This file is indexed.

/usr/include/itpp/comm/modulator.h is in libitpp-dev 4.3.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
/*!
 * \file
 * \brief One- and two-dimensional modulators - header file
 * \author Tony Ottosson and Adam Piatyszek
 *
 * -------------------------------------------------------------------------
 *
 * Copyright (C) 1995-2011  (see AUTHORS file for a list of contributors)
 *
 * This file is part of IT++ - a C++ library of mathematical, signal
 * processing, speech processing, and communications classes and functions.
 *
 * IT++ is free software: you can redistribute it and/or modify it under the
 * terms of the GNU General Public License as published by the Free Software
 * Foundation, either version 3 of the License, or (at your option) any
 * later version.
 *
 * IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 * FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along
 * with IT++.  If not, see <http://www.gnu.org/licenses/>.
 *
 * -------------------------------------------------------------------------
 */

#ifndef MODULATOR_H
#define MODULATOR_H

#include <itpp/base/mat.h>
#include <itpp/base/math/elem_math.h>
#include <itpp/base/math/log_exp.h>
#include <itpp/base/converters.h>
#include <itpp/base/math/min_max.h>
#include <itpp/itexports.h>


namespace itpp
{

/*!
 * \ingroup modulators
 * \brief Soft demodulation methods
 */
enum Soft_Method {
  LOGMAP,   //!< Log-MAP full calculation
  APPROX   //!< Approximate faster method
};

/*!
  \ingroup modulators
  \brief General modulator for 1D or 2D signal constellations.

  The Modulator class is designed for modeling any kind of 1D (real) or 2D
  (complex) signal constellations. Therefore it is used as a base class for
  such modulations like PAM, PSK, QAM, etc.

  The constellation of the modulator is described with two vectors. The
  first one contains the real or complex values representing the
  constellation points, whereas the other one includes the corresponding
  bit to symbol mapping (in the decimal from).

  Beside hard demapping, this class can also perform soft demodulation. To
  use it properly the received symbols should be equal to: \f[r_k = c_k
  s_k + n_k,\f] where \f$c_k\f$ is the real or complex channel gain,
  \f$s_k\f$ is the transmitted constellation symbol, and \f$n_k\f$ is the
  AWGN of the channel (with variance \f$N_0\f$).

  It is also assumed that the channel estimates are perfect when
  calculating the soft bits.
*/
template <typename T>
class Modulator
{
public:
  //! Default constructor
  Modulator();
  //! Constructor
  Modulator(const Vec<T>& symbols, const ivec& bits2symbols);
  //! Destructor
  virtual ~Modulator() {}

  //! Set the constellation to use in the modulator
  virtual void set(const Vec<T>& symbols, const ivec& bits2symbols);

  //! Returns number of bits per symbol
  virtual int bits_per_symbol() const { return k; }
  
  //! Returns number of bits per symbol
  virtual int get_k() const { return k; }

  //! Returns number of modulation symbols
  virtual int get_M() const { return M; }

  //! Get the symbol values used in the modulator
  virtual Vec<T> get_symbols() const { return symbols; }

  /*!
   * \brief Get the bitmap, which maps input bits into symbols
   *
   * The mapping is done as follows. An input bit sequence in decimal
   * notation is used for indexing the \c bits2symbols table. The indexing
   * result denotes the symbol to be used from the \c symbols table, e.g.:
   *
   * \code
   * PSK mod(8); // assume 8-PSK modulator
   * cvec sym =  mod.get_symbols();
   * ivec bits2sym = mod.get_bits2symbols();
   * bvec in_bits = "100" // input bits
   * int d = bin2dec(in_bits); // decimal representation of in_bits = 4
   * // mapping of d into PSK symbol using bits2sym and sym tables
   * std::complex<double> out_symbol = sym(bits2sym(d));
   * \endcode
   */
  virtual ivec get_bits2symbols() const { return bits2symbols; }

  //! Modulation of symbols
  virtual void modulate(const ivec& symbolnumbers, Vec<T>& output) const;
  //! Modulation of symbols
  virtual Vec<T> modulate(const ivec& symbolnumbers) const;

  //! Demodulation of symbols
  virtual void demodulate(const Vec<T>& signal, ivec& output) const;
  //! Demodulation of symbols
  virtual ivec demodulate(const Vec<T>& signal) const;

  //! Modulation of bits
  virtual void modulate_bits(const bvec& bits, Vec<T>& output) const;
  //! Modulation of bits
  virtual Vec<T> modulate_bits(const bvec& bits) const;

  //! Hard demodulation of bits
  virtual void demodulate_bits(const Vec<T>& signal, bvec& bits) const;
  //! Hard demodulation of bits
  virtual bvec demodulate_bits(const Vec<T>& signal) const;

  /*!
    \brief Soft demodulator for AWGN channels

    This function calculates the log-likelihood ratio (LLR) of the
    received signal from AWGN channels. Depending on the soft demodulation
    method chosen, either full log-MAP calculation is performed (default
    method), according to the following equation: \f[\log \left(
    \frac{P(b_i=0|r)}{P(b_i=1|r)} \right) = \log \left( \frac{\sum_{s_i
    \in S_0} \exp \left( -\frac{|r_k - s_i|^2}{N_0} \right)} {\sum_{s_i
    \in S_1} \exp \left( -\frac{|r_k - s_i|^2}{N_0} \right)} \right) \f]
    or approximate, but faster calculation is performed.

