accept(double x, double y) const { return matrix_.accept(x, y); }
virtual UserPoint& current()
{
return **current_;
}
virtual void advance() {
current_++;
}
virtual vector<double>& rowsAxis() const { return const_cast<MatrixHandler*>(this)->matrix_.rowsAxis(); }
virtual vector<double>& columnsAxis() const { return const_cast<MatrixHandler*>(this)->matrix_.columnsAxis(); }
virtual double row(int i, int j) const {
return matrix_.row(i, j);
}
virtual double column(int i, int j) const {
return matrix_.column(i, j); }
virtual double real_row(double i, double j) const {
return matrix_.real_row(i, j);
}
virtual double real_column(double i, double j) const {
return matrix_.real_column(i, j); }
virtual double regular_row(int i) const {
return matrix_.regular_row(i);
}
virtual double regular_column(int i) const {
return matrix_.regular_column(i);
}
virtual double missing() const { return matrix_.missing(); }
virtual bool hasMissingValues() const {
for (int r = 0; r < rows(); r++) {
for (int c = 0; c < columns(); c++) {
if ( operator()(r, c) == matrix_.missing() )
return true;
}
}
return false;
}
protected:
const AbstractMatrix& matrix_;
mutable VectorOfPointers<vector<UserPoint*> > points_;
mutable VectorOfPointers<vector<UserPoint*> >::const_iterator current_;
mutable double min_;
mutable double max_;
};
class TransformMatrixHandler : public MatrixHandler
{
public :
TransformMatrixHandler(const AbstractMatrix& matrix) : MatrixHandler(matrix)
{}
double operator()(int i, int j) const
{
return matrix_( i + minrow_ , j + mincolumn_ );
}
double left() const {
return minx_;
}
double right() const {
return maxx_;
}
double bottom() const {
return miny_;
}
double top() const {
return maxy_;
}
void set() {
for ( int i = 0; i < rows(); i++ ) {
double row = matrix_.regular_row(minrow_ +i);
rowsMap_.insert(make_pair(row, i));
fastRows_.push_back(row);
}
for ( int i = 0; i < columns(); i++ ) {
double column = matrix_.regular_column(mincolumn_ + i);
columnsMap_.insert(make_pair(column, i));
fastColumns_.push_back(column);
}
minx_ = std::min(fastColumns_.front(), fastColumns_.back());
maxx_ = std::max(fastColumns_.front(), fastColumns_.back());
miny_ = std::min(fastRows_.front(), fastRows_.back());
maxy_ = std::max(fastRows_.front(), fastRows_.back());
}
int rows() const { return maxrow_ - minrow_ +1; }
int columns() const { return maxcolumn_ - mincolumn_+1; }
double regular_row(int index) const {
return fastRows_[index];
}
double regular_column(int index) const {
return fastColumns_[index];
}
double real_row(int index) const {
return fastRows_[index];
}
double real_column(int index) const {
return fastColumns_[index];
}
inline double column(int, int j) const {
return fastColumns_[j];
}
virtual double real_row(double row, double) const {
return row;
}
virtual double real_column(double, double column) const {
return column;
}
inline double row(int i, int) const {
return fastRows_[i];
}
virtual bool hasMissingValues() const { return matrix_.hasMissingValues(); }
double interpolate(double i, double j) const { return matrix_.interpolate(i, j);}
double missing() const { return matrix_.missing(); }
int lowerRow(double r) const {
int last = -1;
for ( map<double, int>::const_iterator i = rowsMap_.begin(); i != rowsMap_.end(); ++i) {
if ( i->first > r ) {
return last;
}
last = i->second;
}
return -1;
}
int lowerColumn(double c) const {
int last = -1;
for ( map<double, int>::const_iterator i = columnsMap_.begin(); i != columnsMap_.end(); ++i) {
if ( i->first > c )
return last;
last = i->second;
}
return -1;
}
int upperRow(double r) const {
for ( map<double, int>::const_iterator i = rowsMap_.begin(); i != rowsMap_.end(); ++i) {
if ( i->first > r ) {
return i->second;
}
}
return -1;
}
