/usr/include/itpp/comm/pulse_shape.h is in libitpp-dev 4.3.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 | /*!
* \file
* \brief Pulse shaping classes - header file
* \author Tony Ottosson, Hakan Eriksson and Adam Piatyszek
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef PULSE_SHAPE_H
#define PULSE_SHAPE_H
#include <itpp/base/vec.h>
#include <itpp/base/matfunc.h>
#include <itpp/base/math/trig_hyp.h>
#include <itpp/signal/filter.h>
#include <itpp/signal/resampling.h>
namespace itpp
{
/*!
\brief General FIR Pulse Shape
Upsamples and shapes symbols according to a given FIR filter.
Observe that since the shaping is done with a FIR filter, the
first samples in the output are zero or small before the memory of
the filter is filled.
The class is templated as follows:
<ul>
<li> \c T1 is the type of the input samples</li>
<li> \c T2 is the type of the filter coefficients</li>
<li> \c T3 is the type of the output samples</li>
</ul>
An example of usage is:
\code
#include "itpp/itcomm.h"
vec filter_response;
filter_response ="0.7 0.3 0.6";
Pulse_Shape<double,double,double> shaper(filter_response, 4);
BPSK bpsk;
vec symbols, samples;
symbols = bpsk.modulate_bits(randb(20));
samples = shaper.shape_symbols(symbols);
\endcode
*/
template<class T1, class T2, class T3>
class Pulse_Shape
{
public:
//! Constructor
Pulse_Shape();
//! Constructor
Pulse_Shape(const Vec<T2> &impulse_response, int upsampling_factor);
//! Destructor
virtual ~Pulse_Shape() {}
/*!
\brief Set the general impulse response of the FIR filter
Observe that the pulse shape must have a duration of an integer
number of symbols. Thus the length of the impulse response-1
modulo over sampling is an integer.
*/
void set_pulse_shape(const Vec<T2> &impulse_response, int upsampling_factor);
//! Get the pulse shape
Vec<T2> get_pulse_shape(void) const;
//! Get the over sampling factor
int get_upsampling_factor() const;
//! Get the length of the pulse in number of symbols
int get_pulse_length() const;
//! Get the length of the internal FIR filter
int get_filter_length() const;
//! Shape the input symbols performing upsampling
void shape_symbols(const Vec<T1> &input, Vec<T3> &output);
//! Shape the input symbols performing upsampling
Vec<T3> shape_symbols(const Vec<T1> &input);
//! Shape the input samples already upsampled
void shape_samples(const Vec<T1> &input, Vec<T3> &output);
//! Shape the input symbols already upsampled
Vec<T3> shape_samples(const Vec<T1> &input);
//! Clear internal states
void clear(void);
protected:
//! The impulse resounse of the pulse shaping filter
Vec<T2> impulse_response;
//! The pulse shaping filter
MA_Filter<T1, T2, T3> shaping_filter;
//! Length in symbols
int pulse_length;
//! Samples per input symbol
int upsampling_factor;
//! Ensures that setup is called before any other member function
bool setup_done;
};
/*!
\brief Raised Cosine (RC) Pulse Shaper
Upsamples and shapes symbols as raised cosine pulses with a given
roll-off factor \f$ \alpha \f$.
The raised cosine pulse shape is defined as:
\f[
p(t) = \frac{\sin(\pi t / T)}{\pi t / T}
\frac{\cos(\alpha \pi t / T)}{1 - (2 \alpha t / T)^2}
\f]
For more details see e.g. Lee & Messerschmitt, p. 190. Observe
that the shaping is done with a FIR filter where the size is given
by \a filter_length * \a over_sample_factor + 1. The first
samples in the output will therefore be zero or small before the
memory of the filter is filled.
What is important, when using RC shaping in a transmission system
with the AWGN channel, the mean power of the output samples is not
normalised, so the channel noise variance (or shaped signal)
should be scaled appropriately.
The class is templated as follows: \c T1 is the type of the input
and the output samples.