    The approximate method finds for each bit the closest constellation
    points that have zero and one in the corresponding position. Let
    \f$d_0 = |r_k - s_0|\f$ denote the distance to the closest zero point
    and \f$d_1 = |r_k - s_1|\f$ denote the distance to the closest one
    point for the corresponding bit respectively. The approximate
    algorithm then computes \f[\frac{d_1^2 - d_0^2}{N_0}\f]

    This function can be used on channels where the channel gain
    \f$c_k = 1\f$.

    When this function is to be used together with MAP-based turbo
    decoding algorithms then the channel reliability factor \f$L_c\f$ of
    the turbo decoder shall be set to 1. The output from this function can
    also be used by a Viterbi decoder using an AWGN based metric
    calculation function.

    \param rx_symbols The received noisy constellation symbols
    \param N0 The spectral density of the AWGN noise
    \param soft_bits The soft bits calculated using the expression above
    \param method The method used for demodulation (LOGMAP or APPROX)

    \note For soft demodulation it is suggested to use the
    N-dimensional modulator (\c Modulator_ND) instead, which is
    based on the QLLR (quantized) arithmetic and therefore is
    faster. Please note, however, that mixed use of \c
    Modulator_1D/\c Modulator_2D and \c Modulator_ND is not advised.
  */
  virtual void demodulate_soft_bits(const Vec<T>& rx_symbols, double N0,
                                    vec& soft_bits,
                                    Soft_Method method = LOGMAP) const;
  //! Soft demodulator for AWGN channels
  virtual vec demodulate_soft_bits(const Vec<T>& rx_symbols, double N0,
                                   Soft_Method method = LOGMAP) const;

  /*!
    \brief Soft demodulator for fading channels

    This function calculates the log-likelihood ratio (LLR) of the
    received signal from fading channels. Depending on the soft
    demodulation method chosen, either full log-MAP calculation is
    performed (default method), according to the following equation:
    \f[\log \left( \frac{P(b_i=0|r)}{P(b_i=1|r)} \right) = \log \left(
    \frac{\sum_{s_i \in S_0} \exp \left( -\frac{|r_k - c_k s_i|^2}{N_0}
    \right)} {\sum_{s_i \in S_1} \exp \left( -\frac{|r_k - c_k
    s_i|^2}{N_0} \right)} \right) \f] or approximate, but faster
    calculation is performed.

    The approximate method finds for each bit the closest constellation
    points that have zero and one in the corresponding position. Let
    \f$d_0 = |r_k - c_k s_0|\f$ denote the distance to the closest zero
    point and \f$d_1 = |r_k - c_k s_1|\f$ denote the distance to the
    closest one point for the corresponding bit respectively. The
    approximate algorithm then computes \f[\frac{d_1^2 - d_0^2}{N_0}\f]

    When this function is to be used together with MAP-based turbo
    decoding algorithms then the channel reliability factor \f$L_c\f$ of
    the turbo decoder shall be set to 1. The output from this function can
    also be used by a Viterbi decoder using an AWGN based metric
    calculation function.

    \param rx_symbols The received noisy constellation symbols \f$r_k\f$
    \param channel The channel values \f$c_k\f$
    \param N0 The spectral density of the AWGN noise
    \param soft_bits The soft bits calculated using the expression above
    \param method The method used for demodulation (LOGMAP or APPROX)

    \note For soft demodulation it is suggested to use the
    N-dimensional modulator (Modulator_ND) instead, which is based
    on the QLLR (quantized) arithmetic and therefore is
    faster. Please note, however, that mixed use of \c
    Modulator_1D/\c Modulator_2D and \c Modulator_ND is not advised.
  */
  virtual void demodulate_soft_bits(const Vec<T>& rx_symbols,
                                    const Vec<T>& channel,
                                    double N0, vec& soft_bits,
                                    Soft_Method method = LOGMAP) const;
  //! Soft demodulator for fading channels
  virtual vec demodulate_soft_bits(const Vec<T>& rx_symbols,
                                   const Vec<T>& channel,
                                   double N0,
                                   Soft_Method method = LOGMAP) const;

protected:
  //! Setup indicator
  bool setup_done;
  //! Number of bits per modulation symbol
  int k;
  //! Number of modulation symbols
  int M;
  //! Bit to symbol mapping table (size: M x k)
  bmat bitmap;
  //! Bit to symbol mapping in decimal form (size: M)
  ivec bits2symbols;
  //! Corresponding modulation symbols (size: M)
  Vec<T> symbols;
  /*! \brief Matrix where row k contains the constellation points with '0'
    in bit position k */
  imat S0;
  /*! \brief Matrix where row k contains the constellation points with '1'
    in bit position k */
  imat S1;

  //! This function calculates the soft bit mapping matrices S0 and S1
  void calculate_softbit_matrices();
};


// ----------------------------------------------------------------------
// Type definitions of Modulator_1D and Modulator_2D
// ----------------------------------------------------------------------

/*!
 * \relates Modulator
 * \brief Definition of 1D Modulator (with real symbols)
 */
typedef Modulator<double> Modulator_1D;

/*!
 * \relates Modulator
 * \brief Definition of 2D Modulator (with complex symbols)
 */
typedef Modulator<std::complex<double> > Modulator_2D;


