/usr/include/itpp/stat/mog_generic.h is in libitpp-dev 4.3.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 | /*!
* \file
* \brief Generic Mixture of Gaussians (MOG) class - header file
* \author Conrad Sanderson
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef MOG_GENERIC_H
#define MOG_GENERIC_H
#include <itpp/base/vec.h>
#include <itpp/base/mat.h>
#include <itpp/base/array.h>
#include <itpp/itexports.h>
#include <itpp/base/base_exports.h>
namespace itpp
{
/*!
\ingroup MOG
\brief Generic Mixture of Gaussians (MOG) class. Used as a base for other MOG classes.
\author Conrad Sanderson
Used for representing a statistical distribution as a
convex combination of multi-variate Gaussian functions.
Also known as a Gaussian Mixture Model.
This class handles both full and diagonal covariance matrices,
allows loading and saving of the MOG's parameters,
as well as calculation of likelihoods. The parameters
are set by the user or an optimisation algorithm
(for example, see the MOG_diag_EM class).
For speed and space reasons, diagonal and full
covariance matrices are stored and handled separately.
*/
class ITPP_EXPORT MOG_generic
{
public:
/*! \brief Default constructor
\note An empty model is created.
The likelihood functions are not useable
until the model's parameters are set
*/
MOG_generic() { init(); }
/*! \brief Construct the MOG_generic object by loading the parameters from a model file
\param name_in The model's filename
*/
MOG_generic(const std::string &name_in) { load(name_in); }
/*! \brief construct a default model (all Gaussians have zero mean and unit variance for all dimensions)
\param K_in Number of Gaussians
\param D_in Dimensionality
\param full_in If true, use full covariance matrices; if false, use diagonal covariance matrices. Default = false.
*/
MOG_generic(const int &K_in, const int &D_in, bool full_in = false) { init(K_in, D_in, full_in); }
/*! \brief Construct a model using user supplied mean vectors
\param means_in Array of mean vectors
\param full_in If true, use full covariance matrices; if false, use diagonal covariance matrices. Default = false.
\note The number of mean vectors specifies the number of Gaussians.
The covariance matrices are set to the identity matrix.
The weights for all Gaussians are the same, equal to 1/K, where K is the number of Gaussians
*/
MOG_generic(Array<vec> &means_in, bool full_in = false) { init(means_in, full_in); }
/*! \brief Construct a model using user supplied parameters (diagonal covariance version)
\param means_in Array of mean vectors
\param diag_covs_in Array of vectors representing diagonal covariances
\param weights_in vector of weights
\note The number of mean vectors, covariance vectors and weights must be the same
*/
MOG_generic(Array<vec> &means_in, Array<vec> &diag_covs_in, vec &weights_in) { init(means_in, diag_covs_in, weights_in); }
/*! \brief Construct a model using user supplied parameters (full covariance version)
\param means_in Array of mean vectors
\param full_covs_in Array of full covariance matrices
\param weights_in vector of weights
\note The number of mean vectors, covariance matrices and weights must be the same
*/
MOG_generic(Array<vec> &means_in, Array<mat> &full_covs_in, vec &weights_in) { init(means_in, full_covs_in, weights_in); }
//! Default destructor
virtual ~MOG_generic() { cleanup(); }
/*! \brief Initialise the model to be empty.
\note The likelihood functions are not useable
until the model's parameters are set
*/
void init();
/*! \brief initialise the model so that all Gaussians have zero mean and unit variance for all dimensions
\param K_in Number of Gaussians
\param D_in Dimensionality
\param full_in If true, use full covariance matrices; if false, use diagonal covariance matrices. Default = false.
*/
void init(const int &K_in, const int &D_in, bool full_in = false);
/*! \brief Initialise the model using user supplied mean vectors
\param means_in Array of mean vectors
\param full_in If true, use full covariance matrices; if false, use diagonal covariance matrices. Default = false.
\note The number of mean vectors specifies the number of Gaussians.
The covariance matrices are set to the identity matrix.
