This file is indexed.

/usr/include/magics/AutomaticContourMethod.h is in libmagics++-dev 2.18.15-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/******************************** LICENSE ********************************

 Copyright 2007 European Centre for Medium-Range Weather Forecasts (ECMWF)

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at 

    http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 ******************************** LICENSE ********************************/

/*! \file AutomaticContourMethod.h
    \brief Definition of the Template class AutomaticContourMethod.
    
    Magics Team - ECMWF 2004
    
    Started: Mon 4-Oct-2004
    
    Changes:
    
*/

#ifndef AutomaticContourMethod_H
#define AutomaticContourMethod_H

#include "magics.h"

#include "ContourMethod.h"
#include "Akima760Method.h"
#include "MatrixHandler.h"
#include "BasicSceneObject.h"
#include "SampleContourMethodAttributes.h"



namespace magics {


class SampleContourMethod: public ContourMethod, public SampleContourMethodAttributes {

public:
	SampleContourMethod() {}
	virtual ~SampleContourMethod() {}
	ContourMethod* clone() { return new SampleContourMethod(); }
	virtual bool accept(const string& node) { return magCompare(node, "sample"); }
    void set(const XmlNode& node) { SampleContourMethodAttributes::set(node); }
    void set(const map<string, string>& map) { SampleContourMethodAttributes::set(map); }
    virtual MatrixHandler* handler(const AbstractMatrix& matrix, const BasicGraphicsObjectContainer&)
    {
    	MagLog::dev() << "ThinningMatrixHandler--> " << x_ << ", " << y_ << endl;
        return new ThinningMatrixHandler(matrix, x_, y_);
    }

protected:
     //! Method to print string about this class on to a stream of type ostream (virtual).
	 virtual void print(ostream& out) const { out <<  "SampleContourMethod" << "\n"; }

private:
    //! Copy constructor - No copy allowed
	SampleContourMethod(const SampleContourMethod&);
    //! Overloaded << operator to copy - No copy allowed
	SampleContourMethod& operator=(const SampleContourMethod&);

};




class AutomaticContourMethod: public ContourMethod {

public:
	         AutomaticContourMethod() {}
	virtual ~AutomaticContourMethod() {}
	ContourMethod* clone() { return new AutomaticContourMethod(); }
	virtual bool accept(const string& node) { return magCompare(node, "automatic"); }

    virtual MatrixHandler* handler(const AbstractMatrix& matrix, const BasicGraphicsObjectContainer& owner)
    {
        // this is the ideal number of points per cm on the paper
        const double fDesiredPointsPerCm = 5.0;  

        // do not allow the resolution to go beyond this
        const double fMinSensibleContourResolution = 0.01;   

        // if the computed resolution is within this much of the native resolution,
        // then just use the native resolution
        const double fAutoContourRoundupProportion = 0.05;  

        // we use this to reduce the aggressiveness of the subsampling calculation;
        // the higher the number, the less subsampling will be done.
        const double fSampleAdjustment = 1.7;

        MatrixHandler data(matrix);
        MatrixHandler* pMatrixHandler;
        if ( matrix.akimaEnable() == false ) {
        		
                    ContourMethod * pContourMethod =new  ContourMethod();

                    pMatrixHandler = pContourMethod->handler(matrix, owner);

                    MagLog::debug() << "Linear contouring, "    << "\n";
                    return pMatrixHandler;
        }

        double fGeoAreaWidth;
        double fGeoAreaHeight;
        double fPaperAreaWidth;
        double fPaperAreaHeight;
        double fContourResolutionX;
        double fContourResolutionY;
        double fDataResolutionX;
        double fDataResolutionY;
        double fMinX, fMaxX;
        double fMinY, fMaxY;
        int    nSampleX = 1, nSampleY = 1;
        

        // find the dimensions of the paper on which we will plot
        fPaperAreaWidth  = owner.absoluteWidth();
        fPaperAreaHeight = owner.absoluteHeight();