// ----------------------------------------------------------------------
// Implementation of templated Modulator members
// ----------------------------------------------------------------------

template<typename T>
Modulator<T>::Modulator() :
    setup_done(false), k(0), M(0), bitmap(""), bits2symbols(""), symbols(""),
    S0(""), S1("") {}

template<typename T>
Modulator<T>::Modulator(const Vec<T> &symbols, const ivec &bits2symbols)
{
  set(symbols, bits2symbols);
}

template<typename T>
void Modulator<T>::set(const Vec<T> &in_symbols, const ivec &in_bits2symbols)
{
  it_assert(in_symbols.size() == in_bits2symbols.size(),
            "Modulator<T>::set(): Number of symbols and bits2symbols does not match");
  it_assert(is_even(in_symbols.size()) && (in_symbols.size() > 0),
            "Modulator<T>::set(): Number of symbols needs to be even and non-zero");
  it_assert((max(in_bits2symbols) == in_bits2symbols.size() - 1)
            && (min(in_bits2symbols) == 0), "Modulator<T>::set(): Improper bits2symbol vector");
  symbols = in_symbols;
  bits2symbols = in_bits2symbols;
  M = bits2symbols.size();
  k = levels2bits(M);
  bitmap.set_size(M, k);
  for (int m = 0; m < M; m++) {
    bitmap.set_row(bits2symbols(m), dec2bin(k, m));
  }
  calculate_softbit_matrices();
  setup_done = true;
}


template<typename T>
void Modulator<T>::modulate(const ivec &symbolnumbers, Vec<T>& output) const
{
  it_assert_debug(setup_done, "Modulator<T>::modulate(): Modulator not ready.");
  output.set_size(symbolnumbers.length());
  for (int i = 0; i < symbolnumbers.length(); i++)
    output(i) = symbols(symbolnumbers(i));
}

template<typename T>
Vec<T> Modulator<T>::modulate(const ivec &symbolnumbers) const
{
  Vec<T> output(symbolnumbers.length());
  modulate(symbolnumbers, output);
  return output;
}


template<typename T>
void Modulator<T>::demodulate(const Vec<T> &signal, ivec& output) const
{
  it_assert_debug(setup_done, "Modulator<T>::demodulate(): Modulator not ready.");
  double dist, mindist;
  int closest;
  output.set_size(signal.size());

  for (int i = 0; i < signal.size(); i++) {
    mindist = std::abs(symbols(0) - signal(i));
    closest = 0;
    for (int j = 1; j < M; j++) {
      dist = std::abs(symbols(j) - signal(i));
      if (dist < mindist) {
        mindist = dist;
        closest = j;
      }
    }
    output(i) = closest;
  }
}

template<typename T>
ivec Modulator<T>::demodulate(const Vec<T>& signal) const
{
  ivec output(signal.length());
  demodulate(signal, output);
  return output;
}


template<typename T>
void Modulator<T>::modulate_bits(const bvec &bits, Vec<T> &output) const
{
  it_assert_debug(setup_done, "Modulator<T>::modulate_bits(): Modulator not ready.");
  // Check if some bits have to be cut and print warning message in such
  // case.
  if (bits.length() % k) {
    it_warning("Modulator<T>::modulate_bits(): The number of input bits is not a multiple of k (number of bits per symbol). Remainder bits are not modulated.");
  }
  int no_symbols = bits.length() / k;
  output.set_size(no_symbols);
  for (int i = 0; i < no_symbols; i++) {
    output(i) = symbols(bits2symbols(bin2dec(bits.mid(i * k, k))));
  }
}

template<typename T>
Vec<T> Modulator<T>::modulate_bits(const bvec &bits) const
{
  Vec<T> output;
  modulate_bits(bits, output);
  return output;
}

template<typename T>
void Modulator<T>::demodulate_bits(const Vec<T> &signal, bvec &bits) const
{
  it_assert_debug(setup_done, "Modulator<T>::demodulate_bist(): Modulator not ready.");
  double dist, mindist;
  int closest;
  bits.set_size(k*signal.size());

  for (int i = 0; i < signal.size(); i++) {
    mindist = std::abs(symbols(0) - signal(i));
    closest = 0;
    for (int j = 1; j < M; j++) {
      dist = std::abs(symbols(j) - signal(i));
      if (dist < mindist) {
        mindist = dist;
        closest = j;
      }
    }
    bits.replace_mid(i*k, bitmap.get_row(closest));
  }
}

template<typename T>
bvec Modulator<T>::demodulate_bits(const Vec<T> &signal) const
{
  bvec bits;
  demodulate_bits(signal, bits);
  return bits;
}


template<typename T>
void Modulator<T>::demodulate_soft_bits(const Vec<T> &rx_symbols, double N0,
                                        vec &soft_bits,
                                        Soft_Method method) const
{
  it_assert_debug(setup_done, "Modulator<T>::demodulate_soft_bits(): Modulator not ready.");
  double P0, P1, d0min, d1min, temp;
  vec metric(M);

  soft_bits.set_size(k * rx_symbols.size());

  if (method == LOGMAP) {
    for (int l = 0; l < rx_symbols.size(); l++) {
      for (int j = 0; j < M; j++) {
        metric(j) = std::exp(-sqr(rx_symbols(l) - symbols(j)) / N0);
      }
      for (int i = 0; i < k; i++) {
        P0 = P1 = 0;
        for (int j = 0; j < (M >> 1); j++) {
          P0 += metric(S0(i, j));
          P1 += metric(S1(i, j));
        }
        soft_bits(l*k + i) = trunc_log(P0) - trunc_log(P1);
      }
    }
  }
  else { // method == APPROX
    for (int l = 0; l < rx_symbols.size(); l++) {
      for (int j = 0; j < M; j++) {
        metric(j) = sqr(rx_symbols(l) - symbols(j));
      }
      for (int i = 0; i < k; i++) {
        d0min = d1min = std::numeric_limits<double>::max();
        for (int j = 0; j < (M >> 1); j++) {
          temp = metric(S0(i, j));
          if (temp < d0min) { d0min = temp; }
          temp = metric(S1(i, j));
          if (temp < d1min) { d1min = temp; }
        }
        soft_bits(l*k + i) = (-d0min + d1min) / N0;
      }
    }
  }
}

