This file is indexed.

/usr/include/itpp/srccode/gmm.h is in libitpp-dev 4.3.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
/*!
 * \file
 * \brief Definition of a Gaussian Mixture Model Class
 * \author Thomas Eriksson
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2010  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef GMM_H
#define GMM_H

#include <itpp/base/mat.h>
#include <itpp/itexports.h>


namespace itpp
{

/*!
  \ingroup sourcecoding
  \brief Gaussian Mixture Model Class
  \author Thomas Eriksson
 */
class ITPP_EXPORT GMM
{
public:
  GMM();
  GMM(int nomix, int dim);
  GMM(std::string filename);
  void init_from_vq(const vec &codebook, int dim);
  // void init(const vec &w_in, const vec &m_in, const vec &sigma_in);
  void init(const vec &w_in, const mat &m_in, const mat &sigma_in);
  void load(std::string filename);
  void save(std::string filename);
  void set_weight(const vec &weights, bool compflag = true);
  void set_weight(int i, double weight, bool compflag = true);
  void set_mean(const mat &m_in);
  void set_mean(const vec &means, bool compflag = true);
  void set_mean(int i, const vec &means, bool compflag = true);
  void set_covariance(const mat &sigma_in);
  void set_covariance(const vec &covariances, bool compflag = true);
  void set_covariance(int i, const vec &covariances, bool compflag = true);
  int get_no_mixtures();
  int get_no_gaussians() const { return M; }
  int get_dimension();
  vec get_weight();
  double get_weight(int i);
  vec get_mean();
  vec get_mean(int i);
  vec get_covariance();
  vec get_covariance(int i);
  void marginalize(int d_new);
  void join(const GMM &newgmm);
  void clear();
  double likelihood(const vec &x);
  double likelihood_aposteriori(const vec &x, int mixture);
  vec likelihood_aposteriori(const vec &x);
  vec draw_sample();
protected:
  vec   m, sigma, w;
  int   M, d;
private:
  void  compute_internals();
  vec   normweight, normexp;
};

inline void GMM::set_weight(const vec &weights, bool compflag) {w = weights; if (compflag) compute_internals(); }
inline void GMM::set_weight(int i, double weight, bool compflag) {w(i) = weight; if (compflag) compute_internals(); }
inline void GMM::set_mean(const vec &means, bool compflag) {m = means; if (compflag) compute_internals(); }
inline void GMM::set_covariance(const vec &covariances, bool compflag) {sigma = covariances; if (compflag) compute_internals(); }
inline int GMM::get_dimension() {return d;}
inline vec GMM::get_weight() {return w;}
inline double GMM::get_weight(int i) {return w(i);}
inline vec GMM::get_mean() {return m;}
inline vec GMM::get_mean(int i) {return m.mid(i*d, d);}
inline vec GMM::get_covariance() {return sigma;}
inline vec GMM::get_covariance(int i) {return sigma.mid(i*d, d);}

ITPP_EXPORT GMM gmmtrain(Array<vec> &TrainingData, int M, int NOITER = 30, bool VERBOSE = true);

//! \endcond

} // namespace itpp

#endif // #ifndef GMM_H