        // retrieve the data's resolution
        fDataResolutionX = fabs (data.XResolution());
        fDataResolutionY = fabs (data.YResolution());

        // retrieve the geographical area being used
        fMinX = data.minX();
        fMaxX = data.maxX();
        fMinY = data.minY();
        fMaxY = data.maxY();


        // if the points given are extreme values, then it means there are no
        // grid points - in this case, for the purposes of the algorithm, we will
        // pretend that there are 4 points
        
        if (fMinX == INT_MAX)    // yes, INT_MAX!
        {
            fMinX = 0.0;
            fMaxX = fMinX + fDataResolutionX;
            fMinY = 0.0;
            fMaxY = fMinY + fDataResolutionY;
        }
        else
        {
            // if only one grid point is in the area, then we may get min and max the same,
            // which causes problems because their difference is then 0 and it forces the
            // maximum possible Akima interpolation.

            if (fMinX == fMaxX) fMaxX = fMinX + fDataResolutionX;  // pretend that we have 2 points!
            if (fMinY == fMaxY) fMaxY = fMinY + fDataResolutionY;  // pretend that we have 2 points!
        }


        fGeoAreaWidth  = fMaxX - fMinX;
        fGeoAreaHeight = fMaxY - fMinY;

        // calculate the resolutions we need in order to fulfil our 
        // 'desired points per cm' criteria
        fContourResolutionX = fGeoAreaWidth  / (fDesiredPointsPerCm * fPaperAreaWidth);
        fContourResolutionY = fGeoAreaHeight / (fDesiredPointsPerCm * fPaperAreaHeight);

        // clip it to sensible limits so that we don't go overboard on the Akima interpolation
        // XXX we may need to revise this, given that we're not always in geo projection

        if (fContourResolutionX < fMinSensibleContourResolution)
        {
            fContourResolutionX = fMinSensibleContourResolution;
        }

        // otherwise, if we don't need every data point, then we maybe need to subsample.
        // for example, if our desired contouring resolution (fContourResolutionX) is to
        // have one point every 1.0 degree, but our data (fDataResolutionX) is one point
        // every 0.5 degrees, then we only need to take every second point.
        // But on top of that, we want to be a little bit cautious about removing data points,
        // so we make an adjustment to the computation so that we don't subsample too aggressively.

        else if (fContourResolutionX > fDataResolutionX - (fDataResolutionX * fAutoContourRoundupProportion))
        {
            nSampleX = static_cast<int>(fContourResolutionX / (fDataResolutionX * fSampleAdjustment));
            if (nSampleX < 1) nSampleX = 1;
            fContourResolutionX = fDataResolutionX; // only needed if we end up with linear contouring
        }



        // do all the same again for the Y direction

        if (fContourResolutionY < fMinSensibleContourResolution)
        {
            fContourResolutionY = fMinSensibleContourResolution;
        }

        else if (fContourResolutionY > fDataResolutionY - (fDataResolutionY * fAutoContourRoundupProportion))
        {
            nSampleY = static_cast<int>(fContourResolutionY / (fDataResolutionY * fSampleAdjustment));
            if (nSampleY < 1) nSampleY = 1;
            fContourResolutionY = fDataResolutionY; // only needed if we end up with linear contouring
        }



        // compute some values for debug output, including some safety checking
        
        int nNumColumns = matrix.columns();
        int nNumRows    = matrix.rows();
        double fCol0    = (nNumColumns == 0) ? 0.0 : matrix.column (0,0);
        double fColN    = (nNumColumns == 0) ? 0.0 : matrix.column (0,matrix.columns() - 1);
        double fRow0    = (nNumRows    == 0) ? 0.0 : matrix.row (0,0);
        double fRowN    = (nNumRows    == 0) ? 0.0 : matrix.row (matrix.rows() - 1,0);