An example of usage is:
\code
#include "itpp/itcomm.h"
Raised_Cosine<double> rc(0.5, 6, 8);
BPSK bpsk;
vec symbols, samples;
symbols = bpsk.modulate_bits(randb(20));
samples = rc.shape_symbols(symbols);
\endcode
*/
template<class T1>
class Raised_Cosine : public Pulse_Shape<T1, double, T1>
{
public:
//! Constructor
Raised_Cosine() {}
//! Constructor
Raised_Cosine(double roll_off, int filter_length = 6, int upsampling_factor = 8);
//! Destructor
virtual ~Raised_Cosine() {}
//! Set pulse shape (roll_off_factor between 0 and 1, filter_length even)
void set_pulse_shape(double roll_off_factor, int filter_length = 6, int upsampling_factor = 8);
//! Get the roll-off factor
double get_roll_off(void) const;
protected:
//! The roll off factor (i.e. alpha)
double roll_off_factor;
};
/*!
\brief (Square) Root Raised Cosine (RRC) Pulse Shaper
Upsamples and shapes symbols as square root raised cosine pulses
with a given roll-off factor \f$ \alpha \f$ (zero is not allowed
- use raised cosine instead).
The Root Raised Cosine pulse shape is defined as:
\f[
p(t) = \frac{4 \alpha}{\pi \sqrt{T}} \frac{\cos((1+\alpha)\pi t / T)
+ T \sin((1-\alpha)\pi t / T) / (4 \alpha t) }{1 - (4 \pi t / T)^2}
\f]
It is called square root raised cosine since it is defined as the
square root of the raised cosine pulse in the frequency domain.
Thus with a transmitter pulse shape of root raised cosine and a
receiver filter that is root raised cosine, the overall response
will be a raised cosine.
For more details see e.g. Lee & Messerschmitt, p. 228. Observe
that the shaping is done with a FIR filter where the size is given
by \a filter_length * \a over_sample_factor + 1. The first samples
in the output will therefore be zero or small before the memory of
the filter is filled.
What is important, when using RRC shaping in a transmission system
with the AWGN channel, the mean power of the output samples is not
normalised, so the channel noise variance (or shaped signal)
should be scaled appropriately.
The class is templated as follows: \c T1 is the type of the input
and the output samples.
An example of usage is:
\code
#include "itpp/itcomm.h"
Root_Raised_Cosine<double> rrc(0.5,6,8);
BPSK bpsk;
vec symbols, samples;
symbols = bpsk.modulate_bits(randb(20));
samples = rrc.shape_symbols(symbols);
\endcode
*/
template<class T1>
class Root_Raised_Cosine : public Pulse_Shape<T1, double, T1>
{
public:
//! Constructor
Root_Raised_Cosine() {}
//! Constructor
Root_Raised_Cosine(double roll_off_factor, int filter_length = 6, int upsampling_factor = 8);
//! Destructor
virtual ~Root_Raised_Cosine() {}
//! Set pulse_shape, roll_off_factor between 0 and 1, filter_length even
void set_pulse_shape(double roll_off_factor, int filter_length = 6, int upsampling_factor = 8);
//! Get the Roll-off factor
double get_roll_off(void) const;
protected:
//! The roll off factor (i.e. alpha)
double roll_off_factor;
};
//-------------------------------------------------------------------------
// Implementation of templated code starts here
//-------------------------------------------------------------------------
//---------------------------- Pulse_Shape --------------------------------
template<class T1, class T2, class T3>
Pulse_Shape<T1, T2, T3>::Pulse_Shape()
{
setup_done = false;
pulse_length = 0;
upsampling_factor = 0;
}
template<class T1, class T2, class T3>
Pulse_Shape<T1, T2, T3>::Pulse_Shape(const Vec<T2> &impulse_response, int upsampling_factor)
{
set_pulse_shape(impulse_response, upsampling_factor);
}
template<class T1, class T2, class T3>
void Pulse_Shape<T1, T2, T3>::set_pulse_shape(const Vec<T2> &impulse_response_in, int upsampling_factor_in)
{
it_error_if(impulse_response_in.size() == 0, "Pulse_Shape: impulse response is zero length");
it_error_if(upsampling_factor_in < 1, "Pulse_Shape: incorrect upsampling factor");