int upperColumn(double c) const {
for ( map<double, int>::const_iterator i = columnsMap_.begin(); i != columnsMap_.end(); ++i) {
if ( i->first > c )
return i->second;
}
return -1;
}
protected :
int minrow_;
int maxrow_;
int mincolumn_;
int maxcolumn_;
map<double, int> rowsMap_;
map<double, int> columnsMap_;
vector<double> fastRows_;
vector<double> fastColumns_;
double minx_;
double maxx_;
double miny_;
double maxy_;
bool rowrevert_;
bool columnrevert_;
};
class BoxMatrixHandler : public TransformMatrixHandler
{
public:
BoxMatrixHandler(const AbstractMatrix& matrix, const Transformation& transformation) :
TransformMatrixHandler(matrix),
transformation_(transformation),
original_(0)
{
double minx = std::min(transformation.getMinX(), transformation.getMaxX());
double maxx = std::max(transformation.getMinX(), transformation.getMaxX());
double miny = std::min(transformation.getMinY(), transformation.getMaxY());
double maxy = std::max(transformation.getMinY(), transformation.getMaxY());
int rows = matrix_.rows();
int columns = matrix_.columns();
mincolumn_ = columns-1;
maxcolumn_ = 0;
minrow_ = rows-1;
maxrow_ = 0;
for ( int row = 0; row < rows; row++) {
for ( int column = 0; column < columns; column++) {
double x = matrix_.column(row, column);
double y = matrix_.row(row, column);
if ( minx <= x && x < maxx && miny <= y && y <= maxy) {
mincolumn_ = std::min(mincolumn_, column);
maxcolumn_ = std::max(maxcolumn_, column);
minrow_ = std::min(minrow_, row);
maxrow_ = std::max(maxrow_, row);
}
}
}
if ( mincolumn_ > maxcolumn_ ) {
mincolumn_ = maxcolumn_;
MagLog::warning() << "No data to plot in the requested area" << endl;
}
if ( minrow_ > maxrow_ ) {
minrow_ = maxrow_;
MagLog::warning() << "No data to plot in the requested area" << endl;
}
//MagLog::broadcast();
mincolumn_ = std::max(mincolumn_-1, 0);
maxcolumn_ = std::min(maxcolumn_+1, columns-1);
columnrevert_ = matrix_.column(0, maxcolumn_ ) < matrix_.column(0, mincolumn_) ;
minrow_ = std::max(minrow_-1, 0);
maxrow_ = std::min(maxrow_+1, rows-1);
rowrevert_ = matrix_.row(maxrow_, 0 ) < matrix_.row(minrow_, 0 ) ;
set();
}
virtual const AbstractMatrix& original() const {
if ( !original_)
original_ = new BoxMatrixHandler(matrix_.original(), transformation_);
return *original_;
}
virtual void boundRow(double r,
double& row1, int& index1, double& row2, int& index2) const {
index1 = lowerRow(r);
row1 = regular_row(index1);
index2 = upperRow(r);
row2 = regular_row(index2);
}
virtual void boundColumn(double r,
double& column1, int& index1, double& column2, int& index2) const {
index1 = lowerColumn(r);
column1 = regular_column(index1);
index2 = upperColumn(r);
column2 = regular_column(index2);
}
int rowIndex(double r) const {
map<double, int>::const_iterator i = rowsMap_.lower_bound(r);
if ( same(i->first, r) )
return i->second;
return -1;
}
int columnIndex(double c) const {
map<double, int>::const_iterator i = columnsMap_.lower_bound(c);
if ( same(i->first, c) )
return i->second;
return -1;
}
virtual ~BoxMatrixHandler() { delete original_; }
// Implements the AbstractPoints interface
virtual bool accept(double x, double y) const {
return transformation_.in(x, y);
}
double minX() const {return std::min(transformation_.getMinX(), transformation_.getMaxX()); }
double maxX() const { return std::max(transformation_.getMinX(), transformation_.getMaxX()); }
double minY() const { return std::min(transformation_.getMinY(), transformation_.getMaxY()); }
double maxY() const { return std::max(transformation_.getMinY(), transformation_.getMaxY());}
protected :
const Transformation& transformation_;
mutable BoxMatrixHandler* original_;
};
class GeoBoxMatrixHandler: public TransformMatrixHandler
{
public:
