/usr/include/itpp/srccode/vqtrain.h is in libitpp-dev 4.3.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | /*!
* \file
* \brief Definitions of a vector quantizer training functions
* \author Thomas Eriksson
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef VQTRAIN_H
#define VQTRAIN_H
#include <itpp/base/vec.h>
#include <itpp/base/mat.h>
#include <itpp/base/array.h>
#include <itpp/itexports.h>
namespace itpp
{
//! ADD DOCUMENTATION HERE
ITPP_EXPORT double kmeansiter(Array<vec> &DB, mat &codebook);
//! ADD DOCUMENTATION HERE
ITPP_EXPORT mat kmeans(Array<vec> &DB, int SIZE, int NOITER = 9999, bool VERBOSE = true);
//! ADD DOCUMENTATION HERE
ITPP_EXPORT mat lbg(Array<vec> &DB, int SIZE, int NOITER = 9999, bool VERBOSE = true);
/*!
\ingroup sourcecoding
\brief Function for vector quantization training
The following code illustrates how the VQ can be trained.
\code
VQ Quantizer;
mat A;
Array<vec> database;
// read vectors into database somehow
...
// train a vq
A = vqtrain(database, 1024, 1000000);
Quantizer.set_codebook(A);
\endcode
*/
ITPP_EXPORT mat vqtrain(Array<vec> &DB, int SIZE, int NOITER, double STARTSTEP = 0.2, bool VERBOSE = true);
//! ADD DOCUMENTATION HERE
ITPP_EXPORT vec sqtrain(const vec &inDB, int SIZE);
//! ADD DOCUMENTATION HERE
ITPP_EXPORT ivec bitalloc(const vec& variances, int nobits);
} // namespace itpp
#endif // #ifndef VQTRAIN_H
|