pulse_length = (impulse_response_in.size() - 1) / upsampling_factor_in;
upsampling_factor = upsampling_factor_in;
impulse_response = impulse_response_in;
shaping_filter.set_coeffs(impulse_response);
shaping_filter.clear();
setup_done = true;
}
template<class T1, class T2, class T3>
Vec<T2> Pulse_Shape<T1, T2, T3>::get_pulse_shape(void) const
{
return impulse_response;
}
template<class T1, class T2, class T3>
int Pulse_Shape<T1, T2, T3>::get_upsampling_factor(void) const
{
return upsampling_factor;
}
template<class T1, class T2, class T3>
int Pulse_Shape<T1, T2, T3>::get_pulse_length(void) const
{
return pulse_length;
}
template<class T1, class T2, class T3>
int Pulse_Shape<T1, T2, T3>::get_filter_length(void) const
{
return impulse_response.size();
}
template<class T1, class T2, class T3>
void Pulse_Shape<T1, T2, T3>::shape_symbols(const Vec<T1>& input, Vec<T3> &output)
{
it_assert(setup_done, "Pulse_Shape must be set up before using");
it_error_if(pulse_length == 0, "Pulse_Shape: impulse response is zero length");
it_error_if(input.size() == 0, "Pulse_Shape: input is zero length");
if (upsampling_factor > 1)
output = shaping_filter(upsample(input, upsampling_factor));
else
output = input;
}
template<class T1, class T2, class T3>
Vec<T3> Pulse_Shape<T1, T2, T3>::shape_symbols(const Vec<T1>& input)
{
it_assert(setup_done, "Pulse_Shape must be set up before using");
Vec<T3> temp;
shape_symbols(input, temp);
return temp;
}
template<class T1, class T2, class T3>
void Pulse_Shape<T1, T2, T3>::shape_samples(const Vec<T1>& input, Vec<T3> &output)
{
it_assert(setup_done, "Pulse_Shape must be set up before using");
it_error_if(pulse_length == 0, "Pulse_Shape: impulse response is zero length");
it_error_if(input.size() == 0, "Pulse_Shape: input is zero length");
if (upsampling_factor > 1)
output = shaping_filter(input);
else
output = input;
}
template<class T1, class T2, class T3>
Vec<T3> Pulse_Shape<T1, T2, T3>::shape_samples(const Vec<T1>& input)
{
it_assert(setup_done, "Pulse_Shape must be set up before using");
Vec<T3> temp;
shape_samples(input, temp);
return temp;
}
template<class T1, class T2, class T3>
void Pulse_Shape<T1, T2, T3>::clear(void)
{
it_assert(setup_done, "Pulse_Shape must be set up before using");
shaping_filter.clear();
}
//-------------------- Raised_Cosine -----------------------------------
template<class T1>
Raised_Cosine<T1>::Raised_Cosine(double roll_off_factor, int filter_length, int upsampling_factor)
{
set_pulse_shape(roll_off_factor, filter_length, upsampling_factor);
}
template<class T1>
void Raised_Cosine<T1>::set_pulse_shape(double roll_off_factor_in, int filter_length, int upsampling_factor_in)
{
it_error_if(roll_off_factor_in < 0 || roll_off_factor_in > 1, "Raised_Cosine: roll-off out of range");
roll_off_factor = roll_off_factor_in;
it_assert(is_even(filter_length), "Raised_Cosine: Filter length not even");
int i;
double t, den;
this->upsampling_factor = upsampling_factor_in;
this->pulse_length = filter_length;
this->impulse_response.set_size(filter_length * upsampling_factor_in + 1,
false);
for (i = 0; i < this->impulse_response.size(); i++) {
// delayed to be casual
t = (double)(i - filter_length * upsampling_factor_in / 2)
/ upsampling_factor_in;
den = 1 - sqr(2 * roll_off_factor * t);
if (den == 0) {
// exception according to "The Care and feeding of digital,
// pulse-shaping filters" by Ken Gentile,
// the limit of raised cosine impulse responce function,
// as (alpha * t / tau) approaches (+- 0.5) is given as:
this->impulse_response(i) = sinc(t) * pi / 4;
}
else {
this->impulse_response(i) = std::cos(roll_off_factor * pi * t)
* sinc(t) / den;
}
}
// BUGFIX: Commented out to achieve similar results to Matlab
// rcosfil function. Now the concatenation of two root-raised
// cosine filters gives tha same results as a one raised cosine
// shaping function.