GeoBoxMatrixHandler(const AbstractMatrix& matrix, const Transformation& transformation);
virtual const AbstractMatrix& original() const {
if ( !original_)
original_ = new GeoBoxMatrixHandler(matrix_.original(), transformation_);
return *original_;
}
int columns() const { return columnsMap_.size(); }
int rows() const { return rowsMap_.size(); }
int rowIndex(double r) const {
map<double, int>::const_iterator i = rowsMap_.lower_bound(r);
if ( same(i->first, r) )
return i->second;
return -1;
}
int columnIndex(double c) const {
map<double, int>::const_iterator i = columnsMap_.lower_bound(c);
if ( same(i->first, c) )
return i->second;
return -1;
}
inline double column(int, int column) const {
return regular_longitudes_[column];
}
inline double row(int row, int) const {
return regular_latitudes_[row];
}
double operator()(int row, int column) const {
if ( columns_[column] == -1 )
return matrix_.missing();
return matrix_(rows_[row], columns_[column]);
}
int lowerRow(double r) const
{
map<double, int>::const_iterator i = rowsMap_.lower_bound(r);
if ( same(i->first, r) )
return i->second;
if ( i != rowsMap_.begin() ) {
i--;
return i->second;
}
return -1;
}
int lowerColumn(double c) const
{
map<double, int>::const_iterator i = columnsMap_.lower_bound(c);
if ( same(i->first, c) )
return i->second;
if ( i != columnsMap_.begin() ) {
i--;
return i->second;
}
return -1;
}
double regular_row(int i) const { return regular_latitudes_[i]; }
double regular_column(int i) const { return regular_longitudes_[i]; }
virtual ~GeoBoxMatrixHandler() { delete original_; }
// Implements the AbstractPoints interface
virtual bool accept(double x, double y) const
{
return transformation_.in(x, y);
}
double minX() const {return std::min(transformation_.getMinX(), transformation_.getMaxX()); }
double maxX() const { return std::max(transformation_.getMinX(), transformation_.getMaxX()); }
double minY() const { return std::min(transformation_.getMinY(), transformation_.getMaxY()); }
double maxY() const { return std::max(transformation_.getMinY(), transformation_.getMaxY());}
double left() const { return regular_longitudes_.front(); }
double bottom() const { return regular_latitudes_.front(); }
double right() const { return regular_longitudes_.back(); }
double top() const { return regular_latitudes_.back(); }
virtual void boundRow(double r, double& row1, int& index1, double& row2, int& index2) const
{
index1 = lowerRow(r);
row1 = regular_latitudes_[index1];
index2 = index1+1;
row2 = regular_latitudes_[index2];
}
virtual void boundColumn(double r, double& column1, int& index1, double& column2, int& index2) const
{
index1 = lowerColumn(r);
column1 = regular_longitudes_[index1];
index2 = index1+1;
column2 = regular_longitudes_[index2];
}
protected :
const Transformation& transformation_;
mutable GeoBoxMatrixHandler* original_;
mutable map<int, int> rows_;
mutable map<int, int> columns_;
vector<double> regular_latitudes_;
vector<double> regular_longitudes_;
};
class MonotonicIncreasingMatrixHandler : public MatrixHandler
{
public:
MonotonicIncreasingMatrixHandler(const AbstractMatrix& matrix) :
MatrixHandler(matrix) {
// Check RowAxis...
int row = matrix_.rows();
if (matrix_.regular_row(1) - matrix_.regular_row(0) >= 0) // Increasing Axis...
for (int i = 0; i < row; i++) {
rows_[i] = i;
newRowsMap_[matrix.regular_row(i)] = i;
}
else // Decreasing axis...
for (int i = 0; i < row; i++) {
rows_[i] = ( row - 1) - i;
newRowsMap_[matrix.regular_row(( row - 1) - i)] = i;
}
// Check ColumnAxis
int column = matrix_.columns();
if (matrix_.regular_column(1) - matrix_.regular_column(0) >= 0) // Increasing Axis...
for (int j = 0; j < column; j++) {
columns_[j] = j;
newColumnsMap_[matrix.regular_column(j)] = j;
}
else // Decreasing axis...
