This file is indexed.

/usr/include/m4ri/ple.h is in libm4ri-dev 20130416-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/**
 * \file ple.h
 *
 * \brief PLE and PLUQ matrix decomposition routines.
 *
 * \author Clement Pernet <clement.pernet@gmail.com>
 * 
 */

#ifndef M4RI_PLUQ_H
#define M4RI_PLUQ_H

/*******************************************************************
*
*                 M4RI: Linear Algebra over GF(2)
*
*    Copyright (C) 2008, 2009 Clement Pernet <clement.pernet@gmail.com>
*
*  Distributed under the terms of the GNU General Public License (GPL)
*  version 2 or higher.
*
*    This code is distributed in the hope that it will be useful,
*    but WITHOUT ANY WARRANTY; without even the implied warranty of
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
*    General Public License for more details.
*
*  The full text of the GPL is available at:
*
*                  http://www.gnu.org/licenses/
*
********************************************************************/

#include <m4ri/mzd.h>
#include <m4ri/mzp.h>

/**
 * Crossover point for PLUQ factorization.
 */

#define __M4RI_PLE_CUTOFF MIN(524288, __M4RI_CPU_L3_CACHE >> 3)

/**
 * \brief PLUQ matrix decomposition.
 *
 * Returns (P,L,U,Q) satisfying PLUQ = A where P and Q are two
 * permutation matrices, of dimension respectively m x m and n x n, L
 * is m x r unit lower triangular and U is r x n upper triangular.
 *
 * P and Q must be preallocated but they don't have to be
 * identity permutations. If cutoff is zero a value is chosen
 * automatically. It is recommended to set cutoff to zero for most
 * applications.
 *
 * The row echelon form (not reduced) can be read from the upper
 * triangular matrix U. See mzd_echelonize_pluq() for details.
 * 
 * This is the wrapper function including bounds checks. See
 * _mzd_pluq() for implementation details.
 *
 * \param A Input m x n matrix
 * \param P Output row permutation of length m
 * \param Q Output column permutation matrix of length n
 * \param cutoff Minimal dimension for Strassen recursion.
 *
 * \sa _mzd_pluq() _mzd_pluq_mmpf() mzd_echelonize_pluq()
 *
 * \wordoffset
 *
 * \return Rank of A.
 */

rci_t mzd_pluq(mzd_t *A, mzp_t *P, mzp_t *Q, const int cutoff);


/**
 * \brief PLE matrix decomposition.
 *
 * Computes the PLE matrix decomposition using a block recursive
 * algorithm.
 *
 * Returns (P,L,S,Q) satisfying PLE = A where P is a permutation matrix
 * of dimension m x m, L is m x r unit lower triangular and S is an r
 * x n matrix which is upper triangular except that its columns are
 * permuted, that is S = UQ for U r x n upper triangular and Q is a n
 * x n permutation matrix. The matrix L and S are stored in place over
 * A.
 *
 * P and Q must be preallocated but they don't have to be
 * identity permutations. If cutoff is zero a value is chosen
 * automatically. It is recommended to set cutoff to zero for most
 * applications.
 *
 * This is the wrapper function including bounds checks. See
 * _mzd_ple() for implementation details.
 *
 * \param A Input m x n matrix
 * \param P Output row permutation of length m
 * \param Q Output column permutation matrix of length n
 * \param cutoff Minimal dimension for Strassen recursion.
 *
 * \sa _mzd_ple() _mzd_pluq() _mzd_pluq_mmpf() mzd_echelonize_pluq()
 *
 * \wordoffset
 *
 * \return Rank of A.
 */

rci_t mzd_ple(mzd_t *A, mzp_t *P, mzp_t *Q, const int cutoff);

/**
 * \brief PLUQ matrix decomposition.
 *
 * See mzd_pluq() for details.
 *
 * \param A Input matrix
 * \param P Output row mzp_t matrix
 * \param Q Output column mzp_t matrix
 * \param cutoff Minimal dimension for Strassen recursion.
 *
 * \sa mzd_pluq()
 *
 * \wordoffset
 * \return Rank of A.
 */

rci_t _mzd_pluq(mzd_t *A, mzp_t *P, mzp_t *Q, const int cutoff);

/**
 * \brief PLE matrix decomposition.
 *
 * See mzd_ple() for details.
 *
 * \param A Input matrix
 * \param P Output row mzp_t matrix
 * \param Qt Output column mzp_t matrix
 * \param cutoff Minimal dimension for Strassen recursion.
 *
 * \sa mzd_ple()
 *
 * \wordoffset
 * \return Rank of A.
 */

rci_t _mzd_ple(mzd_t *A, mzp_t *P, mzp_t *Qt, const int cutoff);

/**
 * \brief PLUQ matrix decomposition (naive base case).
 *
 * See mzd_pluq() for details.
 * 
 * \param A Input matrix
 * \param P Output row mzp_t matrix
 * \param Q Output column mzp_t matrix
 *
 * \sa mzd_pluq()
 *
 * \wordoffset
 * \return Rank of A.
 */

rci_t _mzd_pluq_naive(mzd_t *A, mzp_t *P, mzp_t *Q);

/**
 * \brief PLE matrix decomposition (naive base case).
 *
 * See mzd_ple() for details.
 * 
 * \param A Input matrix
 * \param P Output row mzp_t matrix
 * \param Qt Output column mzp_t matrix
 *
 * \sa mzd_ple()
 *
 * \wordoffset
 * \return Rank of A.
 */

rci_t _mzd_ple_naive(mzd_t *A, mzp_t *P, mzp_t *Qt);

#endif // M4RI_PLUQ_H