// this->impulse_response /= std::sqrt(double(this->upsampling_factor));
this->shaping_filter.set_coeffs(this->impulse_response);
this->shaping_filter.clear();
this->setup_done = true;
}
template<class T1>
double Raised_Cosine<T1>::get_roll_off(void) const
{
it_assert(this->setup_done, "Pulse_Shape must be set up before using");
return roll_off_factor;
}
//-------------------- Root_Raised_Cosine -----------------------------------
template<class T1>
Root_Raised_Cosine<T1>::Root_Raised_Cosine(double roll_off_factor, int filter_length, int upsampling_factor)
{
set_pulse_shape(roll_off_factor, filter_length, upsampling_factor);
}
template<class T1>
void Root_Raised_Cosine<T1>::set_pulse_shape(double roll_off_factor_in, int filter_length, int upsampling_factor_in)
{
it_error_if(roll_off_factor_in <= 0 || roll_off_factor_in > 1,
"Root_Raised_Cosine: roll-off out of range");
roll_off_factor = roll_off_factor_in;
it_assert(is_even(filter_length),
"Root_Raised_Cosine: Filter length not even");
int i;
double t, num, den, tmp_arg;
this->upsampling_factor = upsampling_factor_in;
this->pulse_length = filter_length;
this->impulse_response.set_size(filter_length * upsampling_factor_in + 1,
false);
for (i = 0; i < this->impulse_response.size(); i++) {
// delayed to be casual
t = (double)(i - filter_length * upsampling_factor_in / 2)
/ upsampling_factor_in;
den = 1 - sqr(4 * roll_off_factor * t);
if (t == 0) {
this->impulse_response(i) = 1 + (4 * roll_off_factor / pi)
- roll_off_factor;
}
else if (den == 0) {
tmp_arg = pi / (4 * roll_off_factor);
this->impulse_response(i) = roll_off_factor / std::sqrt(2.0)
* ((1 + 2 / pi) * std::sin(tmp_arg) + (1 - 2 / pi) * std::cos(tmp_arg));
}
else {
num = std::sin(pi * (1 - roll_off_factor) * t)
+ std::cos(pi * (1 + roll_off_factor) * t) * 4 * roll_off_factor * t;
this->impulse_response(i) = num / (pi * t * den);
}
}
this->impulse_response /= std::sqrt(double(upsampling_factor_in));
this->shaping_filter.set_coeffs(this->impulse_response);
this->shaping_filter.clear();
this->setup_done = true;
}
template<class T1>
double Root_Raised_Cosine<T1>::get_roll_off(void) const
{
it_assert(this->setup_done, "Pulse_Shape must be set up before using");
return roll_off_factor;
}
//! \cond
// ----------------------------------------------------------------------
// Instantiations
// ----------------------------------------------------------------------
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Pulse_Shape<double, double, double>;
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Pulse_Shape < std::complex<double>, double,
std::complex<double> >;
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Pulse_Shape < std::complex<double>, std::complex<double>,
std::complex<double> >;
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Root_Raised_Cosine<double>;
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Root_Raised_Cosine<std::complex<double> >;
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Raised_Cosine<double>;
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Raised_Cosine<std::complex<double> >;
//! \endcond
} // namespace itpp
#endif // #ifndef PULSE_SHAPE_H
|