The weights for all Gaussians are the same, equal to 1/K, where K is the number of Gaussians
*/
void init(Array<vec> &means_in, bool full_in = false);
/*! \brief Initialise the model using user supplied parameters (diagonal covariance version)
\param means_in Array of mean vectors
\param diag_covs_in Array of vectors representing diagonal covariances
\param weights_in vector of weights
\note The number of mean vectors, covariance vectors and weights must be the same
*/
void init(Array<vec> &means_in, Array<vec> &diag_covs_in, vec &weights_in);
/*! \brief Initialise the model using user supplied parameters (full covariance version)
\param means_in Array of mean vectors
\param full_covs_in Array of covariance matrices
\param weights_in vector of weights
\note The number of mean vectors, covariance matrices and weights must be the same
*/
void init(Array<vec> &means_in, Array<mat> &full_covs_in, vec &weights_in);
/*! \brief Release memory used by the model. The model will be empty.
\note The likelihood functions are not useable
until the model's parameters are re-initialised
*/
virtual void cleanup();
//! Returns true if the model's parameters are valid
bool is_valid() const { return valid; }
//! Returns true if the model has full covariance matrices
bool is_full() const { return full; }
//! Return the number of Gaussians
int get_K() const { if (valid) return(K); else return(0); }
//! Return the dimensionality
int get_D() const { if (valid) return(D); else return(0); }
//! Obtain a copy of the weight vector
vec get_weights() const { vec tmp; if (valid) { tmp = weights; } return tmp; }
//! Obtain a copy of the array of mean vectors
Array<vec> get_means() const { Array<vec> tmp; if (valid) { tmp = means; } return tmp; }
//! Obtain a copy of the array of diagonal covariance vectors
Array<vec> get_diag_covs() const { Array<vec> tmp; if (valid && !full) { tmp = diag_covs; } return tmp; }
//! Obtain a copy of the array of full covariance matrices
Array<mat> get_full_covs() const { Array<mat> tmp; if (valid && full) { tmp = full_covs; } return tmp; }
/*! \brief Set the means of the model
\note The number of means must match the number of Gaussians in the model
*/
void set_means(Array<vec> &means_in);
/*! \brief Set the diagonal covariance vectors of the model
\note The number of diagonal covariance vectors must match the number of Gaussians in the model
*/
void set_diag_covs(Array<vec> &diag_covs_in);
/*! \brief Set the full covariance matrices of the model
\note The number of covariance matrices must match the number of Gaussians in the model
*/
void set_full_covs(Array<mat> &full_covs_in);
/*! \brief Set the weight vector of the model
\note The number of elements in the weight vector must match the number of Gaussians in the model
*/
void set_weights(vec &weights_in);
//! Set the means in the model to be zero
void set_means_zero();
//! Set the diagonal covariance vectors to be unity
void set_diag_covs_unity();
//! Set the full covariance matrices to be unity
void set_full_covs_unity();
//! Set all the weights to 1/K, where K is the number of Gaussians
void set_weights_uniform();
/*! \brief Enable/disable internal checks for likelihood functions
\param do_checks_in If true, checks are enabled; if false, checks are disabled
\note Disabling checks will provide a speedup in the likelihood functions.
Disable them only when you're happy that everything is working correctly.
*/
void set_checks(bool do_checks_in) { do_checks = do_checks_in; }
/*! \brief Enable/disable paranoia about numerical stability
\param paranoid_in If true, calculate likelihoods using a safer, but slower method.
*/
void set_paranoid(bool paranoid_in) { paranoid = paranoid_in; }
/*! \brief Initialise the model by loading the parameters from a model file
\param name_in The model's filename
*/
virtual void load(const std::string &name_in);
/*! \brief Save the model's parameters to a model file
\param name_in The model's filename
*/
virtual void save(const std::string &name_in) const;
/*! \brief Mathematically join the model with a user supplied model
\param B_in user supplied model
\note The Arrays of mean vectors and covariance vectors/matrices from the two models
are simply concatenated, while the weights of the resultant model are a function
of the original weights and numbers of Gaussians from both models.
Specifically,
\f$ w_{new} = [ \alpha \cdot w_{A} ~~~ \beta \cdot w_{B} ]^T \f$,
where \f$ w_{new} \f$ is the new weight vector,
\f$ w_{A} \f$ and \f$ w_{B} \f$ are the weight vectors from model A and B,
while \f$ \alpha = K_A / (K_A + KB_in) \f$
and \f$ \beta = 1-\alpha \f$.
In turn, \f$ K_A \f$ and \f$ KB_in \f$ are the numbers of Gaussians in model A and B, respectively.
See <a href="http://dx.doi.org/10.1016/j.patcog.2005.07.001">On transforming statistical models...</a>
for more information.
*/
virtual void join(const MOG_generic &B_in);
/*! \brief Convert the model to use diagonal covariances
\note If the model is already diagonal, nothing is done.
