/usr/include/itpp/signal/poly.h is in libitpp-dev 4.3.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | /*!
* \file
* \brief Polynomial functions
* \author Tony Ottosson, Kumar Appaiah and Adam Piatyszek
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef POLY_H
#define POLY_H
#include <itpp/base/vec.h>
#include <itpp/itexports.h>
namespace itpp
{
/*!
\brief Create a polynomial of the given roots
\ingroup poly
Create a polynomial \c p with roots \c r
@{
*/
ITPP_EXPORT void poly(const vec &r, vec &p);
inline vec poly(const vec &r) { vec temp; poly(r, temp); return temp; }
ITPP_EXPORT void poly(const cvec &r, cvec &p);
inline cvec poly(const cvec &r) { cvec temp; poly(r, temp); return temp; }
/*! @} */
/*!
\brief Calculate the roots of the polynomial
\ingroup poly
Calculate the roots \c r of the polynomial \c p
@{
*/
ITPP_EXPORT void roots(const vec &p, cvec &r);
inline cvec roots(const vec &p) { cvec temp; roots(p, temp); return temp; }
ITPP_EXPORT void roots(const cvec &p, cvec &r);
inline cvec roots(const cvec &p) { cvec temp; roots(p, temp); return temp; }
/*! @} */
/*!
\brief Evaluate polynomial
\ingroup poly
Evaluate the polynomial \c p (of length \f$N+1\f$ at the points \c x
The output is given by
\f[
p_0 x^N + p_1 x^{N-1} + \ldots + p_{N-1} x + p_N
\f]
@{
*/
ITPP_EXPORT vec polyval(const vec &p, const vec &x);
ITPP_EXPORT cvec polyval(const vec &p, const cvec &x);
ITPP_EXPORT cvec polyval(const cvec &p, const vec &x);
ITPP_EXPORT cvec polyval(const cvec &p, const cvec &x);
/*! @} */
/*!
\brief Chebyshev polynomial of the first kind
\ingroup poly
Chebyshev polynomials of the first kind can be defined as follows:
\f[
T(x) = \left\{
\begin{array}{ll}
\cos(n\arccos(x)),& |x| \leq 0 \\
\cosh(n\mathrm{arccosh}(x)),& x > 1 \\
(-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1
\end{array}
\right.
\f]
\param n order of the Chebyshev polynomial
\param x value at which the Chebyshev polynomial is to be evaluated
\author Kumar Appaiah, Adam Piatyszek (code review)
*/
ITPP_EXPORT double cheb(int n, double x);
/*!
\brief Chebyshev polynomial of the first kind
\ingroup poly
Chebyshev polynomials of the first kind can be defined as follows:
\f[
T(x) = \left\{
\begin{array}{ll}
\cos(n\arccos(x)),& |x| \leq 0 \\
\cosh(n\mathrm{arccosh}(x)),& x > 1 \\
(-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1
\end{array}
\right.
\f]
\param n order of the Chebyshev polynomial
\param x vector of values at which the Chebyshev polynomial is to
be evaluated
\return values of the Chebyshev polynomial evaluated for each
element of \c x
\author Kumar Appaiah, Adam Piatyszek (code review)
*/
ITPP_EXPORT vec cheb(int n, const vec &x);
/*!
\brief Chebyshev polynomial of the first kind
\ingroup poly
Chebyshev polynomials of the first kind can be defined as follows:
\f[
T(x) = \left\{
\begin{array}{ll}
\cos(n\arccos(x)),& |x| \leq 0 \\
\cosh(n\mathrm{arccosh}(x)),& x > 1 \\
(-1)^n \cosh(n\mathrm{arccosh}(-x)),& x < -1
\end{array}
\right.
\f]
\param n order of the Chebyshev polynomial
\param x matrix of values at which the Chebyshev polynomial is to
be evaluated
\return values of the Chebyshev polynomial evaluated for each
element in \c x.
\author Kumar Appaiah, Adam Piatyszek (code review)
*/
ITPP_EXPORT mat cheb(int n, const mat &x);
} // namespace itpp
#endif // #ifndef POLY_H
|