        MagLog::debug() << "\n*************************************************************\n"
                     << "Automatic contour method\n"
                     << "Points per cm (desired): " << fDesiredPointsPerCm << "\n"
                     << "Your data X: " << fMaxX << " to "  << fMinX << "\n"
                     << "Your data Y: " << fMaxY << " to "  << fMinY << "\n"
                     << "Resolution:[ " << fDataResolutionX << ", "  << fDataResolutionY << "]\n"
                     << "Cols: "  << nNumColumns  << "  Rows: " << nNumRows << "\n"
                     << "Col 0: " << fCol0 << " Col n: " << fColN << "\n"
                     << "Row 0: " << fRow0 << " Row n: " << fRowN << "\n"
                     << "Paper dimension: [" << fPaperAreaWidth << ", " << fPaperAreaHeight << "]\n";



        // check for the 'sampling' case where we can subsample our data by 2 or more points
/* do not use sampling anymore!
        if ((nSampleX > 1) && (nSampleY > 1))
        {
            //SampleContourMethod *am = static_cast < SampleContourMethod *> (MagTranslator<string, ContourMethod >()("sampling"));
            SampleContourMethod *am =new  SampleContourMethod();

            auto_ptr<SampleContourMethod > pSampleContourMethod(am);

            pSampleContourMethod->setX (nSampleX);
            pSampleContourMethod->setY (nSampleY);

            pMatrixHandler = pSampleContourMethod->handler(matrix, owner);

            MagLog::debug() << "Sampling every " << nSampleX << "x" << nSampleY << "\n"
                         << "Resolution: "    << fDataResolutionX * nSampleX << "x" << fDataResolutionY * nSampleY    << "\n";
        }
*/
        // Check for the linear case (contour resolution == data resolution).
        // Also need to use linear contouring if we have missing values, because Akima will
        // incorrectly interpolate them. Missing data is also handled correctly if we have high-res
        // data, because the sub-sampling method (above) uses no interpolation.
        if ((nSampleX > 1) && (nSampleY > 1))   {
            ContourMethod* cm = MagTranslator<string, ContourMethod >()("linear");
            auto_ptr<ContourMethod > pContourMethod(cm);

            pMatrixHandler = pContourMethod->handler(matrix, owner);

            MagLog::debug() << "Linear contouring, Res: " << fContourResolutionX << "x" << fContourResolutionY    << "\n";
        }
        else if (((fContourResolutionX == fDataResolutionX) && (fContourResolutionY == fDataResolutionY)) ||
                 data.hasMissingValues())
        {
            ContourMethod* cm = MagTranslator<string, ContourMethod >()("linear");
            auto_ptr<ContourMethod > pContourMethod(cm);

            pMatrixHandler = pContourMethod->handler(matrix, owner);

            MagLog::debug() << "Linear contouring, Res: " << fContourResolutionX << "x" << fContourResolutionY    << "\n";
        }

        // otherwise we use the Akima760 method
        else
        {
            Akima760Method *am = static_cast < Akima760Method *> (MagTranslator<string, ContourMethod >()("akima760"));
			auto_ptr<Akima760Method > pAkima760Method(am);

            pAkima760Method->resolutionX_ = (fContourResolutionX);
            pAkima760Method->resolutionY_ =  (fContourResolutionY);

            pMatrixHandler = pAkima760Method->handler(matrix, owner);

            MagLog::debug() << "Akima 760, Res: " << fContourResolutionX << "x" << fContourResolutionY << "\n";
        }

        MagLog::debug()  << "\n*************************************************************\n";

        return pMatrixHandler;
    }

protected:
     //! Method to print string about this class on to a stream of type ostream (virtual).
	 virtual void print(ostream& out) const { out <<  "AutomaticContourMethod" << "\n"; }

private:
    //! Copy constructor - No copy allowed
	AutomaticContourMethod(const AutomaticContourMethod&);
    //! Overloaded << operator to copy - No copy allowed
	AutomaticContourMethod& operator=(const AutomaticContourMethod&);

// -- Friends
    //! Overloaded << operator to call print().
	friend ostream& operator<<(ostream& s,const AutomaticContourMethod& p)
		{ p.print(s); return s; }
};


} // namespace magics

#endif