If the model has full covariance matrices,
this results in irreversible information loss
(in effect the off-diagonal covariance elements are now zero)
*/
virtual void convert_to_diag();
/*! \brief Convert the model to have full covariance matrices
\note If the model has full covariance matrices, nothing is done.
If the model has diagonal covariances, the off-diagonal
elements in the full covariance matrices are set to zero.
*/
virtual void convert_to_full();
//! calculate the log likelihood of vector \c x_in using only Gaussian \c k
virtual double log_lhood_single_gaus(const vec &x_in, const int k);
//! calculate the log likelihood of vector \c x_in
virtual double log_lhood(const vec &x_in);
//! calculate the likelihood of vector \c x_in
virtual double lhood(const vec &x_in);
//! calculate the average log likelihood of an array of vectors \c X_in
virtual double avg_log_lhood(const Array<vec> &X_in);
protected:
//! indicates whether checks on input data are done
bool do_checks;
//! indicates whether the parameters are valid
bool valid;
//! indicates whether we are using full or diagonal covariance matrices
bool full;
//! indicates whether we are paranoid about numerical stability
bool paranoid;
//! number of gaussians
int K;
//! dimensionality
int D;
//! means
Array<vec> means;
//! diagonal covariance matrices, stored as vectors
Array<vec> diag_covs;
//! full covariance matrices
Array<mat> full_covs;
//! weights
vec weights;
//! Pre-calcualted std::log(std::numeric_limits<double>::max() / K), where K is the number of Gaussians
double log_max_K;
/*! \brief Gaussian specific pre-calcualted constants
\note Vector of pre-calculated \f$ -\frac{D}{2}\log(2\pi) -\frac{1}{2}\log(|\Sigma|) \f$ for each Gaussian,
where \f$ D \f$ is the dimensionality and \f$ |\Sigma| \f$ is the determinant for the Gaussian's
covariance matrix \f$ \Sigma \f$.
*/
vec log_det_etc;
//! Pre-calculated log versions of the weights
vec log_weights;
//! Pre-calcuated inverted version of each full covariance matrix
Array<mat> full_covs_inv;
//! Pre-calcuated inverted version of each diagonal covariance vector, where the covariance elements are first multiplied by two
Array<vec> diag_covs_inv_etc;
//! Check if vector \c x_in has the same dimensionality as the model
bool check_size(const vec &x_in) const;
//! Check if all vectors in Array \c X_in have the same dimensionality as the model
bool check_size(const Array<vec> &X_in) const;
//! Check if all vectors in Array \c X_in have the same dimensionality
bool check_array_uniformity(const Array<vec> & A) const;
//! ADD DOCUMENTATION HERE
void set_means_internal(Array<vec> &means_in);
//! ADD DOCUMENTATION HERE
void set_diag_covs_internal(Array<vec> &diag_covs_in);
//! ADD DOCUMENTATION HERE
void set_full_covs_internal(Array<mat> &full_covs_in);
//! ADD DOCUMENTATION HERE
void set_weights_internal(vec &_weigths);
//! ADD DOCUMENTATION HERE
void set_means_zero_internal();
//! ADD DOCUMENTATION HERE
void set_diag_covs_unity_internal();
//! ADD DOCUMENTATION HERE
void set_full_covs_unity_internal();
//! ADD DOCUMENTATION HERE
void set_weights_uniform_internal();
//! ADD DOCUMENTATION HERE
void convert_to_diag_internal();
//! ADD DOCUMENTATION HERE
void convert_to_full_internal();
//! additional processing of mean vectors, done as the last step of mean initialisation
virtual void setup_means();
//! additional processing of covariance vectors/matrices, done as the last step of covariance initialisation
virtual void setup_covs();
//! additional processing of the weight vector, done as the last step of weight initialisation
virtual void setup_weights();
//! additional processing of miscellaneous parameters, done as the last step of overall initialisation
virtual void setup_misc();
//! ADD DOCUMENTATION HERE
virtual double log_lhood_single_gaus_internal(const vec &x_in, const int k);
//! ADD DOCUMENTATION HERE
virtual double log_lhood_internal(const vec &x_in);
//! ADD DOCUMENTATION HERE
virtual double lhood_internal(const vec &x_in);
private:
vec tmpvecD;
vec tmpvecK;
};
} // namespace itpp
#endif // #ifndef MOG_GENERIC_H
|