for (int j = 0; j < column; j++) {
columns_[j] = (column - 1) - j;
newColumnsMap_[matrix.regular_column((column - 1) - j)] = j;
}
}
virtual ~MonotonicIncreasingMatrixHandler() {}
double operator()(int i, int j) const
{
int x = const_cast<MonotonicIncreasingMatrixHandler*>(this)->rows_[i];
int y = const_cast<MonotonicIncreasingMatrixHandler*>(this)->columns_[j];
return matrix_(x, y);
}
int rows() const { return matrix_.rows(); }
virtual int columns() const { return matrix_.columns(); }
virtual double regular_column(int i) const { return matrix_.regular_column(const_cast<MonotonicIncreasingMatrixHandler*>(this)->columns_[i]); }
virtual double regular_row(int j) const { return matrix_.regular_row( const_cast<MonotonicIncreasingMatrixHandler*>(this)->rows_[j]); }
virtual double interpolate(double i, double j) const {return matrix_.interpolate(i, j);}
virtual double missing() const { return matrix_.missing(); }
void print()
{
MagLog::debug() << "MonotonicIncreasingMatrixHandler->\n";
for (int j = 0; j < rows() ; j++)
{
for (int i = 0; i < columns(); i++)
{
MagLog::dev()<< (*this)(j,i) << " ";
}
MagLog::dev()<<"\n";
}
MagLog::debug() << "<--" << endl;
}
int lowerRow(double r) const
{
map<double, int>::const_iterator bound = newRowsMap_.find(r);
if ( bound != newRowsMap_.end() ) return (*bound).second;
bound = newRowsMap_.lower_bound(r);
if ( bound == newRowsMap_.end() ) return -1;
return (*bound).second - 1;
}
int lowerColumn(double c) const
{
map<double, int>::const_iterator bound = newColumnsMap_.find(c);
if ( bound != newColumnsMap_.end() ) return (*bound).second;
bound = newColumnsMap_.lower_bound(c);
if ( bound == newColumnsMap_.end() ) return -1;
return (*bound).second - 1;
}
protected :
map<int, int> rows_;
map<int, int> columns_;
map<double, int> newRowsMap_;
map<double, int> newColumnsMap_;
};
class OriginalMatrixHandler : public MatrixHandler
{
public:
OriginalMatrixHandler(AbstractMatrix& matrix) :
MatrixHandler(matrix.original())
{
}
};
class ThinningMatrixHandler : public MatrixHandler
{
public:
ThinningMatrixHandler(const AbstractMatrix& matrix, int fr, int fc) :
MatrixHandler(matrix), frequencyRow_(fr), frequencyColumn_(fc)
{
int rows = matrix_.rows();
int columns = matrix_.columns();
int row = 0;
for (int i = 0; i < rows; i+=frequencyRow_)
{
rowIndex_.insert(make_pair(row, i));
row++;
}
int column=0;
for (int i = 0; i < columns; i+=frequencyColumn_)
{
//MagLog::dev()<< "Sample --> " << column << "=" << i << endl;
columnIndex_.insert(make_pair(column, i));
//MagLog::dev()<< "Sample --> " << column << "=" << i << "[" << regular_column(column) << "]" << endl;
column++;
}
columnIndex_.insert(make_pair(column, columns-1));
//MagLog::dev()<< "Sample --> " << column << "=" << columns-1 << "[" << regular_column(column) << "]"<< endl;
}
int rows() const { return rowIndex_.size(); }
int columns() const { return columnIndex_.size(); }
double operator()(int row, int column) const {return matrix_(rowIndex(row), columnIndex(column));}
double column(int row, int column) const {return matrix_.column(rowIndex(row), columnIndex(column));}
double row(int row, int column) const {return matrix_.row(rowIndex(row), columnIndex(column));}
double regular_row(int row) const {return matrix_.regular_row(rowIndex(row));}
double regular_column(int column) const {return matrix_.regular_column(columnIndex(column));}
double real_row(int row, int column) const {return matrix_.real_row(rowIndex(row), columnIndex(column));}
double real_column(int row, int column) const {return matrix_.real_column(rowIndex(row), columnIndex(column));}
protected :
int columnIndex(int column) const
{
map<int, int>::const_iterator index = columnIndex_.find(column);
assert( index != columnIndex_.end() );
return index->second;
}
int rowIndex(int row) const
{
map<int, int>::const_iterator index = rowIndex_.find(row);
assert( index != rowIndex_.end() );
return index->second;
}
int frequencyRow_;
int frequencyColumn_;
map<int, int> rowIndex_;
map<int, int> columnIndex_;
};
} // namespace magics
#endif
|