template<typename T>
vec Modulator<T>::demodulate_soft_bits(const Vec<T> &rx_symbols,
                                       double N0,
                                       Soft_Method method) const
{
  vec output;
  demodulate_soft_bits(rx_symbols, N0, output, method);
  return output;
}

template<typename T>
void Modulator<T>::demodulate_soft_bits(const Vec<T> &rx_symbols,
                                        const Vec<T> &channel, double N0,
                                        vec &soft_bits,
                                        Soft_Method method) const
{
  it_assert_debug(setup_done, "Modulator_2D::demodulate_soft_bits(): Modulator not ready.");
  double P0, P1, d0min, d1min, temp;
  vec metric(M);

  soft_bits.set_size(k * rx_symbols.size());

  if (method == LOGMAP) {
    for (int l = 0; l < rx_symbols.size(); l++) {
      for (int j = 0; j < M; j++) {
        metric(j) = std::exp(-sqr(rx_symbols(l) - channel(l) * symbols(j))
                             / N0);
      }
      for (int i = 0; i < k; i++) {
        P0 = P1 = 0;
        for (int j = 0; j < (M >> 1); j++) {
          P0 += metric(S0(i, j));
          P1 += metric(S1(i, j));
        }
        soft_bits(l*k + i) = trunc_log(P0) - trunc_log(P1);
      }
    }
  }
  else { // method == APPROX
    for (int l = 0; l < rx_symbols.size(); l++) {
      for (int j = 0; j < M; j++) {
        metric(j) = sqr(rx_symbols(l) - channel(l) * symbols(j));
      }
      for (int i = 0; i < k; i++) {
        d0min = d1min = std::numeric_limits<double>::max();
        for (int j = 0; j < (M >> 1); j++) {
          temp = metric(S0(i, j));
          if (temp < d0min) { d0min = temp; }
          temp = metric(S1(i, j));
          if (temp < d1min) { d1min = temp; }
        }
        soft_bits(l*k + i) = (-d0min + d1min) / N0;
      }
    }
  }
}

template<typename T>
vec Modulator<T>::demodulate_soft_bits(const Vec<T> &rx_symbols,
                                       const Vec<T> &channel,
                                       double N0,
                                       Soft_Method method) const
{
  vec output;
  demodulate_soft_bits(rx_symbols, channel, N0, output, method);
  return output;
}

template<typename T>
void Modulator<T>::calculate_softbit_matrices()
{
  int count0, count1;

  // Allocate storage space for the result matrices:
  S0.set_size(k, M >> 1, false);
  S1.set_size(k, M >> 1, false);

  for (int i = 0; i < k; i++) {
    count0 = 0;
    count1 = 0;
    for (int j = 0; j < M; j++) {
      if (bitmap(j, i) == bin(0)) {
        S0(i, count0++) = j;
      }
      else {
        S1(i, count1++) = j;
      }
    }
  }
}

//! \cond

// ----------------------------------------------------------------------
// Instantiations
// ----------------------------------------------------------------------
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Modulator<double>;
ITPP_EXPORT_TEMPLATE template class ITPP_EXPORT Modulator<std::complex<double> >;

//! \endcond

// ----------------------------------------------------------------------
// QAM : Modulator_2D
// ----------------------------------------------------------------------

/*!
  \ingroup modulators
  \brief M-ary QAM modulator with square lattice.

  The size of the QAM constellation is \f$M = 2^k\f$, where \f$k = 1, 2,
  \ldots \f$. Symbol values in each dimension are: \f$\{-(\sqrt{M}-1),
  \ldots, -3, -1, 1, 3, \ldots, (\sqrt{M}-1)\}\f$. The bitmap is Gray
  encoded. Symbols are normalized so that the average energy is 1. That
  is, normalized with \f$\sqrt{2(M-1)/3}\f$.

  Beside hard demapping, this class can also perform soft demodulation,
  calculating the log-MAP estimate of the individual bits. To use it
  properly the received symbols should be equal to: \f[r_k = c_k s_k +
  n_k,\f] where \f$c_k\f$ is the real or complex channel gain, \f$s_k\f$
  is the transmitted constellation symbol, and \f$n_k\f$ is the AWGN of
  the channel (with variance \f$N_0\f$).

  It is also assumed that the channel estimates are perfect when
  calculating the soft bits.
*/
class ITPP_EXPORT QAM : public Modulator<std::complex<double> >
{
public:
  //! Default Constructor
  QAM() {}
  //! Class Constructor
  QAM(int M) { set_M(M); }
  //! Destructor
  virtual ~QAM() { }
  //! Change the size of the signal constellation
  void set_M(int M);

  //! Hard demodulation of bits
  void demodulate_bits(const cvec& signal, bvec& bits) const;
  //! Hard demodulation of bits
  bvec demodulate_bits(const cvec& signal) const;

protected:
  //! The square-root of M
  int L;
  //! Scaling factor of square QAM constellation (sqrt((M-1)*2/3))
  double scaling_factor;
};


// ----------------------------------------------------------------------
// PSK : Modulator<std::complex<double> >
// ----------------------------------------------------------------------

/*!
  \ingroup modulators
  \brief M-ary PSK modulator.

  This class implements the M-ary PSK modulator with \f$M = 2^k\f$
  constellation points, where \f$k = 1, 2, \ldots \f$. The symbol
  numbering is counter clockwise starting from the real axis, i.e. symbol
  \f$(1, 0)\f$. The bitmap is Gray encoded. The symbol energy is
  normalized to 1.

  Beside hard demapping, this class can also perform soft demodulation,
  calculating the log-MAP estimate of the individual bits. To use it
  properly the received symbols should be equal to: \f[r_k = c_k s_k +
  n_k,\f] where \f$c_k\f$ is the real or complex channel gain, \f$s_k\f$
  is the transmitted constellation symbol, and \f$n_k\f$ is the AWGN of
  the channel (with variance \f$N_0\f$).

  It is also assumed that the channel estimates are perfect when
  calculating the soft bits.
*/
class ITPP_EXPORT PSK : public Modulator<std::complex<double> >
{
public:
  //! Default Constructor
  PSK() {}
  //! Class constructor
  PSK(int M) { set_M(M); }
  //! Destructor
  virtual ~PSK() { }
  //! Change the size of the signal constellation
  void set_M(int M);

  //! Hard demodulation of bits
  void demodulate_bits(const cvec& signal, bvec& bits) const;
  //! Hard demodulation of bits
  bvec demodulate_bits(const cvec& signal) const;
};


// ----------------------------------------------------------------------
// QPSK : PSK : Modulator<std::complex<double> >
// ----------------------------------------------------------------------

/*!
  \ingroup modulators
  \brief QPSK modulator.

  This is a special version of the PSK modulator with \f$M = 4\f$
  constellation points. Symbol numbering is counter clockwise starting
  from the real axis. Bits are Gray coded onto symbols. Symbol energy is
  normalized to 1.

  Beside hard demapping, this class can also perform soft demodulation,
  calculating the log-MAP estimate of the individual bits. To use it
  properly the received symbols should be equal to: \f[r_k = c_k s_k +
  n_k,\f] where \f$c_k\f$ is the real or complex channel gain, \f$s_k\f$
  is the transmitted constellation symbol, and \f$n_k\f$ is the AWGN of
  the channel (with variance \f$N_0\f$).

  It is also assumed that the channel estimates are perfect when
  calculating the soft bits.
*/
class ITPP_EXPORT QPSK : public PSK
{
public:
  //! Class Constructor
  QPSK(): PSK(4) {}
  //! Destructor
  virtual ~QPSK() {}

  /*!
    \brief Soft demodulator for AWGN channel

    This function calculates the log-MAP estimate assuming equally likely
    bits transmitted: \f[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) =
    \frac{2 \sqrt{2}}{N_0} \Im\{r_k \exp \left(j \frac{\Pi}{4} \right)
    \}\f] and \f[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{2
    \sqrt{2}}{N_0} \Re\{r_k \exp \left(j \frac{\Pi}{4} \right) \}\f]
    depending on the bit positon in the QPSK symbol.

    \param rx_symbols The received noisy constellation symbols, \f$r\f$
    \param N0 The spectral density of the AWGN noise, \f$n\f$
    \param soft_bits The soft bits calculated using the expression above
    \param method The method used for demodulation (LOGMAP or APPROX)

    \note For soft demodulation it is suggested to use the
    N-dimensional modulator (Modulator_ND) instead, which is based
    on the QLLR (quantized) arithmetic and therefore is
    faster. Please note, however, that mixed use of \c
    Modulator_1D/\c Modulator_2D and \c Modulator_ND is not advised.
  */
  virtual void demodulate_soft_bits(const cvec& rx_symbols, double N0,
                                    vec& soft_bits,
                                    Soft_Method method = LOGMAP) const;
  //! Soft demodulator for AWGN channel
  vec demodulate_soft_bits(const cvec& rx_symbols, double N0,
                           Soft_Method method = LOGMAP) const;


  /*!
    \brief Soft demodulator for a known channel in AWGN

    This function calculates the log-MAP estimate assuming equally likely
    bits transmitted: \f[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) =
    \frac{2 \sqrt{2}}{N_0} \Im\{r_k c_k \exp \left(j \frac{\Pi}{4} \right)
    \}\f] and \f[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) = \frac{2
    \sqrt{2}}{N_0} \Re\{r_k c_k \exp \left(j \frac{\Pi}{4} \right) \}\f]
    depending on the bit positon in the QPSK symbol.

    \param rx_symbols The received noisy constellation symbols, \f$r\f$
    \param channel The channel coefficients, \f$c\f$
    \param N0 The spectral density of the AWGN noise, \f$n\f$
    \param soft_bits The soft bits calculated using the expression above
    \param method The method used for demodulation (LOGMAP or APPROX)

    \note For soft demodulation it is suggested to use the
    N-dimensional modulator (Modulator_ND) instead, which is based
    on the QLLR (quantized) arithmetic and therefore is
    faster. Please note, however, that mixed use of \c
    Modulator_1D/\c Modulator_2D and \c Modulator_ND is not advised.
  */
  virtual void demodulate_soft_bits(const cvec& rx_symbols,
                                    const cvec& channel, double N0,
                                    vec& soft_bits,
                                    Soft_Method method = LOGMAP) const;
  //! Soft demodulator for a known channel in AWGN
  vec demodulate_soft_bits(const cvec& rx_symbols, const cvec& channel,
                           double N0, Soft_Method method = LOGMAP) const;
};


// ----------------------------------------------------------------------
// BPSK_c : PSK : Modulator<std::complex<double> >
// ----------------------------------------------------------------------

/*!
  \ingroup modulators
  \brief BPSK modulator with complex symbols.

  This is a special version of the PSK modulator with \f$M = 2\f$
  constellation points. The following bit to symbol mapping is used:
  - \f$0 \rightarrow 1+0i\f$
  - \f$1 \rightarrow -1+0i\f$.

  Beside hard demapping, this class can also perform soft demodulation,
  calculating the log-MAP estimate of the individual bits. To use it
  properly the received symbols should be equal to: \f[r_k = c_k s_k +
  n_k,\f] where \f$c_k\f$ is the real or complex channel gain, \f$s_k\f$
  is the transmitted constellation symbol, and \f$n_k\f$ is the AWGN of
  the channel (with variance \f$N_0\f$).

  It is also assumed that the channel estimates are perfect when
  calculating the soft bits.

  \note Although constellation points of the BPSK modulator can be
  represented in the real domain only, this class uses complex signals to
  be compatible with other PSK and QAM based modulators.

  \sa BPSK
*/
class ITPP_EXPORT BPSK_c : public PSK
{
public:
  //! Constructor
  BPSK_c(): PSK(2) {}
  //! Destructor
  virtual ~BPSK_c() {}

  //! Modulate bits into BPSK symbols in complex domain
  void modulate_bits(const bvec& bits, cvec& output) const;
  //! Modulate bits into BPSK symbols  in complex domain
  cvec modulate_bits(const bvec& bits) const;
  //! Demodulate noisy BPSK symbols in complex domain into bits
  void demodulate_bits(const cvec& signal, bvec& output) const;
  //! Demodulate noisy BPSK symbols in complex domain into bits
  bvec demodulate_bits(const cvec& signal) const;

  /*!
    \brief Soft demodulator for AWGN channel

    This function calculates the log-MAP estimate assuming equally likely
    bits transmitted: \f[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) =
    \frac{4 \Re\{r\}} {N_0}\f]

    \param rx_symbols The received noisy constellation symbols, \f$r\f$
    (complex but symbols in real part)
    \param N0 The spectral density of the AWGN noise, \f$n\f$
    \param soft_bits The soft bits calculated using the expression above
    \param method The method used for demodulation (LOGMAP or APPROX)

    \note For soft demodulation it is suggested to use the
    N-dimensional modulator (Modulator_ND) instead, which is based
    on the QLLR (quantized) arithmetic and therefore is
    faster. Please note, however, that mixed use of \c
    Modulator_1D/\c Modulator_2D and \c Modulator_ND is not advised.
  */
  virtual void demodulate_soft_bits(const cvec& rx_symbols, double N0,
                                    vec& soft_bits,
                                    Soft_Method method = LOGMAP) const;
  //! Soft demodulator for AWGN channel
  vec demodulate_soft_bits(const cvec& rx_symbols, double N0,
                           Soft_Method method = LOGMAP) const;

  /*!
    \brief Soft demodulator for a known channel in AWGN

    This function calculates the log-MAP estimate assuming equally likely
    bits transmitted: \f[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) =
    \frac{4 \Re\{r c^{*}\}}{N_0}\f]

    \param rx_symbols The received noisy constellation symbols, \f$r\f$
    (complex but symbols in real part)
    \param channel The channel coefficients, \f$c\f$ (complex)
    \param N0 The spectral density of the AWGN noise, \f$n\f$
    \param soft_bits The soft bits calculated using the expression above
    \param method The method used for demodulation (LOGMAP or APPROX)

    \note For soft demodulation it is suggested to use the
    N-dimensional modulator (Modulator_ND) instead, which is based
    on the QLLR (quantized) arithmetic and therefore is
    faster. Please note, however, that mixed use of \c
    Modulator_1D/\c Modulator_2D and \c Modulator_ND is not advised.
  */
  virtual void demodulate_soft_bits(const cvec& rx_symbols,
                                    const cvec& channel, double N0,
                                    vec& soft_bits,
                                    Soft_Method method = LOGMAP) const;
  //! Soft demodulator for a known channel in AWGN
  vec demodulate_soft_bits(const cvec& rx_symbols, const cvec& channel,
                           double N0, Soft_Method method = LOGMAP) const;
};



// ----------------------------------------------------------------------
// BPSK : Modulator<double>
// ----------------------------------------------------------------------

/*!
  \ingroup modulators
  \brief BPSK modulator with real symbols.

  This is a special version of the PSK modulator with \f$M = 2\f$
  constellation points. The following bit to symbol mapping is used:
  - \f$0 \rightarrow 1\f$
  - \f$1 \rightarrow -1\f$.

  Beside hard demapping, this class can also perform soft demodulation,
  calculating the log-MAP estimate of the individual bits. To use it
  properly the received symbols should be equal to: \f[r_k = c_k s_k +
  n_k,\f] where \f$c_k\f$ is the real or complex channel gain, \f$s_k\f$
  is the transmitted constellation symbol, and \f$n_k\f$ is the AWGN of
  the channel (with variance \f$N_0\f$).

  It is also assumed that the channel estimates are perfect when
  calculating the soft bits.

  \note This class uses real values for representing symbols. There is
  a similar class named BPSK_c, which uses complex values for symbols and
  therefore is compatible with other PSK and QAM based modulators.
*/
class ITPP_EXPORT BPSK : public Modulator<double>
{
public:
  //! Constructor
  BPSK(): Modulator<double>("1.0 -1.0", "0 1") {}
  //! Destructor
  virtual ~BPSK() {}

  //! Modulate bits into BPSK symbols in complex domain
  void modulate_bits(const bvec& bits, vec& output) const;
  //! Modulate bits into BPSK symbols  in complex domain
  vec modulate_bits(const bvec& bits) const;
  //! Demodulate noisy BPSK symbols in complex domain into bits
  void demodulate_bits(const vec& signal, bvec& output) const;
  //! Demodulate noisy BPSK symbols in complex domain into bits
  bvec demodulate_bits(const vec& signal) const;

  /*!
    \brief Soft demodulator for AWGN channel

    This function calculates the log-MAP estimate assuming equally likely
    bits transmitted: \f[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) =
    \frac{4 r}{N_0}\f]

    \param rx_symbols The received noisy constellation symbols, \f$r\f$
    \param N0 The spectral density of the AWGN noise, \f$n\f$
    \param soft_bits The soft bits calculated using the expression above
    \param method The method used for demodulation (LOGMAP or APPROX)

    \note For soft demodulation it is suggested to use the N-dimensional
    modulator (Modulator_ND) instead, which is based on the QLLR
    (quantized) arithmetic and therefore is faster. Please note, however, that mixed use of \c
    Modulator_1D/\c Modulator_2D and \c Modulator_ND is not advised.
  */
  virtual void demodulate_soft_bits(const vec& rx_symbols, double N0,
                                    vec& soft_bits,
                                    Soft_Method method = LOGMAP) const;
  //! Soft demodulator for AWGN channel
  vec demodulate_soft_bits(const vec& rx_symbols, double N0,
                           Soft_Method method = LOGMAP) const;

  /*!
    \brief Soft demodulator for a known channel in AWGN

    This function calculates the log-MAP estimate assuming equally likely
    bits transmitted: \f[\log \left( \frac{P(b=0|r)}{P(b=1|r)} \right) =
    \frac{4 \Re\{r c^{*}\}}{N_0}\f]

    \param rx_symbols The received noisy constellation symbols, \f$r\f$
    (complex but symbols in real part)
    \param channel The channel coefficients, \f$c\f$ (complex)
    \param N0 The spectral density of the AWGN noise, \f$n\f$
    \param soft_bits The soft bits calculated using the expression above
    \param method The method used for demodulation (LOGMAP or APPROX)

    \note For soft demodulation it is suggested to use the N-dimensional
    modulator (Modulator_ND) instead, which is based on the QLLR
    (quantized) arithmetic and therefore is faster. Please note, however, that mixed use of \c
    Modulator_1D/\c Modulator_2D and \c Modulator_ND is not advised.
  */
  virtual void demodulate_soft_bits(const vec& rx_symbols,
                                    const vec& channel, double N0,
                                    vec& soft_bits,
                                    Soft_Method method = LOGMAP) const;
  //! Soft demodulator for a known channel in AWGN
  vec demodulate_soft_bits(const vec& rx_symbols, const vec& channel,
                           double N0, Soft_Method method = LOGMAP) const;
};


// ----------------------------------------------------------------------
// PAM_c : Modulator<std::complex<double> >
// ----------------------------------------------------------------------

/*!
  \ingroup modulators
  \brief M-ary PAM modulator with complex symbols.

  This class implements an M-ary PAM modulator with the following signal
  values: \f$\{-(M-1), \ldots, -3, -1, 1, 3, \ldots, (M-1)\}\f$. Symbol
  numbering is from right to left in the increasing order. The Gray
  encoding of bits to symbols is used.

  The constellation symbols are normalized so that the average energy is
  equal to 1. That is, normalized with \f$ \sqrt{(M^2-1)/3}\f$.

  \note Although the constellation points can be represented in the real
  domain only, this class uses complex based interface to be compatible
  with other PSK and QAM based modulators.

  \sa PAM
*/
class ITPP_EXPORT PAM_c : public Modulator<std::complex<double> >
{
public:
  //! Default Constructor
  PAM_c() {}
  //! Constructor
  PAM_c(int M) { set_M(M); }
  //! Destructor
  virtual ~PAM_c() {}
  //! Set the size of the signal constellation
  void set_M(int M);

  //! Hard demodulation of PAM symbols in complex domain to bits
  void demodulate_bits(const cvec& signal, bvec& output) const;
  //! Hard demodulation of PAM symbols in complex domain to bits
  bvec demodulate_bits(const cvec& signal) const;

  /*!
    \brief Soft demodulator for AWGN channels.

    This function calculates the log-likelihood ratio (LLR) of the
    received signal from AWGN channels. Depending on the soft demodulation
    method chosen, either full log-MAP calculation is performed (default
    method), according to the following equation: \f[\log \left(
    \frac{P(b_i=0|r)}{P(b_i=1|r)} \right) = \log \left( \frac{\sum_{s_i
    \in S_0} \exp \left( -\frac{|r_k - s_i|^2}{N_0} \right)} {\sum_{s_i
    \in S_1} \exp \left( -\frac{|r_k - s_i|^2}{N_0} \right)} \right) \f]
    or approximate, but faster calculation is performed.

    The approximate method finds for each bit the closest constellation
    points that have zero and one in the corresponding position. Let
    \f$d_0 = |r_k - s_0|\f$ denote the distance to the closest zero point
    and \f$d_1 = |r_k - s_1|\f$ denote the distance to the closest one
    point for the corresponding bit respectively. The approximate
    algorithm then computes \f[\frac{d_1^2 - d_0^2}{N_0}\f]

    This function can be used on channels where the channel gain
    \f$c = 1\f$.

    When this function is to be used together with MAP-based turbo
    decoding algorithms then the channel reliability factor \f$L_c\f$ of
    the turbo decoder shall be set to 1. The output from this function can
    also be used by a Viterbi decoder using an AWGN based metric
    calculation function.

    \param rx_symbols The received noisy constellation symbols \f$r_k\f$
    (complex, but symbols are real)
    \param N0 The spectral density of the AWGN noise
    \param soft_bits The soft bits calculated using the expression above
    \param method The method used for demodulation (LOGMAP or APPROX)

    \note For soft demodulation it is suggested to use the N-dimensional
    modulator (Modulator_ND) instead, which is based on the QLLR
    (quantized) arithmetic and therefore is faster. Please note, however, that mixed use of \c
    Modulator_1D/\c Modulator_2D and \c Modulator_ND is not advised.
  */
  virtual void demodulate_soft_bits(const cvec& rx_symbols, double N0,
                                    vec& soft_bits,
                                    Soft_Method method = LOGMAP) const;
  //! Soft demodulator for AWGN channels.
  virtual vec demodulate_soft_bits(const cvec& rx_symbols, double N0,
                                   Soft_Method method = LOGMAP) const;

  /*!
    \brief Soft demodulator for known fading channels.

    This function calculates the log-likelihood ratio (LLR) of the
    received signal from fading channels. Depending on the soft
    demodulation method chosen, either full log-MAP calculation is
    performed (default method), according to the following equation:
    \f[\log \left( \frac{P(b_i=0|r)}{P(b_i=1|r)} \right) = \log \left(
    \frac{\sum_{s_i \in S_0} \exp \left( -\frac{|r_k - c_k s_i|^2}{N_0}
    \right)} {\sum_{s_i \in S_1} \exp \left( -\frac{|r_k - c_k
    s_i|^2}{N_0} \right)} \right) \f] or approximate, but faster
    calculation is performed.

    The approximate method finds for each bit the closest constellation
    points that have zero and one in the corresponding position. Let
    \f$d_0 = |r_k - c_k s_0|\f$ denote the distance to the closest zero
    point and \f$d_1 = |r_k - c_k s_1|\f$ denote the distance to the
    closest one point for the corresponding bit respectively. The
    approximate algorithm then computes \f[\frac{d_1^2 - d_0^2}{N_0}\f]

    When this function is to be used together with MAP-based turbo
    decoding algorithms then the channel reliability factor \f$L_c\f$ of
    the turbo decoder shall be set to 1. The output from this function can
    also be used by a Viterbi decoder using an AWGN based metric
    calculation function.

    \param rx_symbols The received noisy constellation symbols \f$r_k\f$
    (complex)
    \param channel The channel values \f$c_k\f$
    \param N0 The spectral density of the AWGN noise
    \param soft_bits The soft bits calculated using the expression above
    \param method The method used for demodulation (LOGMAP or APPROX)

    \note For soft demodulation it is suggested to use the N-dimensional
    modulator (Modulator_ND) instead, which is based on the QLLR
    (quantized) arithmetic and therefore is faster. Please note, however, that mixed use of \c
    Modulator_1D/\c Modulator_2D and \c Modulator_ND is not advised.
  */
  virtual void demodulate_soft_bits(const cvec& rx_symbols,
                                    const cvec& channel, double N0,
                                    vec& soft_bits,
                                    Soft_Method method = LOGMAP) const;
  //! Soft demodulator for known fading channels.
  virtual vec demodulate_soft_bits(const cvec& rx_symbols,
                                   const cvec& channel, double N0,
                                   Soft_Method method = LOGMAP) const;

protected:
  //! Scaling factor used to normalize the average energy to 1
  double scaling_factor;
};


// ----------------------------------------------------------------------
// PAM : Modulator<double>
// ----------------------------------------------------------------------

/*!
  \ingroup modulators
  \brief M-ary PAM modulator with real symbols.

  This class implements an M-ary PAM modulator with the following signal
  values: \f$\{-(M-1), \ldots, -3, -1, 1, 3, \ldots, (M-1)\}\f$. Symbol
  numbering is from right to left in the increasing order. The Gray
  encoding of bits to symbols is used.

  The constellation symbols are normalized so that the average energy is
  equal to 1. That is, normalized with \f$ \sqrt{(M^2-1)/3}\f$.

  \note This class uses real values for representing symbols. There is
  a similar class named PAM_c, which uses complex values for symbols and
  therefore is compatible with other PSK and QAM based modulators.
*/
class ITPP_EXPORT PAM : public Modulator<double>
{
public:
  //! Default Constructor
  PAM() {}
  //! Constructor
  PAM(int M) { set_M(M); }
  //! Destructor
  virtual ~PAM() {}
  //! Set the size of the signal constellation
  void set_M(int M);

  //! Hard demodulation of PAM symbols in complex domain to bits
  void demodulate_bits(const vec& signal, bvec& output) const;
  //! Hard demodulation of PAM symbols in complex domain to bits
  bvec demodulate_bits(const vec& signal) const;

protected:
  //! Scaling factor used to normalize the average energy to 1
  double scaling_factor;
};

} // namespace itpp

#endif // #ifndef